Pricing European and American bond option under the Hull White extended Vasicek model

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Pricing European and American bond option under the Hull White extended Vasicek model"

Transcription

1 1 Academic Journal of Computational and Applied Mathematics /August 2013/ UISA Pricing European and American bond option under the Hull White extended Vasicek model Eva Maria Rapoo 1, Mukendi Mpanda 2 Department of Mathematics and Applied Mathematics, University of South Africa, South Africa Abstract In this paper, we consider the Hull-White term structure problem with the boundary value condition given as the payoff of a European and American option. We restrict ourselves to the case where parameters of the model are constants and we first derive simple closed form expression for pricing European bond option in the Hull-White extended Vasicek model framework in term of forward price. The analytic representation of American bond option being very hard to handle, we are forced to resort numerical experiments. We transform the Hull-White term structure equation into the diffusion equation and we first solve it through implicit, explicit and Crank-icolson (C) difference methods. As these finite difference methods require truncation of the domain from infinite to finite one, which may deteriorate the computational efficiency for American bond option, we build a C method over the unbounded domain. We introduce an exact artificial boundary condition in the pricing boundary value problem to reduce the original problem to an initial boundary problem. Then the C method is used to solve the reduced problem. The results through illustration show that our method is more efficient and accurate than standard FDMs. Keywords: Term Structure Equation, Hull-White extended Vasicek model, Coupon bearing and zero coupon bonds, European and American bond option, Diffusion equation, Finite Difference Methods and Artificial Boundary method. 1 Dr. Rapoo, Senior lecture, Dept. of Mathematical Sciences, UISA (Contact: 2 Mr. Mpanda, Master student, Dept. of Mathematical Sciences, UISA (Contact:

2 2 Academic Journal of Computational and Applied Mathematics /August 2013/ UISA 1. Introduction Mathematical models that describe the future evolution of interest rates by describing the stochastic movement of the instantaneous short-term interest rate, the short rate models play an important role in fixed-income security pricing. Among them, the Hull-White model [12-16]. As an extension of Vasicek model [12], the Hull-White model assumes that the short rate follows the mean-reverting stochastic differential equation and present special features which are analytical tractability on liquidly traded derivatives [12], super calibration ability to the initial term structure [13] and elegant tree-building procedure [15]. These make the model very attractive as a practical tool. On another hand, if we want to price interest rate derivatives such as bond option, interest rate swap, interest rate cap and interest rate swaption we need to perform options on these derivatives. One attractive and simple option that gives us nice analytic results, is the European option [2] through which the option is exercised only on the expiration date. For the case where there is early exercise of the option, we talk in term of American option [19]. Thus, an American option is a European one with the additional right to exercise it any time prior to expiration. In the arbitrage free framework, pricing interest rate derivatives under the short rate model lead us to the parabolic partial differential equation called term structure equation [2] with the boundary condition given as the payoff function. The main problem for pricing options written on interest rate derivatives under interest rate models is how to solve these kinds of stochastic PDE associated to a given payoff option. The bond option being considered as a standard interest rate derivative 3, we turn our intention to bond option. Many papers have addressed the solution to the problem stated above, including Amin and Madsen [1], Brace and Musiela [6], and Madsen [21], who all worked within the Gaussian Heath-Jarrow-Morton framework under different short rate models. Jamshidian [18], as for him, derives a simple closed-expression for pricing European bond option under the Vasicek model where the resulting pricing formula resembles the Black-Scholes formula [5] and has a similar interpretation. In this paper, by referring mainly to [18], we also derive a formula for pricing European bond option under the Hull-White extended Vasicek model. Due to the complexity of American bond option, we rely on numerical experiments. We first reduce the Hull-White term structure equation which is a parabolic PDE to the diffusion equation with the help of some transformations and define a pricing boundary value problem under the diffusion equation which shall be discussed. As finite difference methods (FDMs) are straightforward to implement and the resulting uniform rectangular grids are comfortable, we then first use these methods, especially explicit, implicit and Crank-icolson methods to solve the obtained pricing boundary value problem. 3 Simply because from which we may derive other interest rate derivatives without any difficulties.

3 3 Academic Journal of Computational and Applied Mathematics /August 2013/ UISA It is well-known that the explicit Finite Difference Method requires the condition of the type where and represent respectively the small time step and the step width of the scheme for stability (see for e.g [22]). In practice, it is sometimes desirable to change the length of time step. In contrast, both the implicit FDM and Crank-icolson method can achieve unconditional stability [22]. Unfortunately, implicit schemes including both implicit FDM and C method are constructed for a PDE with a bounded domain. Therefore, the implementation requires the truncation of the infinite domain to the finite one which may deteriorate the computational efficiently of American bond option. To circumvent the issue stated above, Kangro and icolaides [20] study the boundary condition of the PDE of the Black Scholes type. In their performance, they stipulate that an alternative method to solve problems with unbounded domains is to impose an artificial boundary condition and then an exact boundary condition is derived on the artificial boundary based on the original problem. In the field of interest rate derivatives, Hun and Wu [17] extend the Kangro and icolaides results and propose an artificial eumann boundary condition for pricing American bond option under Black-Scholes dynamics. Wong and Zhao [25] generalize the artificial boundary condition to the CEV model 4 and show that the proposed artificial boundary condition is exact and the corresponding implicit scheme is unconditionally stable, efficient and accurate. In contrast, Tangman et al. [24] develop a high-order optimal compact scheme for pricing American options under the Black-Scholes dynamics without considering artificial boundary conditions as in [20]. To make more consistent these approaches listed above, Wong and Zhao [26] propose recently an artificial boundary method based on the PDEs to price interest rate derivatives with early exercise feature. This approach is accurate, efficient and robust to the truncation. On the debit side of the balance sheet, the obtained result is very complex and very difficult to implement numerically. The second interesting feature of this paper is the extension of Wong and Zhao [25, 26] studies. We study a C method over an unbounded domain into which we perform the C method on the initial boundary value problem obtained from an exact artificial boundary condition. We then compare our performance with Explicit, Implicit and standard C methods. The rest of the paper is structured as follows. Section 2 presents the statement of the problem. Section 3 derives simple closed form expression for pricing European bond option under the Hull-White extended Vasicek model, an illustration and results are provided. Section 4 deals more with numerical methods for pricing American bond option. We transform the Hull-White term structure problem into the diffusion equation, we apply standard FDMs and we derive the C over an 4 CEV is an acronym of Constant Elasticity of Variance widely used in stochastic volatility model and resembles Cox Ingersool Roll short interest rate model.

4 4 Academic Journal of Computational and Applied Mathematics /August 2013/ UISA unbounded domain. An illustration and results are also provided. Section 5 concludes. 2. Statement of the problem Let consider the price of the European option denoted by which is function of the time where the option has been made, the one-factor short interest rate and the maturity date Then the price is the solution of the boundary problem given by ( ) ( ) (2.1) (2.2) where the equation (2.1) is called the Hull-White term structure equation [2]. We note that the process represents the one-factor Hull-White extended Vacisek model [12-13] defined by the following Ornstein-Uhlenbeck stochastic differential equation ( ) (2.3) In equation (2.1) as well as (2.3), the deterministic time functions given by, and are respectively called the time independent drift, the speed of reversion and the volatility term of the stochastic process is the standard Brownian motion with respect to the risk neutral probability measure Q. The boundary condition (2.2) is called the payoff function of the European call option on a coupon bearing bond with strike price maturing at the time T. The process represents the price of a coupon-bearing and it is defined by (2.4) where are amounts paid at the maturity dates. If, then we get the zero-coupon bond. We further note that and the dynamics of under the Hull-White extended Vasicek model is given by the following Geometric Brownian motion, - (2.5) where is the Brownian motion with respect to the risk neutral probability measure Q and where the function is given by ( ) The purpose of this study is to solve the boundary problem (2.1)-(2.2) under the Hull-White model (2.3). Initially, from the risk neutral valuation formula [11], the solution to the boundary value problem (2.1) - (2.2) is given by (2.6)

5 5 Academic Journal of Computational and Applied Mathematics /August 2013/ UISA where, - is the natural filtration generated by the standard Brownian motion W. The next section provides a simple closed form expression for (2.6) in our framework. 3. Pricing European bond option under the Hull-White extended Vasicek model Derivation of an analytic formula. In this section, our idea is mainly drawn from [1], [6], [21] and [18]. Let consider the boundary condition (2.2) given by 4 5 (3.1) ow we introduce the forward price defined by with By virtue of Ito calculus, the dynamics of noted by is given by (3.2) where And where From (3.2) we get ( ) 4 5 Writing shortly, we have where and where The boundary condition (3.1) becomes (3.3) 6 7 Where the set is defined by

6 6 Academic Journal of Computational and Applied Mathematics /August 2013/ UISA 8 9 and is the indicator function. From the risk neutral valuation formula and by referring to [18, formula (8)], we have ( ) Let say that 4 ( ) 5 ( ) 4 ( ) 5 (3.4) and then the price ( ( ) (3.5) ) can be written as The process is, under the probability measure Q, a Gaussian process, independent of the field with expected value zero and variance and the Gaussian law is given by. Hence ( ) 4 5 ( ) ( ) Therefore we should express as follows ( ) where ( ) is given by 4 5 To evaluate the expression (3.4), we introduce an auxiliary probability measure by setting 4 5 Here is the Likelihood process. Then by Girsanov Theorem, the process

7 7 Academic Journal of Computational and Applied Mathematics /August 2013/ UISA, - is the standard Brownian motion under. ote that the process admits the following representation under 4 5 We can write the equality above as where The random variable ( ) is independent of, with Gaussian law under. In addition, [ ] [ ] [ ]. Then we get the following result Furthermore Finally we have where.( ) / ( ) ( ) ( ) ( ) Therefore the price of a European call option on a coupon bearing bond is given by the following result (3.8) where processes and are given by ( ) (3.9) ( ) (3.10) and where are random variable whose distribution under Q is Gaussian, with zero expected value and covariance matrix given by

8 8 Academic Journal of Computational and Applied Mathematics /August 2013/ UISA. / [ ] [ ] (3.11) and the variance given by (. / ) (3.12) If we set and, then and is given by ( ( ) ) Therefore the price is given by (3.13) where parameters and are given by ( ) ( ) ( ) ( ) ( ) (3.13 ) ote that these results are equivalent to Jamshidian formula [18, formula (9)] simply because both Hull-White and Vasicek models have the same volatility term of the bond price process. Consequently, the price formulas (3.8) and (3.13) resemble Black-Scholes formula [5] and have the same interpretations Illustration and results Let consider four yield curves named the flat yield curve, upward yield curve, downward yield curve and the humped yield curve defined by: (3.13 ) Let consider again parameters of the Hull-White model given by Speed reversion and Volatility term with strike price given by 0.8. By applying the formula (3.13 ), then the price of a two year maturity bond in one year s time call option for these four yield curves are given by Table 3.1 Results of European bond option. Yield curves Prices (call option) Prices (put option)

9 Prices 9 Academic Journal of Computational and Applied Mathematics /August 2013/ UISA Figure 3.2. Prices of European call/put option for, Call option Put option Yield Curves In the figure above, we have four values of the yield curves computed by using the formula (3.13 ) where and, we have:,, and We observe that for the same fixed parameters both for the Hull-White model and Vasicek model, the downward yield curve has the highest price and the humped yield curve has the lowest price for an European call bond option. In contrast, for a European put option, the humped yield curve has the highest price and the downward yield curve has the lowest price. 4. Pricing American bond option under the Hull White extended Vasicek model. In the previous section we have examined the pricing of European bond option where the option can be exercised only on the expiration date. So in this section, we examine the case of early exercise opportunity commonly called American option. To make our analysis easier, we transform the Hull-White term structure problem into the diffusion problem. Here we refer to [12, 13, 14, 16, 25 and 26] From the Hull White TSE to the diffusion equation In this subsection we make transformations of the Hull-White term structure equation (2.1) until we get the simplest diffusion or heat equation. As in the Hull- White model the drift term and the volatility term are given or determined statistically, then the main purposes of these transformations are to eliminate the time-independent drift which is unknown and to deal with only the obtained diffusion equation for pricing methodology. Let reconsider the Hull-White term structure equation (2.1) ( ) (4.1)

10 10 Academic Journal of Computational and Applied Mathematics /August 2013/ UISA In order to eliminate the unknown function, we introduce a deterministic variable such that ( ) and we define a new variable given by It follows that (4.2) We then adapt the governing equation (4.1) to the stochastic process (4.2) by replacing respectively the expression and the short interest rate process by and. We find ( ) For simplicity, let assume that which are strictly positive constants, we thus rewrite the governing equation (4.1) as ( ) (4.3) ext, we reverse the time by in the governing equation (4.3), we get (4.4) with Let assume that gets the following form where with and are defined by It is follow that ( ) (4.5) where Let again 6 7, -

11 11 Academic Journal of Computational and Applied Mathematics /August 2013/ UISA then partial differential operators 4 (4.6) 5 By making substitution of partial differential operators (4.5) and (4.6) into the governing partial differential equation (4.4), we arrive to Finally by introducing two other variables; the variable and z such that ( ) with and ( ) And by setting we find the so called diffusion or heat equation given by: (4.7) with the overall changes summarized as follows ( ) ( ) (4.8) where ( ) ( ) (4.9) A new formulation of a boundary value problem. We reconsider a boundary value condition (3.1) given by 4 5 (4.10) As discussed in [19], a European option can have a value smaller than the payoff but it cannot happen with American options. Thus the boundary condition (4.10) under the American bond option is then given by

12 12 Academic Journal of Computational and Applied Mathematics /August 2013/ UISA ( ) 4 5 (4.10 ) This can be written as where ( ) 4 5 (4.10 ) or equivalently (4.10 ) With the initial conditions given by So that Therefore, the Hull-White term structure problem is reduced to the following boundary value problem: (4.11) The problem (4.11) above can be considered as the free boundary value problem of American bond option under the Hull-White extended Vasicek model. Due to the complexity of the problem which is very hard to resolve analytically, we rely to numerical experiments in our last subsection. Our choice falls to finite difference method (FDM) because of their easy implementations Solution of the obtained diffusion problem trough FDM In this section we develop three cases of FDM which are explicit, implicit and Crank- icolson (C) difference scheme (See [22]) and to the end we derive another special case the Crank-icolson method over an unbounded domain. Explicit, Implicit and Crank-icolson schemes For all these three types of schemes, we need first transform the domain of the continuous problem * + into a discretized domain and which must be approximated by a finite truncated interval [ ] where to achieve a given level of accuracy requires M to be large enough. We begin to build finite difference schemes by defining a grid of points in the plane. For any arbitrary integer n and m, we denote the value of at the grid point that can be shortly written as. The grid is then constructed for considering values of when the time is equal to

13 13 Academic Journal of Computational and Applied Mathematics /August 2013/ UISA and when the variable is equal to The general finite difference scheme is given by the following approximations These approximations inserted into the heat equation (4.7) give (4.11a ) where and a constant taking values in the set }. According to whether get value 0, 1 or we have respectively explicit, implicit and Crank icolson method. (4.12) is equivalent to By letting, - we get the following result Let us define the following vectors as (4.11b) (4.11c) [ ] [ ] [ ] Where and where approximate the value of at the grid point ( The initial and terminal conditions in the vector ) are given by We may formulate the American boundary value problem as

14 14 Academic Journal of Computational and Applied Mathematics /August 2013/ UISA (4.11d) where is a square tridiagonal matrix with We note that the explicit FDM is stable for In contrast, both Implicit and C methods are unconditionally stable which means that their stability holds for all time step. Moreover the C method has the highest order of convergence among FDMs. For more details, see [23, pages 117, 118, and 121]. Crank icolson method over an unbounded domain The three cases of finite difference method discussed above are constructed for a partial differential equation with a bounded domain. Therefore, their implementation requires the truncation of the infinite domain into the finite one (See for e.g. [22, 23]) which may deteriorate the computation efficiently. As the C method is the well-known highest order of convergence and efficiently method among standard finite difference methods, we thus derive the C method over an unbounded domain in order to increase the degree of accuracy. The main idea behind is to perform the C method on the initial boundary value problem obtained from an exact artificial boundary condition. As the solution of the problem (4.11) exists, then in the derivation of the exact boundary value problem we subdivide the domain into two: the interior domain containing the initial condition and exterior domain. These two domains are separated by the so called artificial boundary The initial condition being defined in the interior domain, then obviously it will be zero in the exterior domain. ow let consider the problem (4.11) defined on an unbounded domain given by where * + ( ) Let us define the artificial boundary as * + which divides the unbounded domain into the interior domain and exterior domain defined respectively by and * +

15 15 Academic Journal of Computational and Applied Mathematics /August 2013/ UISA where * + Then the derivation of the exact artificial boundary condition will be based on the interior problem defined by: (4.12) By using Laplace Transform and by the Duhamel Theorem (see [7, pp. 31]), we may find: (4.13) Proposition 4.1 The solution of the original problem (4.11) over an unbounded domain satisfies the following partial differential equation over a bounded domain (4.14) where is defined in (4.10 ) or (4.10 ). Moreover the problem above admits a unique solution. Proof: See Appendix A. ow let us first approximate the third boundary condition of the Problem (4.14). We know from the theory of approximation that the integral in that boundary condition can be approximated as Where (4.15) 4 5 ( ) From the Crank-icolson scheme, we have (4.16) Approximations (4.15) and (4.16) into the third boundary condition of the Problem (4.14) lead to

16 16 Academic Journal of Computational and Applied Mathematics /August 2013/ UISA which can be rewritten as (4.17) The Crank-icolson method over an unbounded domain is then given by (4.18) (4.19) (4.20) (4.21) We observe that terms and in equation (4.21) are unknown, so we need to eliminate them. In order to do so, we combine the equation (4.18) for with the equation (4.21) and we obtain the following result: As we have done in Section 4.3.1, let [ ] [ ] [ ] where with the initial and terminal conditions respectively given by and Finally, we arrive to the following problem

17 17 Academic Journal of Computational and Applied Mathematics /August 2013/ UISA (4.22) where is a square tridiagonal matrix with The solution to problems (4.15) and (4.22) above is done iteratively. To find their numerical solutions, we prefer to use the Successive over Relaxation (SOR) method because of its high speed of convergence. Since our problems are more complex and the standard SOR method cannot support this kind of problem, we provide in Appendix B. an adapted SOR method for our problems (4.15) and (4.22) which is a slight modification of the standard SOR method. ow let us give an illustration Illustration and results. We consider a one-year call option on a zero coupon bond of strike price 0.8 with early exercise feature on a two-year with face value equals to unity. The model parameters are given as and. Comparisons are made by using the explicit FDM, Crank-icolson method and the Crank-icolson method over an unbounded domain. We are doing our essay with six numbers of steps: and we regard the results of the explicit FDM with as the true value. 5 With the help of the Matlab 7.1 codes, we may arrive to the following summarized results: Table 4.1: Call option on American bond option under the C method over an unbounded domain. C Method over an unbounded domain Flat Upward Downward Humped True(=1200) We acknowledge that in doing this, a discretization or programming error could affect what we take to be a true value

18 18 Academic Journal of Computational and Applied Mathematics /August 2013/ UISA Table 4.2. Relative errors in percentage for the C method over an unbounded domain. Relative errors of C Method over an unbounded domain Flat Upward Downward Humped Table 4.3. Call option on American coupon bearing bond option under the C method. C method Flat Upward Downward Humped Table 4.4 Relative errors of explicit FDM Relative errors of C method Flat Upward Downward Humped

19 Prices x Academic Journal of Computational and Applied Mathematics /August 2013/ UISA Table 4.5. Call option on American coupon bearing bond option under the explicit FDM. Explicit FDM Flat Upward Downward Humped True(=1200) Table 4.6. Relative errors in percentage for modified Trinomial Lattice tree Relative errors of Explicit FDM Flat Upward Downward Humped Figure 4.1: Results of the Explicit FDM, C method and C method over an unbounded domain (UD) for Flat yield Curve True Value Explicit FDM C method with UD C method

20 Prices x 100 Prices x Academic Journal of Computational and Applied Mathematics /August 2013/ UISA Figure 4.2: Results of the Explicit FDM, C method and C method over an unbounded domain (UD) for Upward yield Curve True Value Explicit FDM C method with UD C method Figure 4.3: Results of the Explicit FDM, C method and C method over an unbounded domain (UD) for Downward yield Curve True Value Explicit FDM C method with UD C method

21 Relative errors in % Relative errors in % Prices x Academic Journal of Computational and Applied Mathematics /August 2013/ UISA Figure 4.4: Results of the Explicit FDM, C method and C method with an unbounded domain (UD) for humped yield Curve True Value Explicit FDM C method with UD C method Figure 4.5: Relative Errors estimation of the Explicit FDM, C method and C method over an unbounded domain for Flat yield Curve True Value Explicit FDM C method with UD C method Figure 4.6: Relative Errors estimation of the Explicit FDM, C method and C method over an unbounded domain for Upward yield Curve True Value Explicit FDM Modified C method C method

22 Relative errors in % Relative errors in % 22 Academic Journal of Computational and Applied Mathematics /August 2013/ UISA Figure 4.7: Relative Errors estimation of the Explicit FDM, C method and C method over an unbounded domain for Downpward yield Curve True Value Explicit FDM C method with UD C method Figure 4.8: Relative Errors estimation of the Explicit FDM, C method and C method over an unbounded domain for Humped yield Curve True Value Explicit FDM C method with UD C method Conclusion In this work, by introducing forward price and by applying the risk neutral valuation formula and referring to Jamshidian Work [17], we have derived a simple closedform expression for pricing European option on the zero-coupon and couponbearing bonds under the Hull-White extended Vasicek model. We draw two important findings: o The price of a European bond option under the Hull-White extended Vasicek model is equivalent to Jamshidian formula [18], consequently, the result resembles the Black-Scholes formula [5] and has the same interpretation. o The price of the call option is greater than the price of put option for any yield curve to maturity. As there is not analytical solution for American option, we have used numerical methods. After transformation from the Hull-White term structure equation to the

23 23 Academic Journal of Computational and Applied Mathematics /August 2013/ UISA diffusion equation, we have applied the finite difference method especially explicit, implicit and Cranck-icolson methods. As FDMs require truncation of interval from infinite to finite one, we have built one method which remedies to that; the Crank- icolson method over an unbounded domain into which we have derived the corresponding exact artificial boundary condition and the Crank-icolson scheme has been used in order to find the numerical solution. We find out that the C method with an unbounded domain outperforms FDMs in term of both efficiently and accuracy when we price American Bond option. Acknowledgement This work has been supported by the Department of Mathematical Sciences, College of Science, Engineering and Technology, University of South Africa. Appendix A: Proof of Proposition 4.1. Assume that and are two solutions to problem (4.64). We define their difference to be. In satisfies: By multiplying, we obtain: (A.1) by both sides of the PDE (4.14) and performing integrations over (A.2) We then consider the following problem on the unbounded domain : Given, the problem above has a unique solution. Moreover (A.3) (A.4) By multiplying by both sides of (A.4) and integrating over, we obtain (A.5) Then it follows that

24 24 Academic Journal of Computational and Applied Mathematics /August 2013/ UISA (A.6) Finally, combining (A.4), (A.5) and (A.6)we find. This means that Appendix B: SOR method to Problems (4.15) and (4.22). Letting and, we have So the problem becomes where and. From the standard SOR method, we have (B.1) As in our problem A is the tridiagonal matrix with and, then it is follow that o For the case where. / [ ] (B.2) o For the case where [ ] o For the case where [ ] Since then we may write. / [ ]} By setting. / and by adapting for to or equivalently, we arrive to the following algorithm for the adapted SOR model.

25 25 Academic Journal of Computational and Applied Mathematics /August 2013/ UISA Algorithm B.1: Adapted SOR model.. / ote that the test allow us to get off the loop and the algorithm above is also valid for Crank icolson over an unbounded domain by replacing by which lead us to. / We note furthermore, the above algorithm can be particularized to the European option by replacing the line by 0 1 References [1] Amin, K., Jarrow, R., Pricing options on risky assets in a stochastic interest rates economy. Journal of financial mathematics Vol. 2(1992) pp [2] Bjork, T., Arbitrage theory in continuous time, Oxford University Press, Oxford (2004). [3] Black,F., Karasinki,P., Bond and option pricing when short rates are lognormal, Financial Analysts Journal (1991) pp [4] Black, F. Derman, E., Toy, W., A one-factor model of interest rates and its application to treasury bond options, Financial analysts Journal (1990) pp

26 26 Academic Journal of Computational and Applied Mathematics /August 2013/ UISA [5] Black, F. Sholes, M., The pricing of options and corporate liabilities, Journal of Political Economics, vol. (81) (1973), pp [6] Brace, A., Musiela, M. (1997)., A Multifactor Gauss Markov implementation of Heath, Jarrow and Merton Journal of mathematics finance, Vol. (4)(1994), pp [7] Carslaw, H.S., Jaeger, J.C., Conduction of Heat in solids, Second Edition, Oxford University Press, ew York (1959). [8] El Karoui.,., Rochet, J.C. A pricing formula for options on coupon bonds. Working paper, SDEES, (1989). [9] Han H., Huang Z., A class of Artificial Boundary Conditions for Heat Equation in Unbounded Domains, International Journal of computers and Mathematics with applications, Vol.43(2002), pp [10] Heath, D., Jarrow, R., Morton, A., Bond pricing and term structure of interest rates : A new methodology for contingent claims valuation, Econometrica, vol. 60(1992) pp [11] Hull, J.C., Options, Futures and Other derivatives, 7 th edition, Pearson Prentice Hall, Saddle River (2009c). [12] Hull, J., White, A., Pricing interest rate derivative securities, Review of Financial studies, vol.3 (1990) pp [13] Hull, J., White, A., The general Hull White model and supper calibration, Journal of finance, vol.57 (2001) pp [14] Hull, J., White, A., Efficient procedures for valuing European and American path dependent options, Journal of derivatives, (1993b) pp [15] Hull, J., White, A., umerical procedures for implementing term structure models I: Single Factor models, Journal of derivatives, (1994) pp [16] Hull, J., White, A., One factor interest rate derivative securities, Journal of financial quantitative, vol.28 (1995) pp [17] Hun, H., Wu, A fast numerical method for the Black Scholes equation of American options, SIAM Journal of umerical Analysis, vol. 41 (2003) pp [18] Jamshidian, F., An exact bond option formula, Journal of financial, Vol.44(1989) pp [19] Jamshidian, F., An analysis of American options, Review of futures Markets, vol.11(1)(1992) pp [20] Kangro, R., icolaides, Far field boundary conditions for Black- Scholes equations, SIAM Journal of umerical Analysis, vol. 38 (2000) pp [21] Madsen, C., The pricing of options on coupon bonds. Working paper, Realkredit Danmark, Copenhagen (1994a). [22] Scott, L.R., umerical analysis, Princeton (2011). [23] Seydel, R., Tools for Computational Finance, Springer, ew York (2003). [24] Tangman DY., Gopaul A., Bhuruth M., A fast high order finite difference algorithm for pricing American options, Journal of computational and applied mathematics, Vol 222 (2008) pp

27 27 Academic Journal of Computational and Applied Mathematics /August 2013/ UISA [25] Wong H.Y., Zhao, J., An artificial boundary method for American option pricing under the CEV model, SIAM Journal of numerical analysis, Vol. 46 (2008) pp [26] Wong H.Y., Zhao, J., An artificial boundary method for the Hull White model of American interest rate derivatives, Journal of Applied mathematics and computation, Vol. 217(2011) pp

Pricing Interest-Rate- Derivative Securities

Pricing Interest-Rate- Derivative Securities Pricing Interest-Rate- Derivative Securities John Hull Alan White University of Toronto This article shows that the one-state-variable interest-rate models of Vasicek (1977) and Cox, Ingersoll, and Ross

More information

BINOMIAL OPTIONS PRICING MODEL. Mark Ioffe. Abstract

BINOMIAL OPTIONS PRICING MODEL. Mark Ioffe. Abstract BINOMIAL OPTIONS PRICING MODEL Mark Ioffe Abstract Binomial option pricing model is a widespread numerical method of calculating price of American options. In terms of applied mathematics this is simple

More information

Mathematical Finance

Mathematical Finance Mathematical Finance Option Pricing under the Risk-Neutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European

More information

The Behavior of Bonds and Interest Rates. An Impossible Bond Pricing Model. 780 w Interest Rate Models

The Behavior of Bonds and Interest Rates. An Impossible Bond Pricing Model. 780 w Interest Rate Models 780 w Interest Rate Models The Behavior of Bonds and Interest Rates Before discussing how a bond market-maker would delta-hedge, we first need to specify how bonds behave. Suppose we try to model a zero-coupon

More information

Master of Mathematical Finance: Course Descriptions

Master of Mathematical Finance: Course Descriptions Master of Mathematical Finance: Course Descriptions CS 522 Data Mining Computer Science This course provides continued exploration of data mining algorithms. More sophisticated algorithms such as support

More information

Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t.

Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t. LECTURE 7: BLACK SCHOLES THEORY 1. Introduction: The Black Scholes Model In 1973 Fisher Black and Myron Scholes ushered in the modern era of derivative securities with a seminal paper 1 on the pricing

More information

Stephane Crepey. Financial Modeling. A Backward Stochastic Differential Equations Perspective. 4y Springer

Stephane Crepey. Financial Modeling. A Backward Stochastic Differential Equations Perspective. 4y Springer Stephane Crepey Financial Modeling A Backward Stochastic Differential Equations Perspective 4y Springer Part I An Introductory Course in Stochastic Processes 1 Some Classes of Discrete-Time Stochastic

More information

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Gagan Deep Singh Assistant Vice President Genpact Smart Decision Services Financial

More information

Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies

Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies Drazen Pesjak Supervised by A.A. Tsvetkov 1, D. Posthuma 2 and S.A. Borovkova 3 MSc. Thesis Finance HONOURS TRACK Quantitative

More information

QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS

QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS L. M. Dieng ( Department of Physics, CUNY/BCC, New York, New York) Abstract: In this work, we expand the idea of Samuelson[3] and Shepp[,5,6] for

More information

Black Scholes Merton Approach To Modelling Financial Derivatives Prices Tomas Sinkariovas 0802869. Words: 3441

Black Scholes Merton Approach To Modelling Financial Derivatives Prices Tomas Sinkariovas 0802869. Words: 3441 Black Scholes Merton Approach To Modelling Financial Derivatives Prices Tomas Sinkariovas 0802869 Words: 3441 1 1. Introduction In this paper I present Black, Scholes (1973) and Merton (1973) (BSM) general

More information

On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price

On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price Abstract: Chi Gao 12/15/2013 I. Black-Scholes Equation is derived using two methods: (1) risk-neutral measure; (2) - hedge. II.

More information

CS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options

CS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options CS 5 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options 1. Definitions Equity. The common stock of a corporation. Traded on organized exchanges (NYSE, AMEX, NASDAQ). A common

More information

The Effective Dimension of Asset-Liability Management Problems in Life Insurance

The Effective Dimension of Asset-Liability Management Problems in Life Insurance The Effective Dimension of Asset-Liability Management Problems in Life Insurance Thomas Gerstner, Michael Griebel, Markus Holtz Institute for Numerical Simulation, University of Bonn holtz@ins.uni-bonn.de

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Zicklin School of Business, Baruch College Options Markets (Hull chapter: 12, 13, 14) Liuren Wu The Black-Scholes Model Options Markets 1 / 19 The Black-Scholes-Merton

More information

European Options Pricing Using Monte Carlo Simulation

European Options Pricing Using Monte Carlo Simulation European Options Pricing Using Monte Carlo Simulation Alexandros Kyrtsos Division of Materials Science and Engineering, Boston University akyrtsos@bu.edu European options can be priced using the analytical

More information

Finite Differences Schemes for Pricing of European and American Options

Finite Differences Schemes for Pricing of European and American Options Finite Differences Schemes for Pricing of European and American Options Margarida Mirador Fernandes IST Technical University of Lisbon Lisbon, Portugal November 009 Abstract Starting with the Black-Scholes

More information

A Genetic Algorithm to Price an European Put Option Using the Geometric Mean Reverting Model

A Genetic Algorithm to Price an European Put Option Using the Geometric Mean Reverting Model Applied Mathematical Sciences, vol 8, 14, no 143, 715-7135 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/11988/ams144644 A Genetic Algorithm to Price an European Put Option Using the Geometric Mean Reverting

More information

Valuation of the Minimum Guaranteed Return Embedded in Life Insurance Products

Valuation of the Minimum Guaranteed Return Embedded in Life Insurance Products Financial Institutions Center Valuation of the Minimum Guaranteed Return Embedded in Life Insurance Products by Knut K. Aase Svein-Arne Persson 96-20 THE WHARTON FINANCIAL INSTITUTIONS CENTER The Wharton

More information

Risk/Arbitrage Strategies: An Application to Stock Option Portfolio Management

Risk/Arbitrage Strategies: An Application to Stock Option Portfolio Management Risk/Arbitrage Strategies: An Application to Stock Option Portfolio Management Vincenzo Bochicchio, Niklaus Bühlmann, Stephane Junod and Hans-Fredo List Swiss Reinsurance Company Mythenquai 50/60, CH-8022

More information

第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model

第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model 1 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model Outline 有 关 股 价 的 假 设 The B-S Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American

More information

The Black-Scholes-Merton Approach to Pricing Options

The Black-Scholes-Merton Approach to Pricing Options he Black-Scholes-Merton Approach to Pricing Options Paul J Atzberger Comments should be sent to: atzberg@mathucsbedu Introduction In this article we shall discuss the Black-Scholes-Merton approach to determining

More information

Advanced Fixed Income Analytics Lecture 6

Advanced Fixed Income Analytics Lecture 6 Advanced Fixed Income Analytics Lecture 6 Backus & Zin/April 28, 1999 Fixed Income Models: Assessment and New Directions 1. Uses of models 2. Assessment criteria 3. Assessment 4. Open questions and new

More information

Valuation of American Options

Valuation of American Options Valuation of American Options Among the seminal contributions to the mathematics of finance is the paper F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political

More information

Black-Scholes-Merton approach merits and shortcomings

Black-Scholes-Merton approach merits and shortcomings Black-Scholes-Merton approach merits and shortcomings Emilia Matei 1005056 EC372 Term Paper. Topic 3 1. Introduction The Black-Scholes and Merton method of modelling derivatives prices was first introduced

More information

DETERMINING THE VALUE OF EMPLOYEE STOCK OPTIONS. Report Produced for the Ontario Teachers Pension Plan John Hull and Alan White August 2002

DETERMINING THE VALUE OF EMPLOYEE STOCK OPTIONS. Report Produced for the Ontario Teachers Pension Plan John Hull and Alan White August 2002 DETERMINING THE VALUE OF EMPLOYEE STOCK OPTIONS 1. Background Report Produced for the Ontario Teachers Pension Plan John Hull and Alan White August 2002 It is now becoming increasingly accepted that companies

More information

Monte Carlo Methods and Models in Finance and Insurance

Monte Carlo Methods and Models in Finance and Insurance Chapman & Hall/CRC FINANCIAL MATHEMATICS SERIES Monte Carlo Methods and Models in Finance and Insurance Ralf Korn Elke Korn Gerald Kroisandt f r oc) CRC Press \ V^ J Taylor & Francis Croup ^^"^ Boca Raton

More information

Monte Carlo Methods for American Option Pricing

Monte Carlo Methods for American Option Pricing COPENHAGEN BUSINESS SCHOOL MSc in Advanced Economics and Finance Master s Thesis Monte Carlo Methods for American Option Pricing Alberto Barola February 2013 Academic Supervisor Jesper Lund Number of characters

More information

IMPLICIT OPTIONS IN LIFE INSURANCE CONTRACTS The case of lump sum options in deferred annuity contracts Tobias S. Dillmann Institut fur Finanz- und Aktuarwissenschaften c/o Abteilung Unternehmensplanung

More information

Pricing Dual Spread Options by the Lie-Trotter Operator Splitting Method

Pricing Dual Spread Options by the Lie-Trotter Operator Splitting Method Pricing Dual Spread Options by the Lie-Trotter Operator Splitting Method C.F. Lo Abstract In this paper, based upon the Lie- Trotter operator splitting method proposed by Lo 04, we present a simple closed-form

More information

Market Value of Insurance Contracts with Profit Sharing 1

Market Value of Insurance Contracts with Profit Sharing 1 Market Value of Insurance Contracts with Profit Sharing 1 Pieter Bouwknegt Nationale-Nederlanden Actuarial Dept PO Box 796 3000 AT Rotterdam The Netherlands Tel: (31)10-513 1326 Fax: (31)10-513 0120 E-mail:

More information

Lecture 12: The Black-Scholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena

Lecture 12: The Black-Scholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena Lecture 12: The Black-Scholes Model Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena The Black-Scholes-Merton Model

More information

The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation. Lectures INF2320 p. 1/88 The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

More information

EC247 FINANCIAL INSTRUMENTS AND CAPITAL MARKETS TERM PAPER

EC247 FINANCIAL INSTRUMENTS AND CAPITAL MARKETS TERM PAPER EC247 FINANCIAL INSTRUMENTS AND CAPITAL MARKETS TERM PAPER NAME: IOANNA KOULLOUROU REG. NUMBER: 1004216 1 Term Paper Title: Explain what is meant by the term structure of interest rates. Critically evaluate

More information

MULTIPLE DEFAULTS AND MERTON'S MODEL L. CATHCART, L. EL-JAHEL

MULTIPLE DEFAULTS AND MERTON'S MODEL L. CATHCART, L. EL-JAHEL ISSN 1744-6783 MULTIPLE DEFAULTS AND MERTON'S MODEL L. CATHCART, L. EL-JAHEL Tanaka Business School Discussion Papers: TBS/DP04/12 London: Tanaka Business School, 2004 Multiple Defaults and Merton s Model

More information

One-state Variable Binomial Models for European-/American-Style Geometric Asian Options

One-state Variable Binomial Models for European-/American-Style Geometric Asian Options One-state Variable Binomial Models for European-/American-Style Geometric Asian Options Min Dai Laboratory of Mathematics and Applied Mathematics, and Dept. of Financial Mathematics, Peking University,

More information

A Comparison of Option Pricing Models

A Comparison of Option Pricing Models A Comparison of Option Pricing Models Ekrem Kilic 11.01.2005 Abstract Modeling a nonlinear pay o generating instrument is a challenging work. The models that are commonly used for pricing derivative might

More information

OPTIONS, FUTURES, & OTHER DERIVATI

OPTIONS, FUTURES, & OTHER DERIVATI Fifth Edition OPTIONS, FUTURES, & OTHER DERIVATI John C. Hull Maple Financial Group Professor of Derivatives and Risk Manage, Director, Bonham Center for Finance Joseph L. Rotinan School of Management

More information

OpenGamma Quantitative Research Adjoint Algorithmic Differentiation: Calibration and Implicit Function Theorem

OpenGamma Quantitative Research Adjoint Algorithmic Differentiation: Calibration and Implicit Function Theorem OpenGamma Quantitative Research Adjoint Algorithmic Differentiation: Calibration and Implicit Function Theorem Marc Henrard marc@opengamma.com OpenGamma Quantitative Research n. 1 November 2011 Abstract

More information

The Black-Scholes pricing formulas

The Black-Scholes pricing formulas The Black-Scholes pricing formulas Moty Katzman September 19, 2014 The Black-Scholes differential equation Aim: Find a formula for the price of European options on stock. Lemma 6.1: Assume that a stock

More information

Schonbucher Chapter 9: Firm Value and Share Priced-Based Models Updated 07-30-2007

Schonbucher Chapter 9: Firm Value and Share Priced-Based Models Updated 07-30-2007 Schonbucher Chapter 9: Firm alue and Share Priced-Based Models Updated 07-30-2007 (References sited are listed in the book s bibliography, except Miller 1988) For Intensity and spread-based models of default

More information

τ θ What is the proper price at time t =0of this option?

τ θ What is the proper price at time t =0of this option? Now by Itô s formula But Mu f and u g in Ū. Hence τ θ u(x) =E( Mu(X) ds + u(x(τ θ))) 0 τ θ u(x) E( f(x) ds + g(x(τ θ))) = J x (θ). 0 But since u(x) =J x (θ ), we consequently have u(x) =J x (θ ) = min

More information

ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida

ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida ARBITRAGE-FREE OPTION PRICING MODELS Denis Bell University of North Florida Modelling Stock Prices Example American Express In mathematical finance, it is customary to model a stock price by an (Ito) stochatic

More information

ON DETERMINANTS AND SENSITIVITIES OF OPTION PRICES IN DELAYED BLACK-SCHOLES MODEL

ON DETERMINANTS AND SENSITIVITIES OF OPTION PRICES IN DELAYED BLACK-SCHOLES MODEL ON DETERMINANTS AND SENSITIVITIES OF OPTION PRICES IN DELAYED BLACK-SCHOLES MODEL A. B. M. Shahadat Hossain, Sharif Mozumder ABSTRACT This paper investigates determinant-wise effect of option prices when

More information

Assessing Credit Risk for a Ghanaian Bank Using the Black- Scholes Model

Assessing Credit Risk for a Ghanaian Bank Using the Black- Scholes Model Assessing Credit Risk for a Ghanaian Bank Using the Black- Scholes Model VK Dedu 1, FT Oduro 2 1,2 Department of Mathematics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. Abstract

More information

A Simulation-Based lntroduction Using Excel

A Simulation-Based lntroduction Using Excel Quantitative Finance A Simulation-Based lntroduction Using Excel Matt Davison University of Western Ontario London, Canada CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint

More information

Maximum likelihood estimation of mean reverting processes

Maximum likelihood estimation of mean reverting processes Maximum likelihood estimation of mean reverting processes José Carlos García Franco Onward, Inc. jcpollo@onwardinc.com Abstract Mean reverting processes are frequently used models in real options. For

More information

When to Refinance Mortgage Loans in a Stochastic Interest Rate Environment

When to Refinance Mortgage Loans in a Stochastic Interest Rate Environment When to Refinance Mortgage Loans in a Stochastic Interest Rate Environment Siwei Gan, Jin Zheng, Xiaoxia Feng, and Dejun Xie Abstract Refinancing refers to the replacement of an existing debt obligation

More information

Stocks paying discrete dividends: modelling and option pricing

Stocks paying discrete dividends: modelling and option pricing Stocks paying discrete dividends: modelling and option pricing Ralf Korn 1 and L. C. G. Rogers 2 Abstract In the Black-Scholes model, any dividends on stocks are paid continuously, but in reality dividends

More information

Discussions of Monte Carlo Simulation in Option Pricing TIANYI SHI, Y LAURENT LIU PROF. RENATO FERES MATH 350 RESEARCH PAPER

Discussions of Monte Carlo Simulation in Option Pricing TIANYI SHI, Y LAURENT LIU PROF. RENATO FERES MATH 350 RESEARCH PAPER Discussions of Monte Carlo Simulation in Option Pricing TIANYI SHI, Y LAURENT LIU PROF. RENATO FERES MATH 350 RESEARCH PAPER INTRODUCTION Having been exposed to a variety of applications of Monte Carlo

More information

Term Structure of Interest Rates

Term Structure of Interest Rates Term Structure of Interest Rates Ali Umut Irturk 789139-3 Survey submitted to the Economics Department of the University of California, Santa Barbara in fulfillment of the requirement for M.A. Theory of

More information

Understanding N(d 1 ) and N(d 2 ): Risk-Adjusted Probabilities in the Black-Scholes Model 1

Understanding N(d 1 ) and N(d 2 ): Risk-Adjusted Probabilities in the Black-Scholes Model 1 Understanding N(d 1 ) and N(d 2 ): Risk-Adjusted Probabilities in the Black-Scholes Model 1 Lars Tyge Nielsen INSEAD Boulevard de Constance 77305 Fontainebleau Cedex France E-mail: nielsen@freiba51 October

More information

LECTURE 15: AMERICAN OPTIONS

LECTURE 15: AMERICAN OPTIONS LECTURE 15: AMERICAN OPTIONS 1. Introduction All of the options that we have considered thus far have been of the European variety: exercise is permitted only at the termination of the contract. These

More information

Jung-Soon Hyun and Young-Hee Kim

Jung-Soon Hyun and Young-Hee Kim J. Korean Math. Soc. 43 (2006), No. 4, pp. 845 858 TWO APPROACHES FOR STOCHASTIC INTEREST RATE OPTION MODEL Jung-Soon Hyun and Young-Hee Kim Abstract. We present two approaches of the stochastic interest

More information

Valuation of Razorback Executive Stock Options: A Simulation Approach

Valuation of Razorback Executive Stock Options: A Simulation Approach Valuation of Razorback Executive Stock Options: A Simulation Approach Joe Cheung Charles J. Corrado Department of Accounting & Finance The University of Auckland Private Bag 92019 Auckland, New Zealand.

More information

Numerical Methods for Pricing Exotic Options

Numerical Methods for Pricing Exotic Options Numerical Methods for Pricing Exotic Options Dimitra Bampou Supervisor: Dr. Daniel Kuhn Second Marker: Professor Berç Rustem 18 June 2008 2 Numerical Methods for Pricing Exotic Options 0BAbstract 3 Abstract

More information

EC824. Financial Economics and Asset Pricing 2013/14

EC824. Financial Economics and Asset Pricing 2013/14 EC824 Financial Economics and Asset Pricing 2013/14 SCHOOL OF ECONOMICS EC824 Financial Economics and Asset Pricing Staff Module convenor Office Keynes B1.02 Dr Katsuyuki Shibayama Email k.shibayama@kent.ac.uk

More information

Valuing equity-based payments

Valuing equity-based payments E Valuing equity-based payments Executive remuneration packages generally comprise many components. While it is relatively easy to identify how much will be paid in a base salary a fixed dollar amount

More information

Pricing of cross-currency interest rate derivatives on Graphics Processing Units

Pricing of cross-currency interest rate derivatives on Graphics Processing Units Pricing of cross-currency interest rate derivatives on Graphics Processing Units Duy Minh Dang Department of Computer Science University of Toronto Toronto, Canada dmdang@cs.toronto.edu Joint work with

More information

From Binomial Trees to the Black-Scholes Option Pricing Formulas

From Binomial Trees to the Black-Scholes Option Pricing Formulas Lecture 4 From Binomial Trees to the Black-Scholes Option Pricing Formulas In this lecture, we will extend the example in Lecture 2 to a general setting of binomial trees, as an important model for a single

More information

OPTION PRICING WITH PADÉ APPROXIMATIONS

OPTION PRICING WITH PADÉ APPROXIMATIONS C om m unfacsciu niva nkseries A 1 Volum e 61, N um b er, Pages 45 50 (01) ISSN 1303 5991 OPTION PRICING WITH PADÉ APPROXIMATIONS CANAN KÖROĞLU A In this paper, Padé approximations are applied Black-Scholes

More information

Pricing American Options on Leveraged Exchange. Traded Funds in the Binomial Pricing Model

Pricing American Options on Leveraged Exchange. Traded Funds in the Binomial Pricing Model Pricing American Options on Leveraged Exchange Traded Funds in the Binomial Pricing Model By Diana Holmes Wolf A Project Report Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE In partial

More information

Lecture. S t = S t δ[s t ].

Lecture. S t = S t δ[s t ]. Lecture In real life the vast majority of all traded options are written on stocks having at least one dividend left before the date of expiration of the option. Thus the study of dividends is important

More information

Numerical methods for American options

Numerical methods for American options Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment

More information

The Valuation of Currency Options

The Valuation of Currency Options The Valuation of Currency Options Nahum Biger and John Hull Both Nahum Biger and John Hull are Associate Professors of Finance in the Faculty of Administrative Studies, York University, Canada. Introduction

More information

American Capped Call Options on Dividend-Paying Assets

American Capped Call Options on Dividend-Paying Assets American Capped Call Options on Dividend-Paying Assets Mark Broadie Columbia University Jerome Detemple McGill University and CIRANO This article addresses the problem of valuing American call options

More information

Analytically Tractable Stochastic Stock Price Models

Analytically Tractable Stochastic Stock Price Models Archil Gulisashvili Analytically Tractable Stochastic Stock Price Models 4Q Springer Contents 1 Volatility Processes 1 1.1 Brownian Motion 1 1.2 s Geometric Brownian Motion 6 1.3 Long-Time Behavior of

More information

Pricing Barrier Options under Local Volatility

Pricing Barrier Options under Local Volatility Abstract Pricing Barrier Options under Local Volatility Artur Sepp Mail: artursepp@hotmail.com, Web: www.hot.ee/seppar 16 November 2002 We study pricing under the local volatility. Our research is mainly

More information

A BOUND ON LIBOR FUTURES PRICES FOR HJM YIELD CURVE MODELS

A BOUND ON LIBOR FUTURES PRICES FOR HJM YIELD CURVE MODELS A BOUND ON LIBOR FUTURES PRICES FOR HJM YIELD CURVE MODELS VLADIMIR POZDNYAKOV AND J. MICHAEL STEELE Abstract. We prove that for a large class of widely used term structure models there is a simple theoretical

More information

No-arbitrage conditions for cash-settled swaptions

No-arbitrage conditions for cash-settled swaptions No-arbitrage conditions for cash-settled swaptions Fabio Mercurio Financial Engineering Banca IMI, Milan Abstract In this note, we derive no-arbitrage conditions that must be satisfied by the pricing function

More information

IMPLEMENTING THE HULL-WHITE TRINOMIAL TERM STRUCTURE MODEL

IMPLEMENTING THE HULL-WHITE TRINOMIAL TERM STRUCTURE MODEL IMPLEMENTING THE HULL-WHITE TRINOMIAL TERM STRUCTURE MODEL WHITE PAPER AUGUST 2015 Prepared By: Stuart McCrary smccrary@thinkbrg.com 312.429.7902 Copyright 2015 by Berkeley Research Group, LLC. Except

More information

EC3070 FINANCIAL DERIVATIVES

EC3070 FINANCIAL DERIVATIVES BINOMIAL OPTION PRICING MODEL A One-Step Binomial Model The Binomial Option Pricing Model is a simple device that is used for determining the price c τ 0 that should be attributed initially to a call option

More information

Article from: Risk Management. June 2009 Issue 16

Article from: Risk Management. June 2009 Issue 16 Article from: Risk Management June 2009 Issue 16 CHAIRSPERSON S Risk quantification CORNER Structural Credit Risk Modeling: Merton and Beyond By Yu Wang The past two years have seen global financial markets

More information

Monte Carlo Methods in Finance

Monte Carlo Methods in Finance Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook October 2, 2012 Outline Introduction 1 Introduction

More information

The Black-Scholes Formula

The Black-Scholes Formula FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Black-Scholes Formula These notes examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they are based on the

More information

where N is the standard normal distribution function,

where N is the standard normal distribution function, The Black-Scholes-Merton formula (Hull 13.5 13.8) Assume S t is a geometric Brownian motion w/drift. Want market value at t = 0 of call option. European call option with expiration at time T. Payout at

More information

Volatility Models for Commodity Markets. by Paul L. Fackler and Yanjun Tian

Volatility Models for Commodity Markets. by Paul L. Fackler and Yanjun Tian Volatility Models for Commodity Markets by Paul L. Fackler and Yanjun Tian Suggested citation format: Fackler, P. L., and Y. Tian. 1999. Volatility Models for Commodity Markets. Proceedings of the NCR-134

More information

Numerical Methods for Option Pricing

Numerical Methods for Option Pricing Chapter 9 Numerical Methods for Option Pricing Equation (8.26) provides a way to evaluate option prices. For some simple options, such as the European call and put options, one can integrate (8.26) directly

More information

Mathematical Modeling and Methods of Option Pricing

Mathematical Modeling and Methods of Option Pricing Mathematical Modeling and Methods of Option Pricing This page is intentionally left blank Mathematical Modeling and Methods of Option Pricing Lishang Jiang Tongji University, China Translated by Canguo

More information

Caps and Floors. John Crosby

Caps and Floors. John Crosby Caps and Floors John Crosby Glasgow University My website is: http://www.john-crosby.co.uk If you spot any typos or errors, please email me. My email address is on my website Lecture given 19th February

More information

COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS

COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS NICOLE BÄUERLE AND STEFANIE GRETHER Abstract. In this short note we prove a conjecture posed in Cui et al. 2012): Dynamic mean-variance problems in

More information

Review of Basic Options Concepts and Terminology

Review of Basic Options Concepts and Terminology Review of Basic Options Concepts and Terminology March 24, 2005 1 Introduction The purchase of an options contract gives the buyer the right to buy call options contract or sell put options contract some

More information

Forward Price. The payoff of a forward contract at maturity is S T X. Forward contracts do not involve any initial cash flow.

Forward Price. The payoff of a forward contract at maturity is S T X. Forward contracts do not involve any initial cash flow. Forward Price The payoff of a forward contract at maturity is S T X. Forward contracts do not involve any initial cash flow. The forward price is the delivery price which makes the forward contract zero

More information

Parallel Computing for Option Pricing Based on the Backward Stochastic Differential Equation

Parallel Computing for Option Pricing Based on the Backward Stochastic Differential Equation Parallel Computing for Option Pricing Based on the Backward Stochastic Differential Equation Ying Peng, Bin Gong, Hui Liu, and Yanxin Zhang School of Computer Science and Technology, Shandong University,

More information

The Two-Factor Hull-White Model : Pricing and Calibration of Interest Rates Derivatives

The Two-Factor Hull-White Model : Pricing and Calibration of Interest Rates Derivatives The Two-Factor Hull-White Model : Pricing and Calibration of Interest Rates Derivatives Arnaud Blanchard Under the supervision of Filip Lindskog 2 Abstract In this paper, we study interest rate models

More information

VALUING REAL OPTIONS USING IMPLIED BINOMIAL TREES AND COMMODITY FUTURES OPTIONS

VALUING REAL OPTIONS USING IMPLIED BINOMIAL TREES AND COMMODITY FUTURES OPTIONS VALUING REAL OPTIONS USING IMPLIED BINOMIAL TREES AND COMMODITY FUTURES OPTIONS TOM ARNOLD TIMOTHY FALCON CRACK* ADAM SCHWARTZ A real option on a commodity is valued using an implied binomial tree (IBT)

More information

Pricing of a worst of option using a Copula method M AXIME MALGRAT

Pricing of a worst of option using a Copula method M AXIME MALGRAT Pricing of a worst of option using a Copula method M AXIME MALGRAT Master of Science Thesis Stockholm, Sweden 2013 Pricing of a worst of option using a Copula method MAXIME MALGRAT Degree Project in Mathematical

More information

Lecture 4: The Black-Scholes model

Lecture 4: The Black-Scholes model OPTIONS and FUTURES Lecture 4: The Black-Scholes model Philip H. Dybvig Washington University in Saint Louis Black-Scholes option pricing model Lognormal price process Call price Put price Using Black-Scholes

More information

OPTIONS and FUTURES Lecture 2: Binomial Option Pricing and Call Options

OPTIONS and FUTURES Lecture 2: Binomial Option Pricing and Call Options OPTIONS and FUTURES Lecture 2: Binomial Option Pricing and Call Options Philip H. Dybvig Washington University in Saint Louis binomial model replicating portfolio single period artificial (risk-neutral)

More information

A Pricing Model for American Options with Stochastic Interest Rates Bert Menkveld and Ton Vorst Department of Finance Erasmus University Rotterdam P.O. Box 1738 NL-3000 DR Rotterdam The Netherlands e-mail:

More information

Computing Near Optimal Strategies for Stochastic Investment Planning Problems

Computing Near Optimal Strategies for Stochastic Investment Planning Problems Computing Near Optimal Strategies for Stochastic Investment Planning Problems Milos Hauskrecfat 1, Gopal Pandurangan 1,2 and Eli Upfal 1,2 Computer Science Department, Box 1910 Brown University Providence,

More information

Pricing of an Exotic Forward Contract

Pricing of an Exotic Forward Contract Pricing of an Exotic Forward Contract Jirô Akahori, Yuji Hishida and Maho Nishida Dept. of Mathematical Sciences, Ritsumeikan University 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan E-mail: {akahori,

More information

Alternative Price Processes for Black-Scholes: Empirical Evidence and Theory

Alternative Price Processes for Black-Scholes: Empirical Evidence and Theory Alternative Price Processes for Black-Scholes: Empirical Evidence and Theory Samuel W. Malone April 19, 2002 This work is supported by NSF VIGRE grant number DMS-9983320. Page 1 of 44 1 Introduction This

More information

Black-Scholes Option Pricing Model

Black-Scholes Option Pricing Model Black-Scholes Option Pricing Model Nathan Coelen June 6, 22 1 Introduction Finance is one of the most rapidly changing and fastest growing areas in the corporate business world. Because of this rapid change,

More information

Guaranteed Annuity Options

Guaranteed Annuity Options Guaranteed Annuity Options Hansjörg Furrer Market-consistent Actuarial Valuation ETH Zürich, Frühjahrssemester 2008 Guaranteed Annuity Options Contents A. Guaranteed Annuity Options B. Valuation and Risk

More information

Heavy Parallelization of Alternating Direction Schemes in Multi-Factor Option Valuation Models. Cris Doloc, Ph.D.

Heavy Parallelization of Alternating Direction Schemes in Multi-Factor Option Valuation Models. Cris Doloc, Ph.D. Heavy Parallelization of Alternating Direction Schemes in Multi-Factor Option Valuation Models Cris Doloc, Ph.D. WHO INTRO Ex-physicist Ph.D. in Computational Physics - Applied TN Plasma (10 yrs) Working

More information

LECTURE 9: A MODEL FOR FOREIGN EXCHANGE

LECTURE 9: A MODEL FOR FOREIGN EXCHANGE LECTURE 9: A MODEL FOR FOREIGN EXCHANGE 1. Foreign Exchange Contracts There was a time, not so long ago, when a U. S. dollar would buy you precisely.4 British pounds sterling 1, and a British pound sterling

More information

Derivatives: Principles and Practice

Derivatives: Principles and Practice Derivatives: Principles and Practice Rangarajan K. Sundaram Stern School of Business New York University New York, NY 10012 Sanjiv R. Das Leavey School of Business Santa Clara University Santa Clara, CA

More information

Pricing Options with Discrete Dividends by High Order Finite Differences and Grid Stretching

Pricing Options with Discrete Dividends by High Order Finite Differences and Grid Stretching Pricing Options with Discrete Dividends by High Order Finite Differences and Grid Stretching Kees Oosterlee Numerical analysis group, Delft University of Technology Joint work with Coen Leentvaar, Ariel

More information

Essays in Financial Mathematics

Essays in Financial Mathematics Essays in Financial Mathematics Essays in Financial Mathematics Kristoffer Lindensjö Dissertation for the Degree of Doctor of Philosophy, Ph.D. Stockholm School of Economics, 2013. Dissertation title:

More information