Foundations of Computing Discrete Mathematics Solutions to exercises for week 7

Size: px
Start display at page:

Download "Foundations of Computing Discrete Mathematics Solutions to exercises for week 7"

Transcription

1 Foundations of Computing Discrete Mathematics olutions to exercises for week 7 Agata Murawska (agmu@itu.dk) October 25, 2013 xercise (13.1.4). Let G = (V, T,, P ) be the phrase-structure grammar with V = {0, 1, A, }, T = {0, 1} and the set of productions P consisting of 1, 00A, A 0A, and A 0. a) how that belongs to the language generated by G A b) how that does not belong to the language generated by G. When we look at the productions from initial state we notice that we can only produce 1s at the front. Once we decide to use the rule 00A we have no rule that allows us to add 1 to the word we are creating. Therefore cannot be in the language generated by G, as it contains 1 at the end. c) What is the language generated by G? We have already noticed that we can produce an arbitrary number of 1s in front of the word (possibly none, as we can can use the second rule right away). Once we stop producing 1s, we have to add 00A to the word. Then, the rule for A allows us to produce an arbitrarily long, non-empty string of 0s, so: L(G) = {1 m 000 n m N, n N + } = {1 m 0000 n m, n N} = {1 m 0 n+3 m, n N} xercise (13.1.8). how that the grammar given in xample 5 generated the set {0 n 1 n n N}. The grammar G from xample 5 looks like this: 01, λ. We need to prove that L(G) = {0 n 1 n n N}. As a remainder, L(G) = {w {0, 1} w}. 1

2 Looking at the grammar we can see that the only way to derive a word is to use the production 01 some number of times and then end the word with the rule λ. Using 01 k times results in a string 0 k 1 k, so: L(G) = {w {0, 1} w} = {w {0, 1} for some n, n 0 n 1 n 0 n 1 n = w} = {w {0, 1} for some n, w = 0 n 1 n } = {0 n 1 n n N} xercise ( ). how that the grammar given in xample 7 generates the set {0 n 1 n 2 n n N}. The grammar G from xample 7 looks like this 1 : V = {0, 1, 2,, A, B, C}, T = {0, 1, 2}, starting symbol and productions C, C 0CAB, C λ, BA AB, 0A 01, 1A 11, 1B 12 and 2B 22. We need to prove that L(G) = {0 n 1 n 2 n n N}. First let us look at the grammar and see how does it work. From starting symbol we can only go to C and we can t ever go back. From C we can either produce an empty word (which allows us e.g. to produce = λ which is in the language {0 n 1 n 2 n n N}), or use C 0CAB. If you look carefully you ll notice that no other production generates new 0s the 0A 01 simply preserves the existing ones. o this gives us some hint we will have to use this rule k times in total to produce the leading 0s in 0 k 1 k 2 k. What else can we do before we remove the C using C λ? Only BA AB is an option. What we can use it for is to reorder the ABABABAB..AB sequence at the end of the string in fact, we can sort this sequence into A...AB...B using only this rule! Let us try to see exactly how could we generate = using this grammar: C 0CAB 00CABAB 000CABABAB 000ABABAB 000AABBAB 000AABABB 000AAABBB 0001AABBB 00011ABBB BBB BB B This is not the only way in which this word can be generated, but it is one that can be generalized into an algorithm for generating 0 k 1 k 2 k for any k: 1. Use C 2. Use C 0CAB k times to generate k leading 0s (now the string is 0 k C(AB) k ) 3. Use C λ to remove C and mark the end of generation of 0s 4. Use BA AB to reorder (AB) k into A k B k (now the string is 0 k A k B k ) 1 Actually, the grammar originally had λ instead of C λ, but that seems to be a typo. 2

3 5. Use 0A 01 once 6. Use 1A 11 k 1 times (now the string is 0 k 1 k B k ) 7. Use 1B 12 once 8. Use 2B 22 k 1 times to finally obtain 0 k 1 k 2 k This shows that {0 n 1 n 2 n n N} L(G), as we can use the procedure above to generate any member of the set {0 n 1 n 2 n n N}. What remains to be shown is that the reverse is also true that is that L(G) {0 n 1 n 2 n n N}. Let us take any w L(G) and show that it is of the form 0 n 1 n 2 n for some n. Let us assume that the number of 0s in w is equal to k. If k = 0 then trivially w is of the correct form, as any word from L(G) either contains some 0s or is equal to λ. Let us consider the case with k > 0. There are a couple of observations to keep in mind. Fact 1. very word in language L(G) has equal number of 0s, 1s and 2s. To see this, notice that C C0AB produces one 0, one A and one B. Looking at productions we can notice that each A can only be transformed to 1, each B to 2. Fact 2. All the 0s are produced in front of the string and before any 1s or 2s. In order to use 0A 01 we need 0 next to A. As long as we have not used C λ rule we won t have that, afterwards we cannot go back to produce any more 0s. Moreover all the 0s are at the front, as that is how the rule C 0CAB is placing them and there is no rule to move them around. Fact 3. There is a single point of transforming nonterminals A and B to terminals 1 and 2. After all the 0s have been produced, all four rules exchanging A with 1 and B with 2 require <terminal><nonterminal> left-hand side. But we have terminals only on the far left side of the word, so there is always only one point where we can use one of the rules 0A 01, 1A 11, 1B 12, 2B 22. Fact 4. In a derivation of a valid word, all the 1s are produced before (and in front of) any 2s. If not all the 1s are produced before the first B is exchanged to 2 (using 1B 12) that means there is some A to the left. This A will never be used in any production, so it will stay in the word. A valid word contains no nonterminals, so no As, therefore such derivation will not end with a valid word. Combining this with the previous fact we get that all the 1s are before any 2 in a valid word. 3

4 The proof that w is of the correct form follows directly from the observations above. Namely, w must necessarily have the same number of 0s, 1s and 2s, so the only thing that can go wrong is that they are not sorted. But we know that all the 0s are in the front and all the 1s are created before 2s, so the word w is in fact sorted that is, it is of the form 0 k 1 k 2 k (where k is the number of times the rule C 0CAB has been used). xercise ( ). Construct phrase-structure grammars to generate each of these sets. a) {01 2n n N} G = ({0, 1, }, {0, 1},, { 0, 11}) b) {0 n 1 2n n N} G = ({0, 1, }, {0, 1},, { λ, 011}) c) {0 n 1 m 0 n n, m N} G = ({0, 1,, A}, {0, 1},, { 00, A, λ, A 1A, A λ}) xercise ( ). A palindrome is a string that reads the same backward as it does forward that is, a string w, where w = w R, where w R is the reversal of the string w. Find a context-free grammar that generates the set of all palindromes over the alphabet {0, 1}. G = ({0, 1, }, {0, 1},, { 00, 11, 0, 1, λ}) Let us informally motivate this construction. Productions 00 and 11 are the only ones that allow you to continue building a word (as they contain a nonterminal on the right). The both preserve the feature of being a palindrome that is, if w was a palindrome, then 1w1 and 0w0 are also palindromes. Notice that they produce even-length words. A letter in the middle of a palindrome, if it has odd number of letters, can be anything so we have productions 0 and 1 to put the middle letter. A palindrome can also have an even number of letters; that we can obtain by finishing the derivation with λ. xercise ( ). Let G be the grammar with V = {a, b, c, }, T = {a, b, c}; starting symbol ; and productions ab, bc,, a, cb. Construct derivation trees for a) bca 4

5 bc a b) bca bc a c) bcabcb bc ab cb xercise ( ). a) xplain what the productions are in a grammar if the Backus-Naur form for productions is as follows: <expression> ::= ( <expression> ) <expression> + <expression> <expression> * <expression> <variable> <variable> ::= x y Productions for this grammar are the following: (), +,, V, V x, V y 5

6 with terminal symbols T = {x, y,, +, (, )}, a starting symbol and another nonterminal V. To see why that is we have to look at the BNF form of the grammar. ach left-hand side corresponds to a nonterminal object; <expression> is represented by and <variable> by V. ach element of the barseparated right-hand side is a production. Terminal objects are parts of the right-hand side that are not enclosed in brackets < >. b) Find a derivation tree for (x y) + x in this grammar. + ( ) V * x V V x y xercise ( ). Describe how productions for a grammar in extended Backus-Naur form can be translated into a set of productions for the grammar in Backus-Naur form. xtended Backus-Naur form (BNF) differs from BNF in several places: It (usually) does not use brackets to denote nonterminals. We can still tell which symbols are nonterminal by looking at all the left-hand sides (the names defined there are nonterminals, the rest of the symbols are terminal). It is then easy to recover the < > for nonterminals? symbol can be used to indicate that some part (a symbol or group of symbols enclosed in parentheses) of the production is optional. For example ::= a?bcde? is a simple BNF style grammar that can produce strings abcde, abcd, bcde, bcd as taking a and e is optional. The way to capture that in BNF is to have 2 productions for each?x: one with x and one without. In our example, the BNF equivalent is then: <> ::= abcde bcde abcd bcd this is obtained in 2 steps, first we remove?a to get 6

7 <> ::= abcd?e bcd?e and then we remove?e. * symbol is used to indicate that something occurs zero or more times. For example ::= a*b describes all strings with arbitrary number of a s in front and ending with b (so the language described by this grammar is {a n b n N}). We can simulate x* in BNF by creating a new nonterminal object, let us call it <Xstar>. Now, production for <Xstar> will be <Xstar> ::= x<xstar> λ and we will use <Xstar> where x* was in the original grammar. ::= a*b becomes then <> ::= <Astar>b <Astar> ::= a<astar> λ + symbol is used to indicate a symbol occurs one or more times. But notice that x+ is the same as xx* so we can exchange them and we already know how to transform x*. How to transform a more complicated BNF expression? We just have to keep transforming the grammar step by step until all the + and * symbols are gone. The result may not be optimal in terms of size (number of rules), but the two grammars will describe the same language. 7

Pushdown Automata. place the input head on the leftmost input symbol. while symbol read = b and pile contains discs advance head remove disc from pile

Pushdown Automata. place the input head on the leftmost input symbol. while symbol read = b and pile contains discs advance head remove disc from pile Pushdown Automata In the last section we found that restricting the computational power of computing devices produced solvable decision problems for the class of sets accepted by finite automata. But along

More information

CS103B Handout 17 Winter 2007 February 26, 2007 Languages and Regular Expressions

CS103B Handout 17 Winter 2007 February 26, 2007 Languages and Regular Expressions CS103B Handout 17 Winter 2007 February 26, 2007 Languages and Regular Expressions Theory of Formal Languages In the English language, we distinguish between three different identities: letter, word, sentence.

More information

MACM 101 Discrete Mathematics I

MACM 101 Discrete Mathematics I MACM 101 Discrete Mathematics I Exercises on Combinatorics, Probability, Languages and Integers. Due: Tuesday, November 2th (at the beginning of the class) Reminder: the work you submit must be your own.

More information

Formal Languages and Automata Theory - Regular Expressions and Finite Automata -

Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March

More information

C H A P T E R Regular Expressions regular expression

C H A P T E R Regular Expressions regular expression 7 CHAPTER Regular Expressions Most programmers and other power-users of computer systems have used tools that match text patterns. You may have used a Web search engine with a pattern like travel cancun

More information

CMPSCI 250: Introduction to Computation. Lecture #19: Regular Expressions and Their Languages David Mix Barrington 11 April 2013

CMPSCI 250: Introduction to Computation. Lecture #19: Regular Expressions and Their Languages David Mix Barrington 11 April 2013 CMPSCI 250: Introduction to Computation Lecture #19: Regular Expressions and Their Languages David Mix Barrington 11 April 2013 Regular Expressions and Their Languages Alphabets, Strings and Languages

More information

Playing with Numbers

Playing with Numbers PLAYING WITH NUMBERS 249 Playing with Numbers CHAPTER 16 16.1 Introduction You have studied various types of numbers such as natural numbers, whole numbers, integers and rational numbers. You have also

More information

Vieta s Formulas and the Identity Theorem

Vieta s Formulas and the Identity Theorem Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion

More information

2110711 THEORY of COMPUTATION

2110711 THEORY of COMPUTATION 2110711 THEORY of COMPUTATION ATHASIT SURARERKS ELITE Athasit Surarerks ELITE Engineering Laboratory in Theoretical Enumerable System Computer Engineering, Faculty of Engineering Chulalongkorn University

More information

Automata and Formal Languages

Automata and Formal Languages Automata and Formal Languages Winter 2009-2010 Yacov Hel-Or 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,

More information

Reading 13 : Finite State Automata and Regular Expressions

Reading 13 : Finite State Automata and Regular Expressions CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model

More information

Lecture 1. Basic Concepts of Set Theory, Functions and Relations

Lecture 1. Basic Concepts of Set Theory, Functions and Relations September 7, 2005 p. 1 Lecture 1. Basic Concepts of Set Theory, Functions and Relations 0. Preliminaries...1 1. Basic Concepts of Set Theory...1 1.1. Sets and elements...1 1.2. Specification of sets...2

More information

CAs and Turing Machines. The Basis for Universal Computation

CAs and Turing Machines. The Basis for Universal Computation CAs and Turing Machines The Basis for Universal Computation What We Mean By Universal When we claim universal computation we mean that the CA is capable of calculating anything that could possibly be calculated*.

More information

Regular Languages and Finite State Machines

Regular Languages and Finite State Machines Regular Languages and Finite State Machines Plan for the Day: Mathematical preliminaries - some review One application formal definition of finite automata Examples 1 Sets A set is an unordered collection

More information

INCIDENCE-BETWEENNESS GEOMETRY

INCIDENCE-BETWEENNESS GEOMETRY INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full

More information

University of Toronto Department of Electrical and Computer Engineering. Midterm Examination. CSC467 Compilers and Interpreters Fall Semester, 2005

University of Toronto Department of Electrical and Computer Engineering. Midterm Examination. CSC467 Compilers and Interpreters Fall Semester, 2005 University of Toronto Department of Electrical and Computer Engineering Midterm Examination CSC467 Compilers and Interpreters Fall Semester, 2005 Time and date: TBA Location: TBA Print your name and ID

More information

ECDL. European Computer Driving Licence. Spreadsheet Software BCS ITQ Level 2. Syllabus Version 5.0

ECDL. European Computer Driving Licence. Spreadsheet Software BCS ITQ Level 2. Syllabus Version 5.0 European Computer Driving Licence Spreadsheet Software BCS ITQ Level 2 Using Microsoft Excel 2010 Syllabus Version 5.0 This training, which has been approved by BCS, The Chartered Institute for IT, includes

More information

We can express this in decimal notation (in contrast to the underline notation we have been using) as follows: 9081 + 900b + 90c = 9001 + 100c + 10b

We can express this in decimal notation (in contrast to the underline notation we have been using) as follows: 9081 + 900b + 90c = 9001 + 100c + 10b In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should

More information

Honors Class (Foundations of) Informatics. Tom Verhoeff. Department of Mathematics & Computer Science Software Engineering & Technology

Honors Class (Foundations of) Informatics. Tom Verhoeff. Department of Mathematics & Computer Science Software Engineering & Technology Honors Class (Foundations of) Informatics Tom Verhoeff Department of Mathematics & Computer Science Software Engineering & Technology www.win.tue.nl/~wstomv/edu/hci c 2011, T. Verhoeff @ TUE.NL 1/20 Information

More information

No Solution Equations Let s look at the following equation: 2 +3=2 +7

No Solution Equations Let s look at the following equation: 2 +3=2 +7 5.4 Solving Equations with Infinite or No Solutions So far we have looked at equations where there is exactly one solution. It is possible to have more than solution in other types of equations that are

More information

3. Mathematical Induction

3. Mathematical Induction 3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

More information

Math Circle Beginners Group October 18, 2015

Math Circle Beginners Group October 18, 2015 Math Circle Beginners Group October 18, 2015 Warm-up problem 1. Let n be a (positive) integer. Prove that if n 2 is odd, then n is also odd. (Hint: Use a proof by contradiction.) Suppose that n 2 is odd

More information

6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010. Class 4 Nancy Lynch

6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010. Class 4 Nancy Lynch 6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010 Class 4 Nancy Lynch Today Two more models of computation: Nondeterministic Finite Automata (NFAs)

More information

3515ICT Theory of Computation Turing Machines

3515ICT Theory of Computation Turing Machines Griffith University 3515ICT Theory of Computation Turing Machines (Based loosely on slides by Harald Søndergaard of The University of Melbourne) 9-0 Overview Turing machines: a general model of computation

More information

9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes

9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is so-called because when the scalar product of

More information

Greatest Common Factor and Least Common Multiple

Greatest Common Factor and Least Common Multiple Greatest Common Factor and Least Common Multiple Intro In order to understand the concepts of Greatest Common Factor (GCF) and Least Common Multiple (LCM), we need to define two key terms: Multiple: Multiples

More information

Properties of Real Numbers

Properties of Real Numbers 16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

Pushdown automata. Informatics 2A: Lecture 9. Alex Simpson. 3 October, 2014. School of Informatics University of Edinburgh als@inf.ed.ac.

Pushdown automata. Informatics 2A: Lecture 9. Alex Simpson. 3 October, 2014. School of Informatics University of Edinburgh als@inf.ed.ac. Pushdown automata Informatics 2A: Lecture 9 Alex Simpson School of Informatics University of Edinburgh als@inf.ed.ac.uk 3 October, 2014 1 / 17 Recap of lecture 8 Context-free languages are defined by context-free

More information

8 Square matrices continued: Determinants

8 Square matrices continued: Determinants 8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You

More information

WRITING PROOFS. Christopher Heil Georgia Institute of Technology

WRITING PROOFS. Christopher Heil Georgia Institute of Technology WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this

More information

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89 by Joseph Collison Copyright 2000 by Joseph Collison All rights reserved Reproduction or translation of any part of this work beyond that permitted by Sections

More information

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

More information

Math 312 Homework 1 Solutions

Math 312 Homework 1 Solutions Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please

More information

26 Integers: Multiplication, Division, and Order

26 Integers: Multiplication, Division, and Order 26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue

More information

Year 9 set 1 Mathematics notes, to accompany the 9H book.

Year 9 set 1 Mathematics notes, to accompany the 9H book. Part 1: Year 9 set 1 Mathematics notes, to accompany the 9H book. equations 1. (p.1), 1.6 (p. 44), 4.6 (p.196) sequences 3. (p.115) Pupils use the Elmwood Press Essential Maths book by David Raymer (9H

More information

6 3 4 9 = 6 10 + 3 10 + 4 10 + 9 10

6 3 4 9 = 6 10 + 3 10 + 4 10 + 9 10 Lesson The Binary Number System. Why Binary? The number system that you are familiar with, that you use every day, is the decimal number system, also commonly referred to as the base- system. When you

More information

Section IV.1: Recursive Algorithms and Recursion Trees

Section IV.1: Recursive Algorithms and Recursion Trees Section IV.1: Recursive Algorithms and Recursion Trees Definition IV.1.1: A recursive algorithm is an algorithm that solves a problem by (1) reducing it to an instance of the same problem with smaller

More information

Solutions to In-Class Problems Week 4, Mon.

Solutions to In-Class Problems Week 4, Mon. Massachusetts Institute of Technology 6.042J/18.062J, Fall 05: Mathematics for Computer Science September 26 Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld revised September 26, 2005, 1050 minutes Solutions

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us

More information

Number Systems and Radix Conversion

Number Systems and Radix Conversion Number Systems and Radix Conversion Sanjay Rajopadhye, Colorado State University 1 Introduction These notes for CS 270 describe polynomial number systems. The material is not in the textbook, but will

More information

Aim To help students prepare for the Academic Reading component of the IELTS exam.

Aim To help students prepare for the Academic Reading component of the IELTS exam. IELTS Reading Test 1 Teacher s notes Written by Sam McCarter Aim To help students prepare for the Academic Reading component of the IELTS exam. Objectives To help students to: Practise doing an academic

More information

Automata and Computability. Solutions to Exercises

Automata and Computability. Solutions to Exercises Automata and Computability Solutions to Exercises Fall 25 Alexis Maciel Department of Computer Science Clarkson University Copyright c 25 Alexis Maciel ii Contents Preface vii Introduction 2 Finite Automata

More information

Prime Factorization 0.1. Overcoming Math Anxiety

Prime Factorization 0.1. Overcoming Math Anxiety 0.1 Prime Factorization 0.1 OBJECTIVES 1. Find the factors of a natural number 2. Determine whether a number is prime, composite, or neither 3. Find the prime factorization for a number 4. Find the GCF

More information

Turing Machines: An Introduction

Turing Machines: An Introduction CIT 596 Theory of Computation 1 We have seen several abstract models of computing devices: Deterministic Finite Automata, Nondeterministic Finite Automata, Nondeterministic Finite Automata with ɛ-transitions,

More information

Fundamentele Informatica II

Fundamentele Informatica II Fundamentele Informatica II Answer to selected exercises 1 John C Martin: Introduction to Languages and the Theory of Computation M.M. Bonsangue (and J. Kleijn) Fall 2011 Let L be a language. It is clear

More information

8 Divisibility and prime numbers

8 Divisibility and prime numbers 8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

Maths Workshop for Parents 2. Fractions and Algebra

Maths Workshop for Parents 2. Fractions and Algebra Maths Workshop for Parents 2 Fractions and Algebra What is a fraction? A fraction is a part of a whole. There are two numbers to every fraction: 2 7 Numerator Denominator 2 7 This is a proper (or common)

More information

APP INVENTOR. Test Review

APP INVENTOR. Test Review APP INVENTOR Test Review Main Concepts App Inventor Lists Creating Random Numbers Variables Searching and Sorting Data Linear Search Binary Search Selection Sort Quick Sort Abstraction Modulus Division

More information

Grade 6 Math Circles. Binary and Beyond

Grade 6 Math Circles. Binary and Beyond Faculty of Mathematics Waterloo, Ontario N2L 3G1 The Decimal System Grade 6 Math Circles October 15/16, 2013 Binary and Beyond The cool reality is that we learn to count in only one of many possible number

More information

Regular Expressions with Nested Levels of Back Referencing Form a Hierarchy

Regular Expressions with Nested Levels of Back Referencing Form a Hierarchy Regular Expressions with Nested Levels of Back Referencing Form a Hierarchy Kim S. Larsen Odense University Abstract For many years, regular expressions with back referencing have been used in a variety

More information

Lecture Notes on Database Normalization

Lecture Notes on Database Normalization Lecture Notes on Database Normalization Chengkai Li Department of Computer Science and Engineering The University of Texas at Arlington April 15, 2012 I decided to write this document, because many students

More information

Session 7 Fractions and Decimals

Session 7 Fractions and Decimals Key Terms in This Session Session 7 Fractions and Decimals Previously Introduced prime number rational numbers New in This Session period repeating decimal terminating decimal Introduction In this session,

More information

Polynomial Invariants

Polynomial Invariants Polynomial Invariants Dylan Wilson October 9, 2014 (1) Today we will be interested in the following Question 1.1. What are all the possible polynomials in two variables f(x, y) such that f(x, y) = f(y,

More information

A Little Set Theory (Never Hurt Anybody)

A Little Set Theory (Never Hurt Anybody) A Little Set Theory (Never Hurt Anybody) Matthew Saltzman Department of Mathematical Sciences Clemson University Draft: August 21, 2013 1 Introduction The fundamental ideas of set theory and the algebra

More information

CONTENTS 1. Peter Kahn. Spring 2007

CONTENTS 1. Peter Kahn. Spring 2007 CONTENTS 1 MATH 304: CONSTRUCTING THE REAL NUMBERS Peter Kahn Spring 2007 Contents 2 The Integers 1 2.1 The basic construction.......................... 1 2.2 Adding integers..............................

More information

Outline. Written Communication Conveying Scientific Information Effectively. Objective of (Scientific) Writing

Outline. Written Communication Conveying Scientific Information Effectively. Objective of (Scientific) Writing Written Communication Conveying Scientific Information Effectively Marie Davidian davidian@stat.ncsu.edu http://www.stat.ncsu.edu/ davidian. Outline Objectives of (scientific) writing Important issues

More information

Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

More information

Direct Translation is the process of translating English words and phrases into numbers, mathematical symbols, expressions, and equations.

Direct Translation is the process of translating English words and phrases into numbers, mathematical symbols, expressions, and equations. Section 1 Mathematics has a language all its own. In order to be able to solve many types of word problems, we need to be able to translate the English Language into Math Language. is the process of translating

More information

Basics of Counting. The product rule. Product rule example. 22C:19, Chapter 6 Hantao Zhang. Sample question. Total is 18 * 325 = 5850

Basics of Counting. The product rule. Product rule example. 22C:19, Chapter 6 Hantao Zhang. Sample question. Total is 18 * 325 = 5850 Basics of Counting 22C:19, Chapter 6 Hantao Zhang 1 The product rule Also called the multiplication rule If there are n 1 ways to do task 1, and n 2 ways to do task 2 Then there are n 1 n 2 ways to do

More information

Graph Theory Problems and Solutions

Graph Theory Problems and Solutions raph Theory Problems and Solutions Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is

More information

Working with whole numbers

Working with whole numbers 1 CHAPTER 1 Working with whole numbers In this chapter you will revise earlier work on: addition and subtraction without a calculator multiplication and division without a calculator using positive and

More information

The Taxman Game. Robert K. Moniot September 5, 2003

The Taxman Game. Robert K. Moniot September 5, 2003 The Taxman Game Robert K. Moniot September 5, 2003 1 Introduction Want to know how to beat the taxman? Legally, that is? Read on, and we will explore this cute little mathematical game. The taxman game

More information

SAT Math Facts & Formulas Review Quiz

SAT Math Facts & Formulas Review Quiz Test your knowledge of SAT math facts, formulas, and vocabulary with the following quiz. Some questions are more challenging, just like a few of the questions that you ll encounter on the SAT; these questions

More information

Solving Linear Equations in One Variable. Worked Examples

Solving Linear Equations in One Variable. Worked Examples Solving Linear Equations in One Variable Worked Examples Solve the equation 30 x 1 22x Solve the equation 30 x 1 22x Our goal is to isolate the x on one side. We ll do that by adding (or subtracting) quantities

More information

Examination paper for MA0301 Elementær diskret matematikk

Examination paper for MA0301 Elementær diskret matematikk Department of Mathematical Sciences Examination paper for MA0301 Elementær diskret matematikk Academic contact during examination: Iris Marjan Smit a, Sverre Olaf Smalø b Phone: a 9285 0781, b 7359 1750

More information

Base Conversion written by Cathy Saxton

Base Conversion written by Cathy Saxton Base Conversion written by Cathy Saxton 1. Base 10 In base 10, the digits, from right to left, specify the 1 s, 10 s, 100 s, 1000 s, etc. These are powers of 10 (10 x ): 10 0 = 1, 10 1 = 10, 10 2 = 100,

More information

Turing Machines, Part I

Turing Machines, Part I Turing Machines, Part I Languages The $64,000 Question What is a language? What is a class of languages? Computer Science Theory 2 1 Now our picture looks like Context Free Languages Deterministic Context

More information

Braille: Deciphering the Code Adapted from American Foundation for the Blind http://www.afb.org/braillebug/braille_deciphering.asp

Braille: Deciphering the Code Adapted from American Foundation for the Blind http://www.afb.org/braillebug/braille_deciphering.asp Braille: Deciphering the Code Adapted from American Foundation for the Blind http://www.afb.org/braillebug/braille_deciphering.asp People often think that Braille is a language. Actually there is a Braille

More information

6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008

6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Basic Concepts of Set Theory, Functions and Relations

Basic Concepts of Set Theory, Functions and Relations March 1, 2006 p. 1 Basic Concepts of Set Theory, Functions and Relations 1. Basic Concepts of Set Theory...1 1.1. Sets and elements...1 1.2. Specification of sets...2 1.3. Identity and cardinality...3

More information

Lempel-Ziv Coding Adaptive Dictionary Compression Algorithm

Lempel-Ziv Coding Adaptive Dictionary Compression Algorithm Lempel-Ziv Coding Adaptive Dictionary Compression Algorithm 1. LZ77:Sliding Window Lempel-Ziv Algorithm [gzip, pkzip] Encode a string by finding the longest match anywhere within a window of past symbols

More information

How To Compare A Markov Algorithm To A Turing Machine

How To Compare A Markov Algorithm To A Turing Machine Markov Algorithm CHEN Yuanmi December 18, 2007 1 Abstract Markov Algorithm can be understood as a priority string rewriting system. In this short paper we give the definition of Markov algorithm and also

More information

Online EFFECTIVE AS OF JANUARY 2013

Online EFFECTIVE AS OF JANUARY 2013 2013 A and C Session Start Dates (A-B Quarter Sequence*) 2013 B and D Session Start Dates (B-A Quarter Sequence*) Quarter 5 2012 1205A&C Begins November 5, 2012 1205A Ends December 9, 2012 Session Break

More information

1.2 Solving a System of Linear Equations

1.2 Solving a System of Linear Equations 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1. Solving a System of Linear Equations 1..1 Simple Systems - Basic De nitions As noticed above, the general form of a linear system of m equations in n variables

More information

Mathematical Induction

Mathematical Induction Mathematical Induction In logic, we often want to prove that every member of an infinite set has some feature. E.g., we would like to show: N 1 : is a number 1 : has the feature Φ ( x)(n 1 x! 1 x) How

More information

Notes on Complexity Theory Last updated: August, 2011. Lecture 1

Notes on Complexity Theory Last updated: August, 2011. Lecture 1 Notes on Complexity Theory Last updated: August, 2011 Jonathan Katz Lecture 1 1 Turing Machines I assume that most students have encountered Turing machines before. (Students who have not may want to look

More information

DIVISIBILITY AND GREATEST COMMON DIVISORS

DIVISIBILITY AND GREATEST COMMON DIVISORS DIVISIBILITY AND GREATEST COMMON DIVISORS KEITH CONRAD 1 Introduction We will begin with a review of divisibility among integers, mostly to set some notation and to indicate its properties Then we will

More information

15 Prime and Composite Numbers

15 Prime and Composite Numbers 15 Prime and Composite Numbers Divides, Divisors, Factors, Multiples In section 13, we considered the division algorithm: If a and b are whole numbers with b 0 then there exist unique numbers q and r such

More information

Section 1.5 Exponents, Square Roots, and the Order of Operations

Section 1.5 Exponents, Square Roots, and the Order of Operations Section 1.5 Exponents, Square Roots, and the Order of Operations Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Identify perfect squares.

More information

MATH 13150: Freshman Seminar Unit 10

MATH 13150: Freshman Seminar Unit 10 MATH 13150: Freshman Seminar Unit 10 1. Relatively prime numbers and Euler s function In this chapter, we are going to discuss when two numbers are relatively prime, and learn how to count the numbers

More information

CHAPTER 2. Logic. 1. Logic Definitions. Notation: Variables are used to represent propositions. The most common variables used are p, q, and r.

CHAPTER 2. Logic. 1. Logic Definitions. Notation: Variables are used to represent propositions. The most common variables used are p, q, and r. CHAPTER 2 Logic 1. Logic Definitions 1.1. Propositions. Definition 1.1.1. A proposition is a declarative sentence that is either true (denoted either T or 1) or false (denoted either F or 0). Notation:

More information

11 Ideals. 11.1 Revisiting Z

11 Ideals. 11.1 Revisiting Z 11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(

More information

How To Understand The Laws Of Algebra

How To Understand The Laws Of Algebra Welcome to Math 19500 Video Lessons Prof. Department of Mathematics The City College of New York Fall 2013 An important feature of the following Beamer slide presentations is that you, the reader, move

More information

Calculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1

Calculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1 Calculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1 What are the multiples of 5? The multiples are in the five times table What are the factors of 90? Each of these is a pair of factors.

More information

MOST FREQUENTLY ASKED INTERVIEW QUESTIONS. 1. Why don t you tell me about yourself? 2. Why should I hire you?

MOST FREQUENTLY ASKED INTERVIEW QUESTIONS. 1. Why don t you tell me about yourself? 2. Why should I hire you? MOST FREQUENTLY ASKED INTERVIEW QUESTIONS 1. Why don t you tell me about yourself? The interviewer does not want to know your life history! He or she wants you to tell how your background relates to doing

More information

Section 4.1 Rules of Exponents

Section 4.1 Rules of Exponents Section 4.1 Rules of Exponents THE MEANING OF THE EXPONENT The exponent is an abbreviation for repeated multiplication. The repeated number is called a factor. x n means n factors of x. The exponent tells

More information

1. The Fly In The Ointment

1. The Fly In The Ointment Arithmetic Revisited Lesson 5: Decimal Fractions or Place Value Extended Part 5: Dividing Decimal Fractions, Part 2. The Fly In The Ointment The meaning of, say, ƒ 2 doesn't depend on whether we represent

More information

2) Write in detail the issues in the design of code generator.

2) Write in detail the issues in the design of code generator. COMPUTER SCIENCE AND ENGINEERING VI SEM CSE Principles of Compiler Design Unit-IV Question and answers UNIT IV CODE GENERATION 9 Issues in the design of code generator The target machine Runtime Storage

More information

Programming Exercises

Programming Exercises s CMPS 5P (Professor Theresa Migler-VonDollen ): Assignment #8 Problem 6 Problem 1 Programming Exercises Modify the recursive Fibonacci program given in the chapter so that it prints tracing information.

More information

Set Theory Basic Concepts and Definitions

Set Theory Basic Concepts and Definitions Set Theory Basic Concepts and Definitions The Importance of Set Theory One striking feature of humans is their inherent need and ability to group objects according to specific criteria. Our prehistoric

More information

Linear Programming Notes VII Sensitivity Analysis

Linear Programming Notes VII Sensitivity Analysis Linear Programming Notes VII Sensitivity Analysis 1 Introduction When you use a mathematical model to describe reality you must make approximations. The world is more complicated than the kinds of optimization

More information

COMP 356 Programming Language Structures Notes for Chapter 4 of Concepts of Programming Languages Scanning and Parsing

COMP 356 Programming Language Structures Notes for Chapter 4 of Concepts of Programming Languages Scanning and Parsing COMP 356 Programming Language Structures Notes for Chapter 4 of Concepts of Programming Languages Scanning and Parsing The scanner (or lexical analyzer) of a compiler processes the source program, recognizing

More information

Integers are positive and negative whole numbers, that is they are; {... 3, 2, 1,0,1,2,3...}. The dots mean they continue in that pattern.

Integers are positive and negative whole numbers, that is they are; {... 3, 2, 1,0,1,2,3...}. The dots mean they continue in that pattern. INTEGERS Integers are positive and negative whole numbers, that is they are; {... 3, 2, 1,0,1,2,3...}. The dots mean they continue in that pattern. Like all number sets, integers were invented to describe

More information

Lecture Notes on Pitch-Class Set Theory. Topic 4: Inversion. John Paul Ito

Lecture Notes on Pitch-Class Set Theory. Topic 4: Inversion. John Paul Ito Lecture Notes on Pitch-Class Set Theory Topic 4: Inversion John Paul Ito Inversion We have already seen in the notes on set classes that while in tonal theory, to invert a chord is to take the lowest note

More information

Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture - 04 Digital Logic II May, I before starting the today s lecture

More information

1.4 Compound Inequalities

1.4 Compound Inequalities Section 1.4 Compound Inequalities 53 1.4 Compound Inequalities This section discusses a technique that is used to solve compound inequalities, which is a phrase that usually refers to a pair of inequalities

More information

NTFS permissions represent a core part of Windows s security system. Using

NTFS permissions represent a core part of Windows s security system. Using bonus appendix NTFS Permissions NTFS permissions represent a core part of Windows s security system. Using this feature, you can specify exactly which coworkers are allowed to open which files and folders

More information

Boolean Algebra (cont d) UNIT 3 BOOLEAN ALGEBRA (CONT D) Guidelines for Multiplying Out and Factoring. Objectives. Iris Hui-Ru Jiang Spring 2010

Boolean Algebra (cont d) UNIT 3 BOOLEAN ALGEBRA (CONT D) Guidelines for Multiplying Out and Factoring. Objectives. Iris Hui-Ru Jiang Spring 2010 Boolean Algebra (cont d) 2 Contents Multiplying out and factoring expressions Exclusive-OR and Exclusive-NOR operations The consensus theorem Summary of algebraic simplification Proving validity of an

More information