Boundary Conditions For MeanReverting Square Root Process


 Abraham Dixon
 1 years ago
 Views:
Transcription
1 Boundary Conditions For MeanReverting Square Root Process by Jonathan AquanAssee A research paper presented to the University of Waterloo in fulfillment of the requirement for the degree of Master of Mathematics in Computational Mathematics supervisors: Peter Forsyth and George Labahn Waterloo, Ontario, Canada, 2009 c Jonathan AquanAssee 2009
2 I hereby declare that I am the sole author of this paper. This is a true copy of the paper, including any required final revisions, as accepted by my examiners. I understand that my paper may be made electronically available to the public. ii
3 Abstract The CoxIngersollRoss (CIR) interest rate model is used to model interest rates and interest rate derivatives. We study the term structure equation for singlefactor models that predict nonnegative interest rates. It is shown using finite difference techniques that if the boundary is attainable, then this boundary behaviour serves as a boundary condition and guarantees a uniqueness of solutions. However, if the boundary is nonattainable, then the boundary condition is not needed to guarantee uniqueness. The finite difference solution is verified by use of nonnegative numerical approximations. iii
4 Acknowledgements I would like to thank Peter Forsyth and George Labahn for helping make this paper possible. iv
5 Contents List of Tables List of Figures vii viii 1 Introduction 1 2 Problem Formulation Analytical positivity and boundedness Boundary Conditions Numerical Methods Finite Difference Discretization Methods CrankNicolson Discretization Discretization of the Boundary condition Discretization of stochastic numerical methods Numerical positivity Numerical discretization Experiments and Results Weak Convergence Criterion Convergence and Verification of methods Conclusions 35 v
6 APPENDICES 36 A Probability distribution of the CIR process 37 B Analytical solution to the term structure equation 39 C Algorithm for squareroot diffusion 40 References 42 vi
7 List of Tables 4.1 CIR model parameters FD simulation of bond price using CIR Model when boundary is attainable FD simulation of bond price using CIR model when boundary is not attainable MC simulation of bond price using CIR Model when boundary is attainable MC simulation of bond price using CIR model when boundary is not attainable Weak error in numerical approximation schemes vii
8 List of Figures 4.1 Convergence of bond prices when using FD FD simulation of bond Price using CIR model MC bond value versus computation cost Comparison of CIR distribution viii
9 Chapter 1 Introduction The meanreverting squareroot process is a stochastic differential equation (SDE) that has found considerable use as a model for volatility, interest rates, and other financial quantities. The equation has no general, explicit solution, although its transition density can be characterized. Some standard expectations can be analytically calculated which can be useful for calibrating the parameters. These processes were initially introduced to model the short interest rate by Cox, Ingersoll, and Ross [1], and are now widely used in modeling because they present interesting features like nonnegativity and mean reversion. The equation for this process is dr(t) = κ(b R(t))dt + σ R(t)dW (t), (1.1) R(t) will denote a CoxIngersollRoss (CIR) process. The parameters κ, b, and σ are all nonnegative and dw (t) denotes the increments of a Brownian motion. Notice that the drift term in equation (1.1) is positive if R(t) < b and negative if R(t) > b. Thus R(t) is pulled toward the level b, a property generally referred to as mean reversion. We may interpret b as the longrun interest rate level and κ as the speed at which R(t) is pulled toward b. In this paper, we assume that κ, b, and σ do not vary with time. Under the above assumption on the parameters, that we will suppose valid through all the paper, it is well known that this SDE has a nonnegative solution, and this solution is pathwise unique (see [2] and [3]). Also, under the conditions the process is always positive. 2κb > σ 2 and R(0) > 0 (1.2) It is well known that the increments of the CIR process are noncentral chisquared random variables that can be simulated exactly. However, the exact simulation in general 1
10 requires more computational cost than a simulation with approximation schemes. It may also be restrictive if one wishes to study a generalized version of the mean reverting process. For these reasons, studying approximation schemes are relevant. The CIR process is frequently used for pricing of different interest rate derivatives such as bonds and bond options. For valuing interest rate derivatives, stochastic methods seem to be more commonly used than finite difference (FD) methods. When using FD methods it is necessary to use the hyperbolic partial differential equation (PDE) called the term structure equation, for valuing bond prices. The authors of [4] believe that stochastic methods are preferred over FD methods because the pricing equation with appropriate boundary conditions is not fully developed from a mathematical sense. Moreover, in [5], the authors claim that there are multiple solutions to the term structure equation that satisfy the same boundary conditions. In this paper we compare stochastic and FD methods for pricing of bonds using the CIR process. We will show using simulation that the unique solution to the term structure equation is the one given using FD methods subject to the correct boundary conditions. We verify these results by performing a Monte Carlo (MC) simulation using a nonnegative approximation of the CIR equation. We are interested in the solution of the term structure equation for vanishing interest rates (i.e as r 0) and the behavior of the solution at the boundary using different boundary conditions. Our hypothesis is that if the boundary is attainable, then this boundary behavior serves as a boundary condition and guarantees uniqueness of solutions. However, if the boundary is nonattainable, then the boundary condition is not needed to guarantee uniqueness, but it is nevertheless very useful from a numerical perspective. The project is structured as follows: Chapter 2 develops the methods for simulating the stochastic interest rate model given by the CIR process. A discussion of boundary conditions for the model is presented. Chapter 3 details the numerical schemes for the CIR model. Discretization methods for stochastic integration schemes are discussed. A CrankNicolson method is also developed for the CIR model. Chapter 4 presents simulation results of the integration schemes developed previously. The theoretical results are verified using the numerical tests. Finally, Chapter 5 concludes by pointing out the main results of the paper. 2
11 Chapter 2 Problem Formulation This chapter develops the methods for simulating the stochastic interest rate model given by the CIR process in equation (1.1). The CIR process models the dynamics of an instantaneous continuously compounded interest rate R(t). As shown in [6], the interest rate for the CIR model is given by R(t) = R(0) + t 0 κ(b R(s))ds + t 0 σ R(s)W (s)ds which is just an integral form of the differential equation in (1.1). An investment in a money market account earning interest at a rate R(t) at time t grows from a value of one at time zero to a value of D(t) = e R t 0 R(u)du at time t. The price at time zero of a derivative security that pays X at time T is the expectation of X/D(T ), or In particular, we define: E [e R ] t 0 R(u)du X. Definition 1 (Zero coupon bond) A financial contract promising to pay a certain face amount, which we take to be one, at a fixed maturity date T is called a zero coupon bond. Prior to the expiration date the bond makes no payments. 3
12 Given the stochastic process to the interest rate R(t) as shown in equation (1.1), the value of the zero coupon bond V (r, t) is given by [ V (r, t) = E Q e R ] T t R(s)ds R(t) = r (2.1) with E Q denoting the expectation operator under the riskneutral probability measure Q and r is the interest rate for the chosen dynamics R(t) conditional on information available at time t. This pricing formula is a martingale under the riskneutral measure. As shown in [6], by applying Itô s lemma to the expectation in equation (2.1), it is possible to derive the term structure PDE satisfied by V (r, t) as given by V t (r, t) + κ(b r)v r (r, t) σ2 rv rr (r, t) = rv (r, t). (2.2) 2.1 Analytical positivity and boundedness The SDE in equation (1.1) is defined on the domain [0, ). An important concept in the study of SDEs is the concept of positivity or nonnegativity. We must therefore define the following concept Definition 2 Assuming the process X t is defined on the domain [L, ) and X 0 > L, then the process X t has a nonattainable boundary L, if P (X t > L for all t > 0) = 1. The process X t has an attainable boundary L, if P (X t L for all t > 0) = 1 and P ( t > 0 : X t = L) = 1. For L = 0, attainability is equivalent to positivity and nonnegativity. Throughout the rest of the paper we will make use of Definition 2. 4
13 2.2 Boundary Conditions The boundary behavior for the SDE shown in equation (1.1) has been studied at great detail by Feller in [7]. For the process in (1.1), Feller showed that the boundary at the origin is instantaneously reflecting, regular, and attainable if σ 2 > 2κb, and unattainable, nonattracting, boundary otherwise. As can be seen in Appendix A, interesting properties related to the boundary behavior for the SDE (1.1) can be uncovered by looking at the probability distribution for the process. The results of Feller can be used to derive appropriate boundary conditions for finite differencing schemes of the term structure equation given in (2.2). For example, it is possible that the case σ 2 < 2κb can be handled by simple Dirichlet boundary conditions at r = 0, while the same cannot be done if σ 2 > 2κb. This can be generalized with the following definition. Definition 3 (Feller Condition) Given a process X defined by a SDE of the form dx(t) = β(x(t), t)dt + c(x(t), t)dw. If the condition ( lim β(x) 1 ) c 2 x 0 2 x (x) 0 (2.3) is true, then the boundary at the origin is nonattainable for the process X. According to [4], the appropriate boundary condition for the term structure equation in (2.2) can be obtained by plugging in r = 0 into the equation. The resulting condition is then V t (0, t) + κbv r (0, t) = 0. (2.4) This boundary condition will result in a unique solution to the term structure equation when σ 2 > 2κb. However, when σ 2 < 2κb, the boundary condition (2.4) is not needed to guarantee a unique solution and is thus redundant from a mathematical perspective [4]. At the upper boundary we must truncate the domain to [0, r max ]. Consequently, it is necessary to impose a boundary condition at r = r max. The theoretical upper boundary condition V = 0 as r is of critical use if we retain r as the coordinate. In [8] the authors propose a boundary technique that does not require additional linearity assumptions. This FD method involves using onesided derivatives for the spatial discretization of the PDE. 5
14 In this paper we take the approach of extending the computational domain in order to minimize any boundary errors at r max. In this way the boundary condition at r max can be handled with a simple Dirichlet boundary condition with V (r max, t) = 0. (2.5) 6
15 Chapter 3 Numerical Methods It is well known that an analytical formula for the term structure equation (2.2) exists (see Appendix B). However, recall from the introduction that it has been claimed by previous studies, that multiple solutions to the term structure equation exist that satisfy the same boundary conditions. All numerical methods seek to find a solution for the pricing relationship given in equation (2.1). In this chapter we will examine the numerical methods that will be used to price zero coupon bonds in the CIR model. Using these numerical methods we will be able to examine the effects of different boundary conditions for the term structure equation. 3.1 Finite Difference Discretization Methods In this section we will derive the discretized equations using an approach to approximate the PDE (2.2) using finite differencing techniques. The pricing equation as shown in [9], is given by the following equation V τ = 1 2 σ2 r 2 V r 2 + κ(b r) V r rv, 0 < r < r max, t > 0, (3.1) where V (r, τ) is the bond price, r is the spot interest rate, τ = T t, T is the expiry time of the bond, t is the time (in the forward direction). This is a firstorder hyperbolic equation and it must be augmented with an initial condition and boundary conditions in order to define a valid initial boundary value problem. In this case we define them as V (r max, t) = 0 and V (r, T ) = 1. (3.2) 7
16 If we take the limit as r 0, we get the following boundary condition at r = 0 V τ κb V r = 0, if σ2 > 2κb. (3.3) We can then implement a number of finite differencing discretization schemes. In particular, we will use a forwardbackward differencing scheme. Define a grid of points in the (r, τ) plane r 0, r 1,..., r m τ n = n τ 0 r i r max 0 τ n N τ = T and let Let V (r i, τ n ) = V n i. r i+1/2 = r i+1 r i and r i 1/2 = r i r i 1. Equation (3.1) can be then approximated by ( ) n ( ) V σ 2 r 2 n = τ i 2 V rr + (κ(b r)v r ) n i (rv )n i, (3.4) i where the time derivative in equation (3.4) is approximated by ( ) n V τ i V n+1 i τ V n i The second order derivative term is approximated by. (3.5) (V rr ) n i ( ) V n i+1 Vi n r i+1/2 ( ) V n i Vi 1 n r i 1/2 r i+1/2 + r i 1/2 2 (3.6) 8
17 with the discounting term in equation (3.4) as (V ) n i V n i (3.7) while the derivative term can be approximated by either central, forward, or backward differencing. A central difference is ( (V r ) n i V n i+1 V n i 1 r i+1/2 + r i 1/2 ), (3.8) a forward difference is and a backward difference is ( ) V (V r ) n n i i+1 Vi n, (3.9) (V r ) n i ( V n i r i+1/2 V n i 1 r i 1/2 ). (3.10) It is well known that central differencing is preferred because it is second order, while forward and backwards differencing are first order. Unfortunately central differencing can result in problems if used in all cases. Using any of (3.8), (3.9), or (3.10) gives V n+1 i Then α i and β i are defined as = V n i (1 (α i + β i + r i ) τ) + V n i 1 τα i + V n i+1 τβ i. (3.11) [ αi central σ 2 ri 2 = (r i r i 1 )(r i+1 r i 1 ) κ(b r i) r i+1 r i 1 ) [ β central i = σ 2 r 2 i (r i+1 r i )(r i+1 r i 1 ) + κ(b r i) r i+1 r i 1 ) ] ] in the case of central differencing, or 9
18 [ α forward σ 2 ri 2 i = (r i r i 1 )(r i+1 r i 1 ) [ β forward i = σ 2 ri 2 (r i+1 r i )(r i+1 r i 1 ) + κ(b r i) r i+1 r i ) ] ] in the case of forward differencing, or [ αi backward σ 2 ri 2 = (r i r i 1 )(r i+1 r i 1 ) κ(b r i) r i r i 1 ) [ ] β backward i = σ 2 r 2 i (r i+1 r i )(r i+1 r i 1 ) ] in the case of backwards differencing. For stability reasons it is vital that all α i and β i values be always positive. We can then decide between the central or upstream (i.e. forward or backward) discretization by: For i = 0,..., n 1 If αi central 0 and βi central 0 α i = αi central β i = βi central ElseIf β forward i 0 α i = α forward i β i = β forward i Else α i = α backward i β i = β backward i EndIf EndFor The above algorithm guarantees that α i and β i are nonnegative. As shown by [10], requiring that all α i and β i be nonnegative has important ramifications for the stability of scheme (3.11). 10
19 Remark 1 (Unconditional stability) As shown by [10], the discretization method (3.11) is unconditionally stable provided that α i and β i are nonnegative. Remark 2 (Convergence to the viscosity solution) As shown by [10], requiring that all α i and β i are nonnegative has important ramifications for the convergence of scheme (3.11). It is possible to show that the discretization (3.11) is monotone and consistent. Since it is also unconditionally stable, then the discretized solution converges to the viscosity solution CrankNicolson Discretization In this section we consider a CrankNicolson timestepping strategy for the FD discretization in equation (3.11). Ordinary explicit FD schemes are known to become unstable if certain timestep conditions are not satisfied. For these reasons we will study the CrankNicolson method which is known to be unconditionally stable. In [4] the authors proposed a backward differencing formula of order two (BDF2), however we found that this method produced oscillations in the solution when the boundary condition (2.4) was not explicitly defined. The FD equation (3.11) can be written into the CrankNicolson timestepping form as follows [ V n+1 i 1 + (α i + β i + r i ) τ ] τ 2 2 β iv n+1 i+1 τ 2 α iv n+1 i 1 [ = Vi n 1 (α i + β i + r i ) τ ] 2 + τ 2 β iv n i+1 + τ 2 α iv n i 1 (3.12) which is an implicit equation rather than explicit. Let entries ˆM be a tridiagonal matrix with [ ˆMV n ] i = τα i V n 2 i 1 + τ(α i + β i + r i ) 2 V n i τβ i 2 V n i+1 (3.13) that is, ˆM is defined by γ 1 γ 2 0 ˆM = τ α 2 r 2 + α 2 + β 2 β α m 1 r m 1 + α m 1 + β m 1 β m (3.14) 11
20 where m is the number of grid points, γ 1 and γ 2 are the boundary points at r = 0. Note that the values γ 1 and γ 2 depend on which boundary conditions we impose at r = 0. In Section 3.1.2, we will show the discretization for γ 1 and γ 2 using two different boundary conditions. The last row of zeros in matrix ˆM is due to the Dirichlet boundary condition being imposed at r = r max, which is further discussed in section Then we can write equation (3.12) as where V n is the value of the solution at the nth time step. [I + ˆM]V n+1 = [I ˆM]V n (3.15) Theorem 1 (Necessary conditions for stability) Let the CrankNicolson timestepping be defined as in equation (3.15), where ˆM is of size (m + 1) (m + 1), where there are m + 1 nodes in the discretization, and ˆM has the properties 1. The offdiagonal entries of ˆM are all strictly negative, 2. The diagonal entries of ˆM are nonnegative, 3. ˆMis row diagonally dominant. Then CrankNicolson timestepping satisfies the necessary conditions for unconditional stability. Proof 1 The proof follows similarly as in [11]. Assume that ˆM has m + 1 linearly independent eigenvectors. If X k is the k th eigenvector of ˆM, then ˆMX k = λ k X k where λ k is the eigenvalue associated with X k. Then, rewrite equation (3.15 as V n+1 = BV n, B = [I + ˆM] 1 [I ˆM]. (3.16) If V 0 is the initial condition, then after n timesteps we have Assuming ˆM has a complete set of eigenvectors, then V n = B n V 0. (3.17) 12
21 V 0 = k C k X k (3.18) for some coefficients C k. Substituting equation (3.18) into equation (3.17) then gives V n = k [ ] n 1 λk C k X k X 1 + λ k. 0 (3.19) k The requirement of equation (3.19) to remain bound as n, is [ ] 1 λk 1 k, (3.20) 1 + λ k which will be true as long as Re(λ k ) 0 k. (3.21) From the Gershgorin circle theorem, we know that every eigenvalue λ of least one of the inequalities ˆM satisfies at ˆM ii λ j i ˆM ii ˆM ij since ˆM is diagonally dominant. Therefore, in the complex plane λ = x + 1y, every λ k lies in some disk with center x = ˆM ii and radius strictly less then ˆM ii, and therefore Re(λ k ) 0 k. Theorem 1 states that the CN method satisfies the necessary conditions for stability, however this does not prove that it satisfies the sufficient conditions for stability. The precise definition of stability is 13
22 V n = bounded. (3.22) However, it takes a bit of work to prove (3.22) for the CN method, so the idea of algebraic stability has been introduced [10]. Definition 4 (Stability of CrankNicolson) If n is the number of timesteps, m is the number of grid nodes, and B is defined as in equation (3.16), then given an arbitrary norm, we say that B is algebraic stable if B n Cn α m β, n, m. (3.23) where C, α, β are independent of n, m. This is often referred to as bounding the power of a matrix. We remark that algebraic stability is a weaker condition than strong stability or strict stability. It can be shown that for the CN method, algebraic stability is guaranteed and is summarized in the following theorem. Theorem 2 Algebraic Stability of CrankNicolson The CrankNicolson discretization is algebraically stable in the sense that, the CN method satisfies equation (3.23) with β = 0, α = 1/2. Proof 2 The proof is the same as in [10]. All the Gershgorin disks of ˆM are in the right half of the complex plane Discretization of the Boundary condition The spatial discretization given by matrix (3.14) depends on γ 1 and γ 2, the discretization of the boundary condition imposed at r = 0. In a financial context, we would like to insure convergence to the viscosity solution. Viscosity solutions have been discussed in [12]. It is therefore important that the discretization of the boundary conditions are monotone in order for the solution to converge to the viscosity solution. Boundary condition at r = 0: 14
23 At the lower boundary point we solve the initial value problem using boundary condition from equation (2.4). In addition, we will alternatively use an arbitrary Neumann boundary condition V τ = 0. (3.24) We will now refer to equation (2.4) and equation (3.24) as BC1 and BC2 respectively. BC1 is discretized using first order forward differencing as Therefore γ 1 and γ 2 of matrix (3.14) are ( ) V (V r ) n n 0 1 V0 n. (3.25) r 0+1/2 1 γ 1 = κb, r 0+1/2 1 γ 2 = κb, r 0+1/2 and the discretization for BC2 is γ 1 = 0, γ 2 = 0. Boundary condition at r = r max : We can implement the Dirichlet boundary condition V (r max, t) = 0, by computing the solution on the grid ˆM (3.14) with the last row and last column removed. Therefore, the matrix ˆM becomes (m 1) (m 1), where m is the number of grid points. 3.2 Discretization of stochastic numerical methods In this section we discuss numerical schemes for the solution of the meanreverting square root process given by equation (1.1). We are examining stochastic numerical methods 15
24 because these methods are able to naturally implement boundary conditions that are imposed in stochastic differential equations. We therefore seek to compare the solution of our FD approach to that of a MonteCarlo simulation with stochastic numerical methods. In the numerical solution of SDEs, the convergence and numerical stability properties of the schemes play a fundamental role as well as in a deterministic framework. As discussed in [13], the region of absolute stability defines possible restrictions on the maximum allowed step size. However, based on the fact that the coefficients of (1.1) are nonlinear and nonlipschitzian it is not possible to appeal to standard convergence theory for numerical simulations to deduce the numerically computed paths are accurate for small stepsizes. These issues were discussed by [14], where the authors showed that a natural EulerMaruyama discretization provides qualitatively correct approximations to the first and second moments of the SDE (1.1) Numerical positivity It is well known that the domain for the SDE in equation (1.1) is [0, ). In order to simulate this process using numerical approximation we must be assured of not getting negative values. The concept of positivity or nonnegativity for this process has been discussed in [15] and [16]. Definition 5 Let R(t) be a stochastic process defined on a domain of [L, ) with P (R(t) > L for all t > 0) = 1. Then the stochastic integration scheme possesses an eternal life time if Otherwise it has a finite life time. P (R n+1 > L R n > L) = 1. Based on the above definition we are therefore interested in numerical methods that have an eternal life time Numerical discretization We will consider six numerical discretization schemes: EulerMaruyama, 16
25 Milstein, Secondorder Milstein, Implicit Milstein, Balanced implicit method, Exact transition distribution. A natural way to simulate the process in (1.1) is with the explicit EulerMaruyama scheme Definition 6 (EulerMaruyama method) R n+1 = R n + κ(b R n ) t + σ R n t(z n+1 ), (3.26) where the timesteps are discretized as t 0 < t 1 <... < t n < T, R n is the interest rate value at the n th timestep, t = t n+1 t n, and Z 1, Z 2,... are independent, mdimensional standard normal random vectors. The EulerMaruyama scheme can lead to negative values since the Gaussian increment is not bounded from below. Therefore, the standard Euler Maruyanam scheme has a finite life time. A natural fix adopted in [14], is to replace the method with the computationally safer method R n+1 = R n + κ(b R n ) t + σ R n t(z n+1 ). (3.27) Theorem 3 For SDE (1.1) the first moment is and second moment is given by lim E[R(t)] = b (3.28) t lim t E[R(t)2 ] = b 2 + σ2 b 2κ. (3.29) Proof 3 As shown in [14], the first moment results by taking expectations of equation (1.1). The second moment result can be obtained by applying the Ito formula to R(t) 2 and taking expectations, using the result for E[R(t)]. 17
26 Corollary 1 We can use properties (3.28) and (3.29) to estimate the stepsize needed to obtain qualitatively correct solutions. We can rewrite (3.27) as R n+1 = R n (1 κ t) + κb t + σ R n t(z n+1 ). (3.30) Using induction, the exception of (3.30) can be shown to be and hence E(R n ) = (1 κ t) n (E(R 0 ) b) + b for t < 2/κ, E(R n ) b as n, for t = 2/κ, E(R n ) = ( 1) n E(R 0 ) + (( 1) n+1 + 1)b, for t > 2/κ, E(R n ) as n. Proof 4 As shown in [14], the proof follows after taking expected values in (3.30). Theorem 3 and Corollary 1 show that as t n the correct mean is produced if and only if the stepsize satisfies t < 2/κ. This result will be used in stepsize selection for the following methods. In addition to the Euler method, we will consider five other numerical schemes for the solution of SDEs. First, we consider the Milstein method which offers an improvement over the Euler scheme. The Euler scheme approximation expands the drift to O( t) but the diffusion term only to O( t). In order to ease notation we define the following a = κ(b R n ) and c = σ R n, where a, c, and their derivatives are all evaluated at time t. Definition 7 (Milstein method) R n+1 = R n + a t + c tz n c c t(z 2 n+1 1). (3.31) The approximation method in (3.31) adds a term to the Euler scheme. It expands both the drift and diffusion terms to O( t). The new term 1 2 c c t(z 2 n+1 1), has mean zero and is uncorrelated with the Euler terms because Z 2 n+1 1 and Z n+1 are uncorrelated. Next, we consider a higher order version of the Milstein method. We consider a simplified version of the scheme as shown in [13]. 18
27 Definition 8 (Secondorder Milstein method) R n+1 = R n + a t + c tz n (a c + ac + 12 ) 2 c2 c t tz n cc [Z 2 n+1 t] + (aa c2 a ) 1 2 t2. (3.32) This method was introduced by Milstein and has a weak order convergence of 2 under the conditions that a and c be six times continuously differentiable with uniformly bounded derivatives. This scheme should produce more accurate results than the Euler method, but it is computationally more expensive. Next, we consider an implicit Milstein method. As noted in [13], implicit Euler schemes can reveal better stability properties. This implicit scheme is obtained by making implicit only the purely deterministic term of the equation, while at each time step, the coefficients of the random part of the equation are retained from the previous step. Note for the implicit method we use a(r n+1 ) = κ(b R n+1 ). Definition 9 (Implicit Milstein method) The implicit Milstein method is defined by R n+1 = R n + a(r n+1 ) t + c tz n c c t(z 2 n+1 1). (3.33) Removing the implicitness and expanding a(r n+1 ) and c yields R n+1 = R n + κb + σ R n tz n σ2 t(zn+1 2 1). (3.34) 1 + κ t The Milstein methods discussed previously fall under the category of dominating methods. Another idea to guarantee nonnegativity for an SDE is to use balancing methods. The balancing method that we will examine was discussed in [16]. Definition 10 (Balanced implicit method (BIM)) The integration scheme for the BIM is given as follows Removing the implicitness yields R n+1 = R n + a t + c tz i+1 + (R n R n+1 )Q n (R n ), (3.35) Q n (R n ) = q 0 (R n ) + q 1 (R n ) tz i+1. (3.36) 19
28 R n+1 = R n + a t + c tz i+1 + R n (q 0 (R n ) t + q 1 (R n ) tz i q 0 (R n ) t + q 1 (R n ). (3.37) tz i+1 In this method the functions q 0 and q 1 are called control functions. To guarantee convergence of the method, the control functions must be bounded and have to satisfy 1 + q 0 (R n ) t + q 1 (R n ) tz i+1 > 0. Finally, we consider a scheme of sampling the exact transition distribution (ETD) of the CIR process as shown in [17]. The SDE (1.1) is not explicitly solvable, however the transition density for the process is known. Based on work by Feller in [7], the distribution of R(t) given R(u) for some t > u is, up to a scale factor, a noncentral chisquared distribution. This property can then be used to simulate the CIR process. The approach to simulate the process is suggested in [17]. Further information on the CIR distribution can be seen in Appendix A. Definition 11 (Exact Transition Distribution (ETD)) Given R(u) and t > u, R(t) is distributed as σ 2 ( 1 e κ(t u)) /(4κ) times a noncentral chisquare random variable χ 2 d (λ) with d degrees of freedom and noncentrality parameter Therefore, λ = 4κe κ(t u) σ 2 (1 e κ(t u) ) R(u). where ( R(t) = σ2 1 e κ(t u)) χ 2 4κ d ( ) 4κe κ(t u) σ 2 (1 e κ(t u) ) R(u), t > u, d = 4κb σ 2. The algorithm that performs the ETD method is shown in Appendix C. 20
THE PROBLEM OF finding localized energy solutions
600 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 3, MARCH 1997 Sparse Signal Reconstruction from Limited Data Using FOCUSS: A Reweighted Minimum Norm Algorithm Irina F. Gorodnitsky, Member, IEEE,
More informationOPRE 6201 : 2. Simplex Method
OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2
More informationIEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, 2013. ACCEPTED FOR PUBLICATION 1
IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, 2013. ACCEPTED FOR PUBLICATION 1 ActiveSet Newton Algorithm for Overcomplete NonNegative Representations of Audio Tuomas Virtanen, Member,
More informationWhich Free Lunch Would You Like Today, Sir?: Delta Hedging, Volatility Arbitrage and Optimal Portfolios
Which Free Lunch Would You Like Today, Sir?: Delta Hedging, Volatility Arbitrage and Optimal Portfolios Riaz Ahmad Course Director for CQF, 7city, London Paul Wilmott Wilmott Associates, London Abstract:
More informationSampling 50 Years After Shannon
Sampling 50 Years After Shannon MICHAEL UNSER, FELLOW, IEEE This paper presents an account of the current state of sampling, 50 years after Shannon s formulation of the sampling theorem. The emphasis is
More informationHow to Use Expert Advice
NICOLÒ CESABIANCHI Università di Milano, Milan, Italy YOAV FREUND AT&T Labs, Florham Park, New Jersey DAVID HAUSSLER AND DAVID P. HELMBOLD University of California, Santa Cruz, Santa Cruz, California
More informationRECENTLY, there has been a great deal of interest in
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 1, JANUARY 1999 187 An Affine Scaling Methodology for Best Basis Selection Bhaskar D. Rao, Senior Member, IEEE, Kenneth KreutzDelgado, Senior Member,
More information(1) I. INTRODUCTION (2)
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 12, DECEMBER 2010 3243 Distance Regularized Level Set Evolution and Its Application to Image Segmentation Chunming Li, Chenyang Xu, Senior Member, IEEE,
More informationA Googlelike Model of Road Network Dynamics and its Application to Regulation and Control
A Googlelike Model of Road Network Dynamics and its Application to Regulation and Control Emanuele Crisostomi, Steve Kirkland, Robert Shorten August, 2010 Abstract Inspired by the ability of Markov chains
More informationOptimization by Direct Search: New Perspectives on Some Classical and Modern Methods
SIAM REVIEW Vol. 45,No. 3,pp. 385 482 c 2003 Society for Industrial and Applied Mathematics Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods Tamara G. Kolda Robert Michael
More informationFast Greeks by algorithmic differentiation
The Journal of Computational Finance (3 35) Volume 14/Number 3, Spring 2011 Fast Greeks by algorithmic differentiation Luca Capriotti Quantitative Strategies, Investment Banking Division, Credit Suisse
More informationA Tutorial on Support Vector Machines for Pattern Recognition
c,, 1 43 () Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. A Tutorial on Support Vector Machines for Pattern Recognition CHRISTOPHER J.C. BURGES Bell Laboratories, Lucent Technologies
More informationCOSAMP: ITERATIVE SIGNAL RECOVERY FROM INCOMPLETE AND INACCURATE SAMPLES
COSAMP: ITERATIVE SIGNAL RECOVERY FROM INCOMPLETE AND INACCURATE SAMPLES D NEEDELL AND J A TROPP Abstract Compressive sampling offers a new paradigm for acquiring signals that are compressible with respect
More informationOrthogonal Bases and the QR Algorithm
Orthogonal Bases and the QR Algorithm Orthogonal Bases by Peter J Olver University of Minnesota Throughout, we work in the Euclidean vector space V = R n, the space of column vectors with n real entries
More informationSubspace Pursuit for Compressive Sensing: Closing the Gap Between Performance and Complexity
Subspace Pursuit for Compressive Sensing: Closing the Gap Between Performance and Complexity Wei Dai and Olgica Milenkovic Department of Electrical and Computer Engineering University of Illinois at UrbanaChampaign
More informationControllability and Observability of Partial Differential Equations: Some results and open problems
Controllability and Observability of Partial Differential Equations: Some results and open problems Enrique ZUAZUA Departamento de Matemáticas Universidad Autónoma 2849 Madrid. Spain. enrique.zuazua@uam.es
More informationThe Backpropagation Algorithm
7 The Backpropagation Algorithm 7. Learning as gradient descent We saw in the last chapter that multilayered networks are capable of computing a wider range of Boolean functions than networks with a single
More informationIf You re So Smart, Why Aren t You Rich? Belief Selection in Complete and Incomplete Markets
If You re So Smart, Why Aren t You Rich? Belief Selection in Complete and Incomplete Markets Lawrence Blume and David Easley Department of Economics Cornell University July 2002 Today: June 24, 2004 The
More informationA survey of pointbased POMDP solvers
DOI 10.1007/s1045801292002 A survey of pointbased POMDP solvers Guy Shani Joelle Pineau Robert Kaplow The Author(s) 2012 Abstract The past decade has seen a significant breakthrough in research on
More informationChoosing Multiple Parameters for Support Vector Machines
Machine Learning, 46, 131 159, 2002 c 2002 Kluwer Academic Publishers. Manufactured in The Netherlands. Choosing Multiple Parameters for Support Vector Machines OLIVIER CHAPELLE LIP6, Paris, France olivier.chapelle@lip6.fr
More informationAn Introduction to the NavierStokes InitialBoundary Value Problem
An Introduction to the NavierStokes InitialBoundary Value Problem Giovanni P. Galdi Department of Mechanical Engineering University of Pittsburgh, USA Rechts auf zwei hohen Felsen befinden sich Schlösser,
More informationHighDimensional Image Warping
Chapter 4 HighDimensional Image Warping John Ashburner & Karl J. Friston The Wellcome Dept. of Imaging Neuroscience, 12 Queen Square, London WC1N 3BG, UK. Contents 4.1 Introduction.................................
More informationONEDIMENSIONAL RANDOM WALKS 1. SIMPLE RANDOM WALK
ONEDIMENSIONAL RANDOM WALKS 1. SIMPLE RANDOM WALK Definition 1. A random walk on the integers with step distribution F and initial state x is a sequence S n of random variables whose increments are independent,
More informationAn Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators 1
Journal of Research of the National Bureau of Standards Vol. 45, No. 4, October 95 Research Paper 233 An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral
More informationInvesting for the Long Run when Returns Are Predictable
THE JOURNAL OF FINANCE VOL. LV, NO. 1 FEBRUARY 2000 Investing for the Long Run when Returns Are Predictable NICHOLAS BARBERIS* ABSTRACT We examine how the evidence of predictability in asset returns affects
More informationWhen is time continuous?
Journal of Financial Economics 55 (2000) 173}204 When is time continuous? Dimitris Bertsimas, Leonid Kogan, Andrew W. Lo* MIT Sloan School of Management, 50 Memorial Drive, Cambridge, MA 021421347, USA
More informationDimensioning Large Call Centers
OPERATIONS RESEARCH Vol. 52, No. 1, January February 2004, pp. 17 34 issn 0030364X eissn 15265463 04 5201 0017 informs doi 10.1287/opre.1030.0081 2004 INFORMS Dimensioning Large Call Centers Sem Borst
More informationISSN 15183548. Working Paper Series. Are Interest Rate Options Important for the Assessment of Interest Rate Risk?
ISSN 15183548 Working Paper Series 179 Are Interest Rate Options Important for the Assessment of Interest Rate Risk? Caio Almeida and José Vicente December, 2008 ISSN 15183548 CGC 00.038.166/000105
More informationLevel set equations on surfaces via the Closest Point Method
Level set equations on surfaces via the Closest Point Method Colin B. Macdonald 1, Steven J. Ruuth 2 1 Department of Mathematics, Simon Fraser University, Burnaby, BC, V5A1S6 Canada. email: cbm@sfu.ca
More informationA direct approach to false discovery rates
J. R. Statist. Soc. B (2002) 64, Part 3, pp. 479 498 A direct approach to false discovery rates John D. Storey Stanford University, USA [Received June 2001. Revised December 2001] Summary. Multiplehypothesis
More information