# Lecture. S t = S t δ[s t ].

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Lecture In real life the vast majority of all traded options are written on stocks having at least one dividend left before the date of expiration of the option. Thus the study of dividends is important from a practical point of view. Also, this theory will be of use in the study of currency derivatives. Discrete Dividends Price Dynamics and Dividend Structure We consider an underlying asset ( the stock ) with price process S, over a fixed time interval [0, T ]. For this price process at fixed points in time 0 < T n < T n 1 <... < T 2 < T 1 < T, dividends are paid out to the holder of the stock. The stock price structure can be described as follows: Between dividend points the stock price process satisfies the SDE, under theobjective probability P : ds = αsdt + σsd W, ie the S-process satisfies the SDE above on each half open interval of the form [T i+1, T i ), i = 1,..., n 1, as well as on the intervals [0, T n ) and [T 1, T ]. Immediately before a dividend time t, i.e. at t = t dt, we observe the stock price S t. Given the stock price above, the size of the dividend at time t is determined as δ(s t ), where δ is a deterministic continuous function δ : R R. Note that the assumption above guarantees that the size of the dividend δ at a dividend time t is already determined at t. Between t dt and t the dividend is paid out. At time t the stock price has a jump, determined by S t = S t δ[s t ]. This assumption is necessary in order to avoid arbitrage possibilities. This also means that we will view the stock price at time t as the price ex dividend, ie after dividend Pricing Contingent Claims As usual we consider a fixed contingent T -claim of the form X = Φ(S T ), where Φ is some given deterministic function, and our immediate problem is to find the arbitrage free price process Π(t; X ) for the claim X. We will solve this problem by a recursive procedure 1

2 where, starting at T and then working backwards in time, we will compute Π(t; X ) for each intradividend interval separately. T 1 t T : We start by computing Π(t; X ) for t [T 1, T ]. Since our interpretation of the stock price is ex dividend, this means that we are actually facing a problem without dividends over this interval. Thus, for T 1 t T, we have Π(t; X ) = F (t, S t ) where F solves the usual Black-Scholes equation + rs s s2 σ 2 2 F s 2 rf = 0 F (T, s) = Φ(s) In particular, the pricing function at T 1 is given by F (T 1, s). T 2 t < T 1 : Now we go on to compute the price of the claim for T 2 t < T 1. We start by computing the pricing function F at the time immediately before T 1, i.e. at t = T 1. Suppose therefore that we are holding one unit of the contingent claim, and let us assume that the price at time T 1 is S T1 = s. This is the price cum dividend, and in the next infinitesimal interval the following will happen. The dividend δ[s] will be paid out to the shareholders. At time T 1 the stock price will have dropped to s δ[s]. We are now standing at time T 1, holding a contract which is worth F (T 1, s δ[s]). The value of F at T 1 has, however, already been computed in the previous step, so we have the jump condition F (T 1, s) = F (T 1, s δ[s]). (3) It now remains to compute F for T 2 t < T 1, but this turns out to be quite easy. We are holding a contingent claim on an underlying asset which over the interval [T 2, T 1 ) is not paying dividends. Thus the standard Black-Scholes argument applies, which means that F has to solve the usual Black-Scholes equation. + rs s s2 σ 2 2 F s 2 rf = 0 Over this interval. The boundary value is now given by the jump condition (3) above. Another way of putting this is to say that, over the half-open interval [T 2, T 1 ), we have F (t, s) = F 1 (t, s) where F 1 solves the following boundary value problem over the closed interval [T 2, T 1 ]. 1 + rs 1 s s2 σ 2 2 F 1 rf 1 = 0 s 2 F 1 (T, s) = F (T 1, s δ[s]). Thus we have determined F on [T 2, T 1 ]. T 3 t < T 2 : Now the story repeats itself. At T 2 we will again have the jump condition F (T 2, s) = F (T 2, s δ[s]), 2

3 and over the half-open interval [T 3, T 2 ) F has to satisfy the Black-Scholes equation. We may summarize our results, in order to stress the recursive nature of the procedure, as follows. On the interval [T 1, T ] we have F (t, s) = F 0 (t, s), where F 0 solves the boundary value problem 0 + rs 0 s s2 σ 2 2 F 0 s 2 rf 0 = 0 F 0 (T, s) = Φ(s) (7) On each half-open interval [T i+1, T i ) we have F (t, s) = F i (t, s) for i = 1, 2,..., where F i, over the closed interval [T i+1, T i ], solves the boundary value problem i + rs i s F i (T i, s) = F i 1 (T i, s δ[s]) s2 σ 2 2 F i s 2 rf i = 0 (8) We have assumed, so far, the standard Black-Scholes price dynamics between dividends. We now turn to the possibility of obtaining a probabilistic risk neutral valuation formula for the contingent claim above, and as in the PDE approach this is done in a recursive manner. For T 1 t T the situation is simple. Since we have no dividend points left we may use the old risk neutral valuation formula to obtain F 0 (t, s) = e r(t t) E Q t,s [Φ(S T )]. (10) Here the Q-dynamics of the stock price are given by ds = rsdt + σsdw, and we have used the notation F 0 to emphasize that in this interval there are zero dividend points left. Note that the Q-dynamics of S above are only defined for the interval [T 1, T ]. For T 2 t < T 1 the situation is slightly more complicated. From the above we know that the pricing function, which on this interval is denoted by F 1, solves the PDE 1 + rs 1 s s2 σ 2 2 F 1 rf 1 = 0 s 2 F 1 (T 1, s) = F 0 (T 1, s δ[s]). We may now apply the Feynman-Kac Theorem to obtain the stochastic representation F 1 (t, s) = e r(t1 t) E t,s [F 0 (T 1, X T1 δ[x T1 ])] (11) where the process X, which at this point only acts as a computational dummy, is defined by dx = rxdt + σxdw (12) 3

4 Notice that the dummy process X is defined by (12) over the entire closed interval [T 2, T 1 ] (whereas the pricing function F 1 is the relevant pricing function only over the half-open interval [T 2, T 1 )). This implies that X has continuous trajectories over the closed interval [T 2, T 1 ], so in particular we see that X T1 = X T1. We may thus rewrite (11) as F 1 (t, s) = e r(t 1 t) E t,s [F 0 (T 1, X T1 δ[x T1 ])], (13) still with the X-dynamics (12) on the closed interval [T 2, T 1 ]. Let us now define the Q-dynamics for S over the closed interval [T 2, T 1 ] by writing ds = rsdt + σsdw, for the half-open interval [T 2, T 1 ) and adding the jump condition In this notation we can now write (13) as S T1 = S T1 δ[s T1 ]. F 1 (t, s) = e r(t 1 t) E Q t,s [F 0 (T 1, S T1 )], and plugging in our old expression for F 0, we obtain F 1 (t, s) = e r(t 1 t) E Q t,s [e r(t T 1) E Q T 1,S(T 1 ) [Φ(S T )]]. Taking the discount factor out of the expectation, and using standard rules for iterated conditional expectations, this formula can be reduced to F 1 (t, s) = e r(t t) E Q t,s [Φ(S T )]. We may now iterate this procedure for each intra-dividend interval to obtain the following risk neutral valuation result, which we formulate in its more general version. proposition 5 (Risk neutral valuation) Consider a T -claim of the form Φ(S T ) as above. Assume that the price dynamics between dividends are given by ds t = α(t, S t )S t dt + σ(t, S t )S t d W, and that the dividend size at a dividend point t is given by δ = δ[s t ]. Then the arbitrage free pricing function F (t, s) has the representation F (t, s) = e r(t t) E Q t,s [Φ(S T )], (14) where the Q-dynamics of S between dividends are given by with the jump condition ds t = rs t dt + σ(t, S t )S t dw, (15) S t = S t δ[s t ] (16) 4

5 at each dividend point, i.e. at t = T 1, T 2,..., T n. We end this section by specializing to the case when we have the standard Black-Scholes dynamics ds = αsdt + σsd W (17) between dividends, and the dividend structure has the particularly simple form δ[s] = sδ, (18) where δ on the right-hand side denotes a positive constant. As usual we consider the T -claim Φ(S T ) and, in order to emphasize the role of the parameter δ, we let F δ (t, s) denote the pricing function for the claim Φ. In particular we observe that F 0 is our standard pricing function for Φ in a model with no dividends at all. Using the risk neutral valuation formula above, it is not hard to prove the following result. Assume that the P -dynamics of the stock price and the dividend structure are given by (17)-(18). Then the following relation holds. F δ (t, s) = F 0 (t, (1 δ) n s), (19) where n is the number of dividend points in the interval (t, T ]. The point of this result is of course that in the simple setting of (17)-(18) we may use our old formulas for no dividend models in order to price contingent claims in the presence of dividends. In particular we may use the standard Black-Scholes formula for European call options in order to price call options on a dividend paying stock. Note, however,that in order to obtain these nice results we must assume both (17) and (18). Continuous Dividends We consider the case when dividends are paid out continuously in time. As usual S t denotes the price of the stock at time t, and by D(t) we denote the cumulative dividends over the interval [0, t]. Put in differential form this means that over the infinitesimal interval (t, t + dt] the holder of the stock receives the amount dd(t) = D(t + dt) D(t). Continuous Dividend Yield We start by analyzing the simplest case of continuous dividends, which is when we have a continuous dividend yield. Assumption The price dynamics, under the objective probability measure, are given by ds t = S t α(s t )dt + S t σ(s t )d W. (20) the dividend structure is assumed to be of the form dd(t) = S t δ[s t ]dt, (21) 5

6 where δ is a continuous deterministic function. The most common special case is of course when the function α and σ above are deterministic constants, and when the function δ is a deterministic constant. We note that, since we have no discrete dividends, we do not have to worry about the interpretation of the stock price as being ex dividend or cum dividend. The problem to be solved is again that of determining the arbitrage free price for a T -claim of the form Φ(S T ). This turns out to be quite easy, and we can in fact follow the strategy. More precisely we recall the following scheme: 1. Assume that the pricing function is of the form F (t, S t ). 2. Consider α, σ, Φ, F, δ and r as exogenously given. 3. Use the general results to describe the dynamics of the value of a hypothetical self-financed portfolio based on the derivative instrument and the underlying stock. 4. Form a self-financed portfolio whose value process V has a stochastic differential without any driving Wiener process, i.e. it is of the form dv (t) = V (t)k(t)dt. 5. Since we have assumed absence of arbitrage we must have k = r. 6. The condition k = r will in fact have the form of a partial differential equation with F as the unknown function. In order for the market to be efficient F must thus solve this PDE. 7. The equation has a unique solution, thus giving us the unique pricing formula for the derivative, which is consistent with absence of arbitrage. We now carry out this scheme and we get: The pricing function F (t, s) of the claim Φ(S T ) solves the boundary value problem + (r δ)s s s2 σ 2 2 F s 2 rf = 0 F (T, s) = Φ(s). (22) Applying the Feynman-Kac representation theorem immediately gives us a risk neutral valuation formula. (Pricing equation) The pricing function has the representation where the Q-dynamics of S are given by F (t, s) = e r(t t) E Q t,s [Φ(S T )], (23) ds t = (r δ[s t ])S t dt + σ(s t )S t dw t, (24) In contrast with the case of discrete dividends we see that the appropriate martingale measure in the dividend case differs from that of the no dividend case. 6

7 (Risk neutral valuation) Under the martingale measure Q, the normalized gain process is a Q-martingale. G Z (t) = S t B t + t 0 1 B τ dd(τ), note that this property is quite reasonable from an economic point of view: in a risk neutral world today s stock price should be the expected value of all future discounted earnings which arise from holding the stock. In other words, we expect that S(0) = E Q [ t 0 e rτ dd(τ) + e rt S(t)], (25) and in the exercise the reader is invited to prove this cost of carry formula. As in the discrete case it is natural to analyze the pricing formulas for the special case when we have the standard Black-Scholes dynamics ds = αsdt + σsd W, (26) where α and σ are constants. We also assume that the dividend function δ is a deterministic constant. This implies that the martingale dynamics are given by ds = (r δ)sdt + σsdw, (27) i.e. S is geometric Brownian motion also under the risk adjusted probabilities. Again we denote the pricing function by F δ in order to highlight the dependence upon the parameter δ. It is now easy to prove the following result, which shows how to price derivatives for a dividend paying stock in terms of pricing functions for a nondividend case. Assume that the functions σ and δ are constant. Then, with notation as above, we have F δ (t, s) = F 0 (t, se δ(t t) ). (28) The general case. This would be a good subject for a project. We now consider a more general dividend structure, which we will need when dealing with futures constracts. Assumption The price dynamics, under the objective probability measure, are given by ds t = S t α(s t )dt + S t σ(s t )d W t, (29) The dividend structure is assumed to be of the form dd(t) = S t δ[s t ]dt + S t γ[s t ]d W t, (30) 7

8 where δ and γ are continuous deterministic functions. We again consider the pricing problem for a contingent T -claim of the form X = Φ(S T ), and the only difference from the continuous yield case is that now we have to assume that the pricing function for the claim is a function of D as well as S. We thus assume a claim price process of the form Π(t; X ) = F (t, S t, D t ), and then we carry out the standard program 1-7 of the previous section. After a large number of simple, but messy and extremely boring, calculations which (needless to say) are left as an exercise, we end up with the following result. (Pricing equation) The pricing function F (t, s, D) for the claim X = Φ(S T ) solves the boundary value problem + AF rf = 0 F (T, s, D) = Φ(s), (31) where AF = ( αγ + σr δσ )s σ + γ s + γr γα + (δσ )s σ + γ D σ2 s 2 2 F s γ2 s 2 2 F D 2 + σγs2 2 F s D. Using the Feynman-Kac technique we have the following risk neutral valuation result. (Risk neutral valuation) The pricing function has the representation where the Q-dynamics of S and D are given by F (t, s, D) = e r(t t) E Q t,s,d [Φ(S T )], ds t = S t ( dd t = S t ( αγ + σr δσ )dt + S t σdw t, σ + γ δσ + γr γα )dt + S t γdw t. σ + γ Remark In the expressions of the propositions above we have suppressed S t and s in the functions α, σ, δ, γ. The role of the martingale measure is the same as in the previous section. The martingale measure Q is characterized by the following facts: There exists a market price of risk process λ such that the Q-dynamics are in the form ds = S(α λσ)dt + SσdW, dd = S(δ λγ)dt + SγdW. 8

9 the normalized gains process G Z, defined by is a Q-martingale. G Z (t) = S t t 1 + dd(τ), B t 0 B τ This result has extensions to multidimensional factor models. We will not go into details, but are content with statingthe main result. Consider a general factor model. if the market is free of arbitrage, then there will exist universal market price of risk process λ = (λ 1,..., λ k ) such that For any T -claim X the pricing function F has the representation F (t, x) = E Q t,x [e R T t r(x(u))du Φ(X(T ))]. (32) The Q-dynamics of the factor processes X 1,..., X k are of the form dx i = µ i δ i λ}dt + δ i dw, i = 1, 2,..., k. For any price process S (underlying or derivative) with dividend process D, the normalized gains process Z t = S t t 1 + dd(τ), B t 0 B τ is a Q-martingale. 9

### Option Pricing. Chapter 4 Including dividends in the BS model. Stefan Ankirchner. University of Bonn. last update: 6th November 2013

Option Pricing Chapter 4 Including dividends in the BS model Stefan Ankirchner University of Bonn last update: 6th November 2013 Stefan Ankirchner Option Pricing 1 Dividend payments So far: we assumed

### Mathematical Finance

Mathematical Finance Option Pricing under the Risk-Neutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European

### τ θ What is the proper price at time t =0of this option?

Now by Itô s formula But Mu f and u g in Ū. Hence τ θ u(x) =E( Mu(X) ds + u(x(τ θ))) 0 τ θ u(x) E( f(x) ds + g(x(τ θ))) = J x (θ). 0 But since u(x) =J x (θ ), we consequently have u(x) =J x (θ ) = min

### The Black-Scholes Formula

FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Black-Scholes Formula These notes examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they are based on the

### Option Pricing. Chapter 9 - Barrier Options - Stefan Ankirchner. University of Bonn. last update: 9th December 2013

Option Pricing Chapter 9 - Barrier Options - Stefan Ankirchner University of Bonn last update: 9th December 2013 Stefan Ankirchner Option Pricing 1 Standard barrier option Agenda What is a barrier option?

### Lecture 6 Black-Scholes PDE

Lecture 6 Black-Scholes PDE Lecture Notes by Andrzej Palczewski Computational Finance p. 1 Pricing function Let the dynamics of underlining S t be given in the risk-neutral measure Q by If the contingent

### CS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options

CS 5 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options 1. Definitions Equity. The common stock of a corporation. Traded on organized exchanges (NYSE, AMEX, NASDAQ). A common

### Option Pricing. Chapter 11 Options on Futures. Stefan Ankirchner. University of Bonn. last update: 13/01/2014 at 14:25

Option Pricing Chapter 11 Options on Futures Stefan Ankirchner University of Bonn last update: 13/01/2014 at 14:25 Stefan Ankirchner Option Pricing 1 Agenda Forward contracts Definition Determining forward

### 1 The Black-Scholes model: extensions and hedging

1 The Black-Scholes model: extensions and hedging 1.1 Dividends Since we are now in a continuous time framework the dividend paid out at time t (or t ) is given by dd t = D t D t, where as before D denotes

### 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model

1 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model Outline 有 关 股 价 的 假 设 The B-S Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American

### The Black-Scholes pricing formulas

The Black-Scholes pricing formulas Moty Katzman September 19, 2014 The Black-Scholes differential equation Aim: Find a formula for the price of European options on stock. Lemma 6.1: Assume that a stock

### Lecture 12: The Black-Scholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena

Lecture 12: The Black-Scholes Model Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena The Black-Scholes-Merton Model

### Monte Carlo Methods in Finance

Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook October 2, 2012 Outline Introduction 1 Introduction

### Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t.

LECTURE 7: BLACK SCHOLES THEORY 1. Introduction: The Black Scholes Model In 1973 Fisher Black and Myron Scholes ushered in the modern era of derivative securities with a seminal paper 1 on the pricing

### A Comparison of Option Pricing Models

A Comparison of Option Pricing Models Ekrem Kilic 11.01.2005 Abstract Modeling a nonlinear pay o generating instrument is a challenging work. The models that are commonly used for pricing derivative might

### Modelling Interest Rates for Public Debt Management

Università La Sapienza di Roma Facoltà di Scienze Matematiche, Fisiche e Naturali Dottorato di Ricerca in Matematica (XV ciclo) Modelling Interest Rates for Public Debt Management Adamo Uboldi Contents

### Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Gagan Deep Singh Assistant Vice President Genpact Smart Decision Services Financial

### ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida

ARBITRAGE-FREE OPTION PRICING MODELS Denis Bell University of North Florida Modelling Stock Prices Example American Express In mathematical finance, it is customary to model a stock price by an (Ito) stochatic

### On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price

On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price Abstract: Chi Gao 12/15/2013 I. Black-Scholes Equation is derived using two methods: (1) risk-neutral measure; (2) - hedge. II.

### where N is the standard normal distribution function,

The Black-Scholes-Merton formula (Hull 13.5 13.8) Assume S t is a geometric Brownian motion w/drift. Want market value at t = 0 of call option. European call option with expiration at time T. Payout at

### Notes on Black-Scholes Option Pricing Formula

. Notes on Black-Scholes Option Pricing Formula by De-Xing Guan March 2006 These notes are a brief introduction to the Black-Scholes formula, which prices the European call options. The essential reading

### Martingale Pricing Applied to Options, Forwards and Futures

IEOR E4706: Financial Engineering: Discrete-Time Asset Pricing Fall 2005 c 2005 by Martin Haugh Martingale Pricing Applied to Options, Forwards and Futures We now apply martingale pricing theory to the

### LECTURE 9: A MODEL FOR FOREIGN EXCHANGE

LECTURE 9: A MODEL FOR FOREIGN EXCHANGE 1. Foreign Exchange Contracts There was a time, not so long ago, when a U. S. dollar would buy you precisely.4 British pounds sterling 1, and a British pound sterling

### Put-Call Parity. chris bemis

Put-Call Parity chris bemis May 22, 2006 Recall that a replicating portfolio of a contingent claim determines the claim s price. This was justified by the no arbitrage principle. Using this idea, we obtain

### Review of Basic Options Concepts and Terminology

Review of Basic Options Concepts and Terminology March 24, 2005 1 Introduction The purchase of an options contract gives the buyer the right to buy call options contract or sell put options contract some

### Stocks paying discrete dividends: modelling and option pricing

Stocks paying discrete dividends: modelling and option pricing Ralf Korn 1 and L. C. G. Rogers 2 Abstract In the Black-Scholes model, any dividends on stocks are paid continuously, but in reality dividends

### Call Price as a Function of the Stock Price

Call Price as a Function of the Stock Price Intuitively, the call price should be an increasing function of the stock price. This relationship allows one to develop a theory of option pricing, derived

### European Options Pricing Using Monte Carlo Simulation

European Options Pricing Using Monte Carlo Simulation Alexandros Kyrtsos Division of Materials Science and Engineering, Boston University akyrtsos@bu.edu European options can be priced using the analytical

### A Vega-Gamma Relationship for European-Style or Barrier Options in the Black-Scholes Model

A Vega-Gamma Relationship for European-Style or Barrier Options in the Black-Scholes Model Fabio Mercurio Financial Models, Banca IMI Abstract In this document we derive some fundamental relationships

### The Black-Scholes Model

The Black-Scholes Model Liuren Wu Zicklin School of Business, Baruch College Options Markets (Hull chapter: 12, 13, 14) Liuren Wu The Black-Scholes Model Options Markets 1 / 19 The Black-Scholes-Merton

### The Behavior of Bonds and Interest Rates. An Impossible Bond Pricing Model. 780 w Interest Rate Models

780 w Interest Rate Models The Behavior of Bonds and Interest Rates Before discussing how a bond market-maker would delta-hedge, we first need to specify how bonds behave. Suppose we try to model a zero-coupon

### Black-Scholes and the Volatility Surface

IEOR E4707: Financial Engineering: Continuous-Time Models Fall 2009 c 2009 by Martin Haugh Black-Scholes and the Volatility Surface When we studied discrete-time models we used martingale pricing to derive

### COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS

COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS NICOLE BÄUERLE AND STEFANIE GRETHER Abstract. In this short note we prove a conjecture posed in Cui et al. 2012): Dynamic mean-variance problems in

### Option Valuation. Chapter 21

Option Valuation Chapter 21 Intrinsic and Time Value intrinsic value of in-the-money options = the payoff that could be obtained from the immediate exercise of the option for a call option: stock price

### Numerical methods for American options

Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment

### Two-State Option Pricing

Rendleman and Bartter [1] present a simple two-state model of option pricing. The states of the world evolve like the branches of a tree. Given the current state, there are two possible states next period.

### Introduction to Arbitrage-Free Pricing: Fundamental Theorems

Introduction to Arbitrage-Free Pricing: Fundamental Theorems Dmitry Kramkov Carnegie Mellon University Workshop on Interdisciplinary Mathematics, Penn State, May 8-10, 2015 1 / 24 Outline Financial market

### Lecture Note of Bus 41202, Spring 2012: Stochastic Diffusion & Option Pricing

Lecture Note of Bus 41202, Spring 2012: Stochastic Diffusion & Option Pricing Key concept: Ito s lemma Stock Options: A contract giving its holder the right, but not obligation, to trade shares of a common

### Numerical Methods for Option Pricing

Chapter 9 Numerical Methods for Option Pricing Equation (8.26) provides a way to evaluate option prices. For some simple options, such as the European call and put options, one can integrate (8.26) directly

### MAT 3788 Lecture 8 Forwards for assets with dividends Currency forwards

MA 3788 Lecture 8 Forwards for assets with dividends Currency forwards Prof. Boyan Kostadinov, City ech of CUNY he Value of a Forward Contract as ime Passes Recall from last time that the forward price

### The Black-Scholes-Merton Approach to Pricing Options

he Black-Scholes-Merton Approach to Pricing Options Paul J Atzberger Comments should be sent to: atzberg@mathucsbedu Introduction In this article we shall discuss the Black-Scholes-Merton approach to determining

### LECTURE 15: AMERICAN OPTIONS

LECTURE 15: AMERICAN OPTIONS 1. Introduction All of the options that we have considered thus far have been of the European variety: exercise is permitted only at the termination of the contract. These

### On the Use of Numeraires in Option Pricing

On the Use of Numeraires in Option Pricing Simon Benninga Faculty of Management Tel-Aviv University ISRAEL University of Groningen HOLLAND e-mail: benninga@post.tau.ac.il Tomas Björk Department of Finance

### Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 11. The Black-Scholes Model: Hull, Ch. 13.

Week 11 The Black-Scholes Model: Hull, Ch. 13. 1 The Black-Scholes Model Objective: To show how the Black-Scholes formula is derived and how it can be used to value options. 2 The Black-Scholes Model 1.

### THE BLACK-SCHOLES MODEL AND EXTENSIONS

THE BLAC-SCHOLES MODEL AND EXTENSIONS EVAN TURNER Abstract. This paper will derive the Black-Scholes pricing model of a European option by calculating the expected value of the option. We will assume that

### On Market-Making and Delta-Hedging

On Market-Making and Delta-Hedging 1 Market Makers 2 Market-Making and Bond-Pricing On Market-Making and Delta-Hedging 1 Market Makers 2 Market-Making and Bond-Pricing What to market makers do? Provide

### Two-State Model of Option Pricing

Rendleman and Bartter [1] put forward a simple two-state model of option pricing. As in the Black-Scholes model, to buy the stock and to sell the call in the hedge ratio obtains a risk-free portfolio.

### Risk-Neutral Valuation of Participating Life Insurance Contracts

Risk-Neutral Valuation of Participating Life Insurance Contracts DANIEL BAUER with R. Kiesel, A. Kling, J. Russ, and K. Zaglauer ULM UNIVERSITY RTG 1100 AND INSTITUT FÜR FINANZ- UND AKTUARWISSENSCHAFTEN

### Black-Scholes Equation for Option Pricing

Black-Scholes Equation for Option Pricing By Ivan Karmazin, Jiacong Li 1. Introduction In early 1970s, Black, Scholes and Merton achieved a major breakthrough in pricing of European stock options and there

### Binomial lattice model for stock prices

Copyright c 2007 by Karl Sigman Binomial lattice model for stock prices Here we model the price of a stock in discrete time by a Markov chain of the recursive form S n+ S n Y n+, n 0, where the {Y i }

### Calibration of Stock Betas from Skews of Implied Volatilities

Calibration of Stock Betas from Skews of Implied Volatilities Jean-Pierre Fouque University of California Santa Barbara Joint work with Eli Kollman (Ph.D. student at UCSB) Joint Seminar: Department of

### Pricing of an Exotic Forward Contract

Pricing of an Exotic Forward Contract Jirô Akahori, Yuji Hishida and Maho Nishida Dept. of Mathematical Sciences, Ritsumeikan University 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan E-mail: {akahori,

### More Exotic Options. 1 Barrier Options. 2 Compound Options. 3 Gap Options

More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options Definition; Some types The payoff of a Barrier option is path

### Diusion processes. Olivier Scaillet. University of Geneva and Swiss Finance Institute

Diusion processes Olivier Scaillet University of Geneva and Swiss Finance Institute Outline 1 Brownian motion 2 Itô integral 3 Diusion processes 4 Black-Scholes 5 Equity linked life insurance 6 Merton

### CHAPTER 3 Pricing Models for One-Asset European Options

CHAPTER 3 Pricing Models for One-Asset European Options The revolution on trading and pricing derivative securities in financial markets and academic communities began in early 1970 s. In 1973, the Chicago

### Lecture 15. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 6

Lecture 15 Sergei Fedotov 20912 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 6 Lecture 15 1 Black-Scholes Equation and Replicating Portfolio 2 Static

### On the Existence of a Unique Optimal Threshold Value for the Early Exercise of Call Options

On the Existence of a Unique Optimal Threshold Value for the Early Exercise of Call Options Patrick Jaillet Ehud I. Ronn Stathis Tompaidis July 2003 Abstract In the case of early exercise of an American-style

### The Black-Scholes Formula

ECO-30004 OPTIONS AND FUTURES SPRING 2008 The Black-Scholes Formula The Black-Scholes Formula We next examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they

### American Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan American Options

American Options An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Early Exercise Since American style options give the holder the same rights as European style options plus

### Caps and Floors. John Crosby

Caps and Floors John Crosby Glasgow University My website is: http://www.john-crosby.co.uk If you spot any typos or errors, please email me. My email address is on my website Lecture given 19th February

### Derivation and Comparative Statics of the Black-Scholes Call and Put Option Pricing Formulas

Derivation and Comparative Statics of the Black-Scholes Call and Put Option Pricing Formulas James R. Garven Latest Revision: 27 April, 2015 Abstract This paper provides an alternative derivation of the

### Chapter 13 The Black-Scholes-Merton Model

Chapter 13 The Black-Scholes-Merton Model March 3, 009 13.1. The Black-Scholes option pricing model assumes that the probability distribution of the stock price in one year(or at any other future time)

### 7. Continuously Varying Interest Rates

7. Continuously Varying Interest Rates 7.1 The Continuous Varying Interest Rate Formula. Suppose that interest is continuously compounded with a rate which is changing in time. Let the present time be

### Simulating Stochastic Differential Equations

Monte Carlo Simulation: IEOR E473 Fall 24 c 24 by Martin Haugh Simulating Stochastic Differential Equations 1 Brief Review of Stochastic Calculus and Itô s Lemma Let S t be the time t price of a particular

### Option Pricing with S+FinMetrics. PETER FULEKY Department of Economics University of Washington

Option Pricing with S+FinMetrics PETER FULEKY Department of Economics University of Washington August 27, 2007 Contents 1 Introduction 3 1.1 Terminology.............................. 3 1.2 Option Positions...........................

### Finance 400 A. Penati - G. Pennacchi. Option Pricing

Finance 400 A. Penati - G. Pennacchi Option Pricing Earlier we derived general pricing relationships for contingent claims in terms of an equilibrium stochastic discount factor or in terms of elementary

### Lecture 21 Options Pricing

Lecture 21 Options Pricing Readings BM, chapter 20 Reader, Lecture 21 M. Spiegel and R. Stanton, 2000 1 Outline Last lecture: Examples of options Derivatives and risk (mis)management Replication and Put-call

### Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com

Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com In this Note we derive the Black Scholes PDE for an option V, given by @t + 1 + rs @S2 @S We derive the

### Lectures. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. No tutorials in the first week

Lectures Sergei Fedotov 20912 - Introduction to Financial Mathematics No tutorials in the first week Sergei Fedotov (University of Manchester) 20912 2010 1 / 1 Lecture 1 1 Introduction Elementary economics

### TULLIE, TRACEY ANDREW. Variance Reduction for Monte Carlo Simulation of. for the evolution of an asset price under constant volatility.

Abstract TULLIE, TRACEY ANDREW. Variance Reduction for Monte Carlo Simulation of European, American or Barrier Options in a Stochastic Volatility Environment. (Under the direction of Jean-Pierre Fouque.)

### LECTURES ON REAL OPTIONS: PART II TECHNICAL ANALYSIS

LECTURES ON REAL OPTIONS: PART II TECHNICAL ANALYSIS Robert S. Pindyck Massachusetts Institute of Technology Cambridge, MA 02142 Robert Pindyck (MIT) LECTURES ON REAL OPTIONS PART II August, 2008 1 / 50

### Valuation of American Options

Valuation of American Options Among the seminal contributions to the mathematics of finance is the paper F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political

### Hedging. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Hedging

Hedging An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Introduction Definition Hedging is the practice of making a portfolio of investments less sensitive to changes in

### Option pricing. Vinod Kothari

Option pricing Vinod Kothari Notation we use this Chapter will be as follows: S o : Price of the share at time 0 S T : Price of the share at time T T : time to maturity of the option r : risk free rate

### Forward Price. The payoff of a forward contract at maturity is S T X. Forward contracts do not involve any initial cash flow.

Forward Price The payoff of a forward contract at maturity is S T X. Forward contracts do not involve any initial cash flow. The forward price is the delivery price which makes the forward contract zero

### ELECTRICITY REAL OPTIONS VALUATION

Vol. 37 (6) ACTA PHYSICA POLONICA B No 11 ELECTRICITY REAL OPTIONS VALUATION Ewa Broszkiewicz-Suwaj Hugo Steinhaus Center, Institute of Mathematics and Computer Science Wrocław University of Technology

### CHAPTER 7: PROPERTIES OF STOCK OPTION PRICES

CHAPER 7: PROPERIES OF SOCK OPION PRICES 7.1 Factors Affecting Option Prices able 7.1 Summary of the Effect on the Price of a Stock Option of Increasing One Variable While Keeping All Other Fixed Variable

### Schonbucher Chapter 9: Firm Value and Share Priced-Based Models Updated 07-30-2007

Schonbucher Chapter 9: Firm alue and Share Priced-Based Models Updated 07-30-2007 (References sited are listed in the book s bibliography, except Miller 1988) For Intensity and spread-based models of default

### 4: SINGLE-PERIOD MARKET MODELS

4: SINGLE-PERIOD MARKET MODELS Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2015 B. Goldys and M. Rutkowski (USydney) Slides 4: Single-Period Market

### Four Derivations of the Black-Scholes Formula by Fabrice Douglas Rouah www.frouah.com www.volopta.com

Four Derivations of the Black-Scholes Formula by Fabrice Douglas Rouah www.frouah.com www.volota.com In this note we derive in four searate ways the well-known result of Black and Scholes that under certain

### Finite Differences Schemes for Pricing of European and American Options

Finite Differences Schemes for Pricing of European and American Options Margarida Mirador Fernandes IST Technical University of Lisbon Lisbon, Portugal November 009 Abstract Starting with the Black-Scholes

### Computational Finance Options

1 Options 1 1 Options Computational Finance Options An option gives the holder of the option the right, but not the obligation to do something. Conversely, if you sell an option, you may be obliged to

### Black-Scholes. Ser-Huang Poon. September 29, 2008

Black-Scholes Ser-Huang Poon September 29, 2008 A European style call (put) option is a right, but not an obligation, to purchase (sell) an asset at a strike price on option maturity date, T. An American

### Analysis of the Discount Factors in Swap Valuation

U.U.D.M. Project Report 2010:13 Analysis of the Discount Factors in Swap Valuation Juntian Zheng Examensarbete i matematik, 30 hp Handledare och examinator: Johan Tysk Juni 2010 Department of Mathematics

### Asian Option Pricing Formula for Uncertain Financial Market

Sun and Chen Journal of Uncertainty Analysis and Applications (215) 3:11 DOI 1.1186/s4467-15-35-7 RESEARCH Open Access Asian Option Pricing Formula for Uncertain Financial Market Jiajun Sun 1 and Xiaowei

### Option Pricing. 1 Introduction. Mrinal K. Ghosh

Option Pricing Mrinal K. Ghosh 1 Introduction We first introduce the basic terminology in option pricing. Option: An option is the right, but not the obligation to buy (or sell) an asset under specified

### Master s Thesis. Pricing Constant Maturity Swap Derivatives

Master s Thesis Pricing Constant Maturity Swap Derivatives Thesis submitted in partial fulfilment of the requirements for the Master of Science degree in Stochastics and Financial Mathematics by Noemi

### 1 IEOR 4700: Introduction to stochastic integration

Copyright c 7 by Karl Sigman 1 IEOR 47: Introduction to stochastic integration 1.1 Riemann-Stieltjes integration Recall from calculus how the Riemann integral b a h(t)dt is defined for a continuous function

### 5 =5. Since 5 > 0 Since 4 7 < 0 Since 0 0

a p p e n d i x e ABSOLUTE VALUE ABSOLUTE VALUE E.1 definition. The absolute value or magnitude of a real number a is denoted by a and is defined by { a if a 0 a = a if a

### Pricing Barrier Options under Local Volatility

Abstract Pricing Barrier Options under Local Volatility Artur Sepp Mail: artursepp@hotmail.com, Web: www.hot.ee/seppar 16 November 2002 We study pricing under the local volatility. Our research is mainly

### Understanding Options and Their Role in Hedging via the Greeks

Understanding Options and Their Role in Hedging via the Greeks Bradley J. Wogsland Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200 Options are priced assuming that

### EC3070 FINANCIAL DERIVATIVES

BINOMIAL OPTION PRICING MODEL A One-Step Binomial Model The Binomial Option Pricing Model is a simple device that is used for determining the price c τ 0 that should be attributed initially to a call option

### Introduction to Options. Derivatives

Introduction to Options Econ 422: Investment, Capital & Finance University of Washington Summer 2010 August 18, 2010 Derivatives A derivative is a security whose payoff or value depends on (is derived

### Financial Modeling. An introduction to financial modelling and financial options. Conall O Sullivan

Financial Modeling An introduction to financial modelling and financial options Conall O Sullivan Banking and Finance UCD Smurfit School of Business 31 May / UCD Maths Summer School Outline Introduction

### The Discrete Binomial Model for Option Pricing

The Discrete Binomial Model for Option Pricing Rebecca Stockbridge Program in Applied Mathematics University of Arizona May 4, 2008 Abstract This paper introduces the notion of option pricing in the context

### Barrier Options. Peter Carr

Barrier Options Peter Carr Head of Quantitative Financial Research, Bloomberg LP, New York Director of the Masters Program in Math Finance, Courant Institute, NYU March 14th, 2008 What are Barrier Options?

### Invesco Great Wall Fund Management Co. Shenzhen: June 14, 2008

: A Stern School of Business New York University Invesco Great Wall Fund Management Co. Shenzhen: June 14, 2008 Outline 1 2 3 4 5 6 se notes review the principles underlying option pricing and some of