Noarbitrage conditions for cashsettled swaptions


 Nathaniel Montgomery
 1 years ago
 Views:
Transcription
1 Noarbitrage conditions for cashsettled swaptions Fabio Mercurio Financial Engineering Banca IMI, Milan Abstract In this note, we derive noarbitrage conditions that must be satisfied by the pricing function of cashsettled swaptions. The specific examples of a flat implied volatility and of a smile generated by the SABR functional form will be analyzed. 1 Introduction and purpose of the article Cashsettled swaptions are the most actively traded swaptions in the Euro market. Their payoff is obtained by replacing the classical annuity term with a singlefactor one, where discounting is based on a unique interest rate, namely the underlying swap rate set at the option s maturity. The market typically uses a Blacklike formula for pricing cashsettled swaptions. However, such a formula can not be immediately justified in terms of a market model, since the cashsettled annuity term can not be regarded as a proper numeraire. In this note, we derive necessary and sufficient conditions for a pricing function for cashsettled swaptions to be arbitrage free. In particular, we will analyze possible faults of the market formula when the whole smile for a given swaption is considered. Specific examples based on a flat smile and on the SABR functional form will be provided. Finally, in the appendix, we will identify a strategy leading to an arbitrage in case the above conditions are not met. 2 Definitions Let us fix a maturity T a and a set of times T a,b := {T a+1,..., T b }, with associated year fractions all equal to τ >. The forward swap rate at time t for payments in T a,b is defined 1
2 by S a,b (t) = P (t, T a) P (t, T b ) τ b j=a+1 P (t, T j), where P (t, T ) denotes the timet discount factor for maturity T. A cashsettled swaption is an option paying out at time T a [ ω ( Sa,b (T a ) )] + Ga,b (S a,b (T a )), (1) where is the option s strike, ω = 1 for a payer and ω = 1 for a receiver, and { [ ] b a τ 1 1 G a,b (S) := (1 + τs) = 1 S > S (1+τS) b a j τ(b a) S = j=1 is the cashsettled annuity term. Denoting by Q Ta the T a forward measure, and by E Ta the related expectation, the noarbitrage price at time zero of the derivative (1) is given by CSS(, T a ; T a,b, ω) = P (, T a )E Ta{[ ω ( S a,b (T a ) )] + Ga,b (S a,b (T a )) }. (2) Contrary to physicallysettled swaptions paying out, at time T a, [ ω ( Sa,b (T a ) )] + b j=a+1 τp (T a, T j ), where the annuity term b j=a+1 τp (, T j) is the value of a portfolio of tradable assets, the cashsettled annuity G a,b (S a,b ( )) is not a proper numeraire, which makes it impossible to value (1) analytically by means of an analogue of the swap market model. Nevertheless, it is market practice to value (2) with the following Blacklike formula: where CSS MT (, T a ; T a,b, ω) = P (, T a )c BS a,b(; ω)g a,b (S a,b ()), (3) c BS a,b(; ω) := Bl (, S a,b (), σa,b MT () T a, ω ), ( Bl(, S, v, ω) := ωsφ ω ln(s/) + ) ( v2 /2 ωφ v ω ln(s/) v2 /2 v and where σa,b MT () is the market implied volatility for the swaption struck at and Φ denotes the standard normal cumulative distribution function. However, the question remains of whether (3) is an arbitragefree formula. In the following, we will try to address this issue starting from a general pricing function. 2 ),
3 3 Conditions for the absence of arbitrage Let us assume that the Q Ta distribution of S a,b (T a ) is absolutely continuous and denote by p a,b ( ) the associated density (with finite mean). Let us also assume that cashsettled swaptions, with maturity T a and underlying tenor structure T a,b, are priced with a function π a,b (; ω), which is positive and twice differentiable in for given ω. Clearly, by our assumptions, we must have (assuming positive rates) or, equivalently, π a,b (; ω) = P (, T a ) [ω(x )] + G a,b (x)p a,b (x) dx, (4) π a,b (; 1) = P (, T a ) π a,b (; 1) = P (, T a ) (x )G a,b (x)p a,b (x) dx, ( x)g a,b (x)p a,b (x) dx. (5) The given density p a,b uniquely identifies the price function π a,b through (5). The reverse is also true. In fact, following Breeden and Litzenberger (1978), and differentiating twice both equalities in (5), we obtain: namely π a,b(; 1) = π a,b(; 1) = P (, T a )G a,b ()p a,b (), (6) p a,b () = π a,b (; 1) P (, T a )G a,b (), (7) where denotes derivative with respect to. Therefore, if we are given an arbitragefree price function π a,b, we can uniquely identify the density p a,b through (7). Equation (7) also helps us characterize the price functions for cashsettled swaptions that are arbitrage free in the sense that (4) holds, for each, for some density function p a,b. Precisely, we have the following. Proposition 3.1. A given (twicedifferentiable) function π a,b function for cashsettled swaptions if and only if is an arbitragefree price i) π a,b (; 1) = π a,b (; 1) for each ; ii) g : π a,b (;1) P (,T a )G a,b () is a density function, namely: 3
4 the second derivative of π a,b is positive: π a,b (; 1) ; the function g is normalized to unity: π a,b (x; 1) P (, T a )G a,b (x) dx = 1 iii) the following boundary conditions apply: lim π a,b(; 1) =, + lim + π a,b(; 1) =, π a,b (; 1) =, π a,b(; 1) =. π a,b (x; 1) G a,b (x) dx = P (, T a); (8) Proof. Conditions i) and ii) follow from (6) and (7), respectively. Conditions iii) follow from imposing that, for each, π a,b (; 1) = π a,b (; 1) = (x )π a,b(x; 1) dx, ( x)π a,b(x; 1) dx. (9) Conditions i) to iii) are rather standard and, mutatis mutandis, typical of any pricing function for European calls and puts. However, in the case of cashsettled swaptions (i.e. when G a,b is not identically equal to one), the normalization property (8) is not automatically granted and needs to be verified on a casebycase basis. Remark 3.2. For standard European calls and puts, it is well known how to construct arbitrage opportunities in case (at least) one of conditions i) to iii) is not fulfilled. For instance, if the second derivative π a,b (; 1) is strictly negative, we can find a butterfly swaption spread with positive payoff but (strictly) negative price. 1 In fact, π a,b (; 1) < for some implies the existence of ɛ > such that [π a,b ( + ɛ; 1) 2π a,b (; 1) + π a,b ( ɛ; 1)]/(ɛ 2 ) < so that two short positions in the payer swaption with strike plus long positions in the payer swaptions with strikes ɛ and + ɛ would yield an arbitrage opportunity (payoff but price < ). When the normalization property (8) is not satisfied, the construction of an arbitrage is less straightforward and is explained in the appendix. 1 See for instance Carr and Madan (25). 4
5 4 Is the market formula arbitrage free? With the above conditions at hand, we can now proceed to verify whether the market formula (3) is indeed arbitrage free. To this end, we will consider two specific cases. The first is based on a flat smile. The second on modelling implied volatilities with the SABR functional form of Hagan et al. (22), which is quite popular in the swaption market, see for instance Mercurio and Pallavicini (25, 26). The first case we analyze is that where implied volatilities are constant for each, σ MT a,b () = σ a,b : π a,b (, ω) = P (, T a )Bl (, S a,b (), σ a,b Ta, ω ) G a,b (S a,b ()). (1) Being this pricing function equal to Black s formula times a constant, conditions i), the first of ii) and iii) of Proposition 3.1 are immediately satisfied. We are left with the normalization (8), which becomes d 2 Bl ( x, S dx G a,b (S a,b ()) 2 a,b (), σ a,b Ta, 1 ) dx = 1. (11) G a,b (x) The integral in the lefthandside is the expected value of the random variable 1/G a,b (X), where X is lognormally distributed with mean S a,b () and second moment S 2 a,b () exp{ σ2 a,b T a}. Such a value clearly depends on σ a,b. Therefore, there seems to be no a priori reason why condition (11) should hold for the given volatility σ a,b. In fact, setting n := b a, we have the following. Proposition 4.1. The normalization (11) holds true if and only if n = 1 or σ a,b =. Proof. The case n = 1 is trivial. In this case, in fact, a cashsettled swaption becomes a caplet and (1) reduces to the corresponding Black formula. When n > 1, we notice that the function 1/G a,b (x) is (strictly) convex since: d 2 dx 2 1 G a,b (x) = nτ (1 + τx)n (nτx τx 2) + nτx + τx + 2 (1 + τx) 2n+2( 1 (1 + τx) n) 3 > for x >, as we get by expanding the power in the numerator in the righthandside. Therefore, by the positivity of a convex payoff s Vega in a Black and Scholes world, the integral in (11) is a strictly increasing function in σ a,b, whose infimum is then attained for σ a,b =. Since the lognormal density in (11) collapses to a Dirac delta concentrated at S a,b () when the volatility tends to zero, the limit value for the integral is 1/G a,b (S a,b ()). As a consequence, (11) is fulfilled in the limit case σ a,b = but violated for every σ a,b > (when n > 1). 5
6 The second case we consider is that where implied volatilities are modelled with the SABR functional form: α σa,b MT () = σa,b SABR () := [ ( ) ( )] z (S a,b ()) 1 β (1 β)2 ln 2 Sa,b () + (1 β)4 Sa,b ln4 () x(z) { [ ] } (1 β) 2 α (S a,b ()) + ρβɛα + ɛ 2 2 3ρ2 T 1 β 4(S a,b ()) 1 β a, 2 24 z := ɛ ( ) α (S a,b()) 1 β Sa,b () 2 ln, { } 1 2ρz + z2 + z ρ x(z) := ln, 1 ρ where α >, β [, 1], ɛ > and ρ ( 1, 1) are the model parameters, 2 leading to the pricing function: (12) π a,b (, ω) = P (, T a )Bl (, S a,b (), σ SABR a,b () T a, ω ) G a,b (S a,b ()). (13) It is well known that the SABR option prices are not always arbitrage free since implying that lim + d 2 d d Bl(, S a,b (), σ SABR a,b () T a, 1 ) =, (14) d Bl(, S 2 a,b (), σa,b SABR () T a, 1 ) <. (15) for small strikes. Accordingly, also the cashsettled swaption price (13) fails to fulfil the positivity condition for its second derivative, and hence we can already conclude that the price function (13) is not arbitrage free (an arbitrage can be built with a suitable butterfly). But the situation is even worse. In fact, due to (14) and (15), nor is the normalization property d 2 Bl ( x, S dx G a,b (S a,b ()) 2 a,b (), σa,b SABR (x) T a, 1 ) dx = 1 (16) G a,b (x) satisfied. Again, this is direct consequence of the functional form (12) and not of its specific use in the pricing of cashsettled swaption. 2 Precisely, α is the initial value of the underlying asset s volatility, β the constantelasticityofvariance parameter in the asset dynamics, ɛ > the volatility of volatility and ρ the instantaneous correlation between the asset and its volatility. 6
7 The normalization property (8) in the SABR case is violated (in nontrivial situations) even when we replace the limit (14) with the noarbitrage one (which is 1) and integrate by parts obtaining: [ G a,b (S a,b ()) f a,b () + f a,b()s a,b () + f a,b(x)bl ( x, S a,b (), σa,b SABR (x) T a, 1 ) ] dx = 1, (17) where we set f a,b (x) := G a,b (x). 3 Similarly to the flatsmile case, there is no reason why (17) should be satisfied for each parameter quadruplet (α, β, ɛ, ρ). 4 In fact, if the SABR implied volatility (12) has a positive (partial) derivative with respect to α, which holds true for realistic model parameters, we have the following. Proposition 4.2. Assuming that the implied volatility (12) is an increasing function of α, (17) holds true if and only if α = or n = 1. Proof. The case n = 1 is trivial. In this case, in fact, f a,b (x) = x + 1/τ, and hence f a,b, f a,b () = 1/τ and f a,b () = 1. Instead, when n > 1 and α σsabr a,b >, the positivity of a call s Vega in the Black and Scholes world implies that the lefthandside of (17) is an increasing function of α, whose infimum is then attained for α =. The value of the lefthandside in this limit case is indeed one. Finally, let us consider a numerical example supporting the above conclusions in the SABR case. Assume we are given some market volatilities for an underlying forward swap rate with 2 year expiry and 1 year tenor, as those reported in Figure 1. Setting β =.6, we calibrate the functional form (12) to such volatilities obtaining: α =.33596, ɛ = and ρ = With these values for the SABR parameters we then calculate the lefthandside of (17). The value we get is 1.5. A graphical evidence of the statement of Proposition 4.2 is given in Figure 2, where we plot the evolution of the lefthandside of (17) for different values of α. 3 The main reason for resorting to an integration by parts is because the integral in (17) is easier to calculate than that in (16). 4 Notice also that (12) contains the constantvolatility example as a limit case. 7
8 Calibrated vols Market vols.16 Volatility Strike Figure 1: SABR calibrated volatilities compared with market ones for 2x1 swaptions, with S a,b () = Figure 2: Value of the lefthandside of (17) for β =.6, ɛ =.24241, ρ = and different values of α. 8
9 5 Conclusions References [1] Breeden, D.T. and Litzenberger, R.H. (1978) Prices of StateContingent Claims Implicit in Option Prices. Journal of Business, 51, [2] Carr, P. and Madan, D.B. (25) A note on sufficient conditions for no arbitrage. Finance Research Letters 2, [3] Hagan, P.S., umar, D., Lesniewski, A.S., Woodward, D.E. (22) Managing Smile Risk. Wilmott magazine, September, [4] Mercurio, F. and Pallavicini, A. (25) Swaption skews and convexity adjustments. Working paper. Available on line at: [5] Mercurio F. and Pallavicini A. (26) Smiling at Convexity. Risk, August, Appendix: Constructing an arbitrage when (8) is not fulfilled Let us suppose that, besides cashsettled swaptions, we can also trade CMS caplets, floorlets and swaplets, paying respectively [S a,b (T a ) ] +, [ S a,b (T a )] + and [S a,b (T a ) ] at time T a. Assuming that cashsettled swaptions are priced with a function π a,b, remembering (7), the prices of CMS options are given by: and Since CMSCplt(S a,b, ) = P (, T a )E T a [(S a,b (T a ) ) + ] = CMSFllt(S a,b, ) = P (, T a )E Ta [( S a,b (T a )) + ] = to avoid arbitrage one should have [S a,b (T a ) ] + [ S a,b (T a )] + = S a,b (T a ), (x ) π a,b (x; 1) dx (18) G a,b (x) ( x) π a,b (x; 1) dx. (19) G a,b (x) CMSCplt(S a,b, ) CMSFllt(S a,b, ) = CMSCplt(S a,b, ) P (, T a ). (2) 9
10 Plugging (18) and (19) into (2), one gets (x ) π a,b (x; 1) G a,b (x) dx which holds true if and only if namely if and only if (8) is fulfilled. Therefore, assuming, for instance, that one would have ( x) π a,b (x; 1) G a,b (x) dx = π a,b (x; 1) G a,b (x) dx = P (, T a), x π a,b (x; 1) G a,b (x) dx P (, T a), π a,b (x; 1) G a,b (x) dx < P (, T a), (21) CMSCplt(S a,b, ) CMSCplt(S a,b, ) + CMSFllt(S a,b, ) < P (, T a ), (22) so that being long the swaplet and the floorlet and short the caplet and the T a maturity bond would yield an arbitrage opportunity (zero payoff but price < ). The case with the > sign in (21) is perfectly analogous. 1
Cashsettled swaptions How wrong are we?
Cashsettled swaptions How wrong are we? Marc Henrard Quantitative Research  OpenGamma 7th Fixed Income Conference, Berlin, 7 October 2011 ... Based on: Cashsettled swaptions: How wrong are we? Available
More informationConsistent Pricing of FX Options
Consistent Pricing of FX Options Antonio Castagna Fabio Mercurio Banca IMI, Milan In the current markets, options with different strikes or maturities are usually priced with different implied volatilities.
More informationSWAPTION PRICING OPENGAMMA QUANTITATIVE RESEARCH
SWAPTION PRICING OPENGAMMA QUANTITATIVE RESEARCH Abstract. Implementation details for the pricing of European swaptions in different frameworks are presented.. Introduction This note describes the pricing
More informationINTEREST RATES AND FX MODELS
INTEREST RATES AND FX MODELS 4. Convexity and CMS Andrew Lesniewski Courant Institute of Mathematical Sciences New York University New York February 20, 2013 2 Interest Rates & FX Models Contents 1 Introduction
More informationA VegaGamma Relationship for EuropeanStyle or Barrier Options in the BlackScholes Model
A VegaGamma Relationship for EuropeanStyle or Barrier Options in the BlackScholes Model Fabio Mercurio Financial Models, Banca IMI Abstract In this document we derive some fundamental relationships
More informationOptions: Valuation and (No) Arbitrage
Prof. Alex Shapiro Lecture Notes 15 Options: Valuation and (No) Arbitrage I. Readings and Suggested Practice Problems II. Introduction: Objectives and Notation III. No Arbitrage Pricing Bound IV. The Binomial
More informationConsistent pricing and hedging of an FX options book
Consistent pricing and hedging of an FX options book L. Bisesti, A. Castagna and F. Mercurio 1 Introduction In the foreign exchange (FX) options market awayfromthemoney options are quite actively traded,
More informationPricing Barrier Options under Local Volatility
Abstract Pricing Barrier Options under Local Volatility Artur Sepp Mail: artursepp@hotmail.com, Web: www.hot.ee/seppar 16 November 2002 We study pricing under the local volatility. Our research is mainly
More informationHedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies
Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies Drazen Pesjak Supervised by A.A. Tsvetkov 1, D. Posthuma 2 and S.A. Borovkova 3 MSc. Thesis Finance HONOURS TRACK Quantitative
More informationDoes BlackScholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem
Does BlackScholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Gagan Deep Singh Assistant Vice President Genpact Smart Decision Services Financial
More informationVannaVolga Method for Foreign Exchange Implied Volatility Smile. Copyright Changwei Xiong 2011. January 2011. last update: Nov 27, 2013
VannaVolga Method for Foreign Exchange Implied Volatility Smile Copyright Changwei Xiong 011 January 011 last update: Nov 7, 01 TABLE OF CONTENTS TABLE OF CONTENTS...1 1. Trading Strategies of Vanilla
More informationA Day in the Life of a Trader
Siena, April 2014 Introduction 1 Examples of Market Payoffs 2 3 4 Sticky Smile e Floating Smile 5 Examples of Market Payoffs Understanding risk profiles of a payoff is conditio sine qua non for a mathematical
More informationCS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options
CS 5 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options 1. Definitions Equity. The common stock of a corporation. Traded on organized exchanges (NYSE, AMEX, NASDAQ). A common
More informationLecture 12: The BlackScholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena
Lecture 12: The BlackScholes Model Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena The BlackScholesMerton Model
More informationBlackScholes Equation for Option Pricing
BlackScholes Equation for Option Pricing By Ivan Karmazin, Jiacong Li 1. Introduction In early 1970s, Black, Scholes and Merton achieved a major breakthrough in pricing of European stock options and there
More informationPublished in Journal of Investment Management, Vol. 13, No. 1 (2015): 6483
Published in Journal of Investment Management, Vol. 13, No. 1 (2015): 6483 OIS Discounting, Interest Rate Derivatives, and the Modeling of Stochastic Interest Rate Spreads John Hull and Alan White Joseph
More informationOptions On Credit Default Index Swaps
Options On Credit Default Index Swaps Yunkang Liu and Peter Jäckel 20th May 2005 Abstract The value of an option on a credit default index swap consists of two parts. The first one is the protection value
More informationCaps and Floors. John Crosby
Caps and Floors John Crosby Glasgow University My website is: http://www.johncrosby.co.uk If you spot any typos or errors, please email me. My email address is on my website Lecture given 19th February
More informationBond Options, Caps and the Black Model
Bond Options, Caps and the Black Model Black formula Recall the Black formula for pricing options on futures: C(F, K, σ, r, T, r) = Fe rt N(d 1 ) Ke rt N(d 2 ) where d 1 = 1 [ σ ln( F T K ) + 1 ] 2 σ2
More informationInvesco Great Wall Fund Management Co. Shenzhen: June 14, 2008
: A Stern School of Business New York University Invesco Great Wall Fund Management Co. Shenzhen: June 14, 2008 Outline 1 2 3 4 5 6 se notes review the principles underlying option pricing and some of
More informationLOGTYPE MODELS, HOMOGENEITY OF OPTION PRICES AND CONVEXITY. 1. Introduction
LOGTYPE MODELS, HOMOGENEITY OF OPTION PRICES AND CONVEXITY M. S. JOSHI Abstract. It is shown that the properties of convexity of call prices with respect to spot price and homogeneity of call prices as
More informationConsider a European call option maturing at time T
Lecture 10: Multiperiod Model Options BlackScholesMerton model Prof. Markus K. Brunnermeier 1 Binomial Option Pricing Consider a European call option maturing at time T with ihstrike K: C T =max(s T
More informationThe interest volatility surface
The interest volatility surface David Kohlberg Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2011:7 Matematisk statistik Juni 2011 www.math.su.se Matematisk
More informationMoreover, under the risk neutral measure, it must be the case that (5) r t = µ t.
LECTURE 7: BLACK SCHOLES THEORY 1. Introduction: The Black Scholes Model In 1973 Fisher Black and Myron Scholes ushered in the modern era of derivative securities with a seminal paper 1 on the pricing
More informationSome Practical Issues in FX and Equity Derivatives
Some Practical Issues in FX and Equity Derivatives Phenomenology of the Volatility Surface The volatility matrix is the map of the implied volatilities quoted by the market for options of different strikes
More informationLecture 6: Option Pricing Using a Onestep Binomial Tree. Friday, September 14, 12
Lecture 6: Option Pricing Using a Onestep Binomial Tree An oversimplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond
More informationOpenGamma Quantitative Research Adjoint Algorithmic Differentiation: Calibration and Implicit Function Theorem
OpenGamma Quantitative Research Adjoint Algorithmic Differentiation: Calibration and Implicit Function Theorem Marc Henrard marc@opengamma.com OpenGamma Quantitative Research n. 1 November 2011 Abstract
More informationConvenient Conventions
C: call value. P : put value. X: strike price. S: stock price. D: dividend. Convenient Conventions c 2015 Prof. YuhDauh Lyuu, National Taiwan University Page 168 Payoff, Mathematically Speaking The payoff
More informationThe BlackScholes pricing formulas
The BlackScholes pricing formulas Moty Katzman September 19, 2014 The BlackScholes differential equation Aim: Find a formula for the price of European options on stock. Lemma 6.1: Assume that a stock
More informationProperties of the SABR model
U.U.D.M. Project Report 2011:11 Properties of the SABR model Nan Zhang Examensarbete i matematik, 30 hp Handledare och examinator: Johan Tysk Juni 2011 Department of Mathematics Uppsala University ABSTRACT
More informationMaster s Thesis. Pricing Constant Maturity Swap Derivatives
Master s Thesis Pricing Constant Maturity Swap Derivatives Thesis submitted in partial fulfilment of the requirements for the Master of Science degree in Stochastics and Financial Mathematics by Noemi
More informationOption Pricing. Chapter 12  Local volatility models  Stefan Ankirchner. University of Bonn. last update: 13th January 2014
Option Pricing Chapter 12  Local volatility models  Stefan Ankirchner University of Bonn last update: 13th January 2014 Stefan Ankirchner Option Pricing 1 Agenda The volatility surface Local volatility
More information第 9 讲 : 股 票 期 权 定 价 : BS 模 型 Valuing Stock Options: The BlackScholes Model
1 第 9 讲 : 股 票 期 权 定 价 : BS 模 型 Valuing Stock Options: The BlackScholes Model Outline 有 关 股 价 的 假 设 The BS Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American
More informationInstitutional Finance 08: Dynamic Arbitrage to Replicate Nonlinear Payoffs. Binomial Option Pricing: Basics (Chapter 10 of McDonald)
Copyright 2003 Pearson Education, Inc. Slide 081 Institutional Finance 08: Dynamic Arbitrage to Replicate Nonlinear Payoffs Binomial Option Pricing: Basics (Chapter 10 of McDonald) Originally prepared
More informationJungSoon Hyun and YoungHee Kim
J. Korean Math. Soc. 43 (2006), No. 4, pp. 845 858 TWO APPROACHES FOR STOCHASTIC INTEREST RATE OPTION MODEL JungSoon Hyun and YoungHee Kim Abstract. We present two approaches of the stochastic interest
More informationCall Price as a Function of the Stock Price
Call Price as a Function of the Stock Price Intuitively, the call price should be an increasing function of the stock price. This relationship allows one to develop a theory of option pricing, derived
More informationON DETERMINANTS AND SENSITIVITIES OF OPTION PRICES IN DELAYED BLACKSCHOLES MODEL
ON DETERMINANTS AND SENSITIVITIES OF OPTION PRICES IN DELAYED BLACKSCHOLES MODEL A. B. M. Shahadat Hossain, Sharif Mozumder ABSTRACT This paper investigates determinantwise effect of option prices when
More informationValuing Stock Options: The BlackScholesMerton Model. Chapter 13
Valuing Stock Options: The BlackScholesMerton Model Chapter 13 Fundamentals of Futures and Options Markets, 8th Ed, Ch 13, Copyright John C. Hull 2013 1 The BlackScholesMerton Random Walk Assumption
More informationFX Options and Smile Risk_. Antonio Castagna. )WILEY A John Wiley and Sons, Ltd., Publication
FX Options and Smile Risk_ Antonio Castagna )WILEY A John Wiley and Sons, Ltd., Publication Preface Notation and Acronyms IX xiii 1 The FX Market 1.1 FX rates and spot contracts 1.2 Outright and FX swap
More informationLecture Notes: Basic Concepts in Option Pricing  The Black and Scholes Model
Brunel University Msc., EC5504, Financial Engineering Prof Menelaos Karanasos Lecture Notes: Basic Concepts in Option Pricing  The Black and Scholes Model Recall that the price of an option is equal to
More information4: SINGLEPERIOD MARKET MODELS
4: SINGLEPERIOD MARKET MODELS Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2015 B. Goldys and M. Rutkowski (USydney) Slides 4: SinglePeriod Market
More informationPricing CMSSpread Options with QuantLib
Pricing CMSSpread Options with QuantLib Dr. André Miemiec QuantLib Workshop Düsseldorf, December 5, 2014 dfine All rights reserved 0 Whatwearegoingtodo? IRMarkets& CMS Spread Options Model & QuantLibImplementation
More informationARBITRAGEFREE OPTION PRICING MODELS. Denis Bell. University of North Florida
ARBITRAGEFREE OPTION PRICING MODELS Denis Bell University of North Florida Modelling Stock Prices Example American Express In mathematical finance, it is customary to model a stock price by an (Ito) stochatic
More informationLecture 4: The BlackScholes model
OPTIONS and FUTURES Lecture 4: The BlackScholes model Philip H. Dybvig Washington University in Saint Louis BlackScholes option pricing model Lognormal price process Call price Put price Using BlackScholes
More informationGuaranteed Annuity Options
Guaranteed Annuity Options Hansjörg Furrer Marketconsistent Actuarial Valuation ETH Zürich, Frühjahrssemester 2008 Guaranteed Annuity Options Contents A. Guaranteed Annuity Options B. Valuation and Risk
More informationThe BlackScholes Formula
FIN40008 FINANCIAL INSTRUMENTS SPRING 2008 The BlackScholes Formula These notes examine the BlackScholes formula for European options. The BlackScholes formula are complex as they are based on the
More informationK 1 < K 2 = P (K 1 ) P (K 2 ) (6) This holds for both American and European Options.
Slope and Convexity Restrictions and How to implement Arbitrage Opportunities 1 These notes will show how to implement arbitrage opportunities when either the slope or the convexity restriction is violated.
More informationMiscellaneous. Simone Freschi freschi.simone@gmail.com Tommaso Gabriellini tommaso.gabriellini@mpscs.it. Università di Siena
Miscellaneous Simone Freschi freschi.simone@gmail.com Tommaso Gabriellini tommaso.gabriellini@mpscs.it Head of Global MPS Capital Services SpA  MPS Group Università di Siena ini A.A. 20142015 1 / 1 A
More informationBINOMIAL OPTIONS PRICING MODEL. Mark Ioffe. Abstract
BINOMIAL OPTIONS PRICING MODEL Mark Ioffe Abstract Binomial option pricing model is a widespread numerical method of calculating price of American options. In terms of applied mathematics this is simple
More informationDIGITAL FOREX OPTIONS
DIGITAL FOREX OPTIONS OPENGAMMA QUANTITATIVE RESEARCH Abstract. Some pricing methods for forex digital options are described. The price in the GarhmanKohlhagen model is first described, more for completeness
More informationComputational Finance Options
1 Options 1 1 Options Computational Finance Options An option gives the holder of the option the right, but not the obligation to do something. Conversely, if you sell an option, you may be obliged to
More informationThe Binomial Option Pricing Model André Farber
1 Solvay Business School Université Libre de Bruxelles The Binomial Option Pricing Model André Farber January 2002 Consider a nondividend paying stock whose price is initially S 0. Divide time into small
More informationHedging Exotic Options
Kai Detlefsen Wolfgang Härdle Center for Applied Statistics and Economics HumboldtUniversität zu Berlin Germany introduction 11 Models The Black Scholes model has some shortcomings:  volatility is not
More informationUsing the SABR Model
Definitions Ameriprise Workshop 2012 Overview Definitions The Black76 model has been the standard model for European options on currency, interest rates, and stock indices with it s main drawback being
More informationLecture 1: Stochastic Volatility and Local Volatility
Lecture 1: Stochastic Volatility and Local Volatility Jim Gatheral, Merrill Lynch Case Studies in Financial Modelling Course Notes, Courant Institute of Mathematical Sciences, Fall Term, 2002 Abstract
More informationTHE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING
THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING 1. Introduction The BlackScholes theory, which is the main subject of this course and its sequel, is based on the Efficient Market Hypothesis, that arbitrages
More informationHedging Barriers. Liuren Wu. Zicklin School of Business, Baruch College (http://faculty.baruch.cuny.edu/lwu/)
Hedging Barriers Liuren Wu Zicklin School of Business, Baruch College (http://faculty.baruch.cuny.edu/lwu/) Based on joint work with Peter Carr (Bloomberg) Modeling and Hedging Using FX Options, March
More information24. Pricing Fixed Income Derivatives. through Black s Formula. MA6622, Ernesto Mordecki, CityU, HK, 2006. References for this Lecture:
24. Pricing Fixed Income Derivatives through Black s Formula MA6622, Ernesto Mordecki, CityU, HK, 2006. References for this Lecture: John C. Hull, Options, Futures & other Derivatives (Fourth Edition),
More informationChapter 1: Financial Markets and Financial Derivatives
Chapter 1: Financial Markets and Financial Derivatives 1.1 Financial Markets Financial markets are markets for financial instruments, in which buyers and sellers find each other and create or exchange
More informationCaput Derivatives: October 30, 2003
Caput Derivatives: October 30, 2003 Exam + Answers Total time: 2 hours and 30 minutes. Note 1: You are allowed to use books, course notes, and a calculator. Question 1. [20 points] Consider an investor
More informationThe real P&L in BlackScholes and Dupire Delta hedging
International Journal of Theoretical and Applied Finance c World Scientific Publishing Company The real P&L in BlackScholes and Dupire Delta hedging MARTIN FORDE University of Bristol, Department of Mathematics,
More informationEuropean Options Pricing Using Monte Carlo Simulation
European Options Pricing Using Monte Carlo Simulation Alexandros Kyrtsos Division of Materials Science and Engineering, Boston University akyrtsos@bu.edu European options can be priced using the analytical
More informationBootstrapping the interestrate term structure
Bootstrapping the interestrate term structure Marco Marchioro www.marchioro.org October 20 th, 2012 Bootstrapping the interestrate term structure 1 Summary (1/2) Market quotes of deposit rates, IR futures,
More informationThe Behavior of Bonds and Interest Rates. An Impossible Bond Pricing Model. 780 w Interest Rate Models
780 w Interest Rate Models The Behavior of Bonds and Interest Rates Before discussing how a bond marketmaker would deltahedge, we first need to specify how bonds behave. Suppose we try to model a zerocoupon
More informationChapter 13 The BlackScholesMerton Model
Chapter 13 The BlackScholesMerton Model March 3, 009 13.1. The BlackScholes option pricing model assumes that the probability distribution of the stock price in one year(or at any other future time)
More informationInterest Rate Volatility
Interest Rate Volatility I. Volatility in fixed income markets Andrew Lesniewski Baruch College and Posnania Inc First Baruch Volatility Workshop New York June 1618, 2015 Outline Linear interest rate
More informationFinite Differences Schemes for Pricing of European and American Options
Finite Differences Schemes for Pricing of European and American Options Margarida Mirador Fernandes IST Technical University of Lisbon Lisbon, Portugal November 009 Abstract Starting with the BlackScholes
More informationInformatica Universiteit van Amsterdam
Bachelor Informatica Informatica Universiteit van Amsterdam Evaluating the BlackScholes option pricing model using hedging simulations Wendy Günther De Nevelhorststraat 30, 1333ZH Almere, CKN : 6052088
More informationMULTIPLE DEFAULTS AND MERTON'S MODEL L. CATHCART, L. ELJAHEL
ISSN 17446783 MULTIPLE DEFAULTS AND MERTON'S MODEL L. CATHCART, L. ELJAHEL Tanaka Business School Discussion Papers: TBS/DP04/12 London: Tanaka Business School, 2004 Multiple Defaults and Merton s Model
More informationStocks paying discrete dividends: modelling and option pricing
Stocks paying discrete dividends: modelling and option pricing Ralf Korn 1 and L. C. G. Rogers 2 Abstract In the BlackScholes model, any dividends on stocks are paid continuously, but in reality dividends
More informationA short note on American option prices
A short note on American option Filip Lindskog April 27, 2012 1 The setup An American call option with strike price K written on some stock gives the holder the right to buy a share of the stock (exercise
More informationNoArbitrage Condition of Option Implied Volatility and Bandwidth Selection
KamlaRaj 2014 Anthropologist, 17(3): 751755 (2014) NoArbitrage Condition of Option Implied Volatility and Bandwidth Selection Milos Kopa 1 and Tomas Tichy 2 1 Institute of Information Theory and Automation
More informationτ θ What is the proper price at time t =0of this option?
Now by Itô s formula But Mu f and u g in Ū. Hence τ θ u(x) =E( Mu(X) ds + u(x(τ θ))) 0 τ θ u(x) E( f(x) ds + g(x(τ θ))) = J x (θ). 0 But since u(x) =J x (θ ), we consequently have u(x) =J x (θ ) = min
More informationOn BlackScholes Equation, Black Scholes Formula and Binary Option Price
On BlackScholes Equation, Black Scholes Formula and Binary Option Price Abstract: Chi Gao 12/15/2013 I. BlackScholes Equation is derived using two methods: (1) riskneutral measure; (2)  hedge. II.
More informationWe first solve for the present value of the cost per two barrels: (1.065) 2 = 41.033 (1.07) 3 = 55.341. x = 20.9519
Chapter 8 Swaps Question 8.1. We first solve for the present value of the cost per two barrels: $22 1.06 + $23 (1.065) 2 = 41.033. We then obtain the swap price per barrel by solving: which was to be shown.
More informationLECTURE 9: A MODEL FOR FOREIGN EXCHANGE
LECTURE 9: A MODEL FOR FOREIGN EXCHANGE 1. Foreign Exchange Contracts There was a time, not so long ago, when a U. S. dollar would buy you precisely.4 British pounds sterling 1, and a British pound sterling
More informationNumeraireinvariant option pricing
Numeraireinvariant option pricing Farshid Jamshidian NIB Capital Bank N.V. FELAB, University of Twente Nov04 Numeraireinvariant option pricing p.1/20 A conceptual definition of an option An Option can
More informationFIN40008 FINANCIAL INSTRUMENTS SPRING 2008
FIN40008 FINANCIAL INSTRUMENTS SPRING 2008 Options These notes consider the way put and call options and the underlying can be combined to create hedges, spreads and combinations. We will consider the
More informationMonte Carlo Methods in Finance
Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook October 2, 2012 Outline Introduction 1 Introduction
More informationMathematical Finance
Mathematical Finance Option Pricing under the RiskNeutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European
More informationValuation, Pricing of Options / Use of MATLAB
CS5 Computational Tools and Methods in Finance Tom Coleman Valuation, Pricing of Options / Use of MATLAB 1.0 PutCall Parity (review) Given a European option with no dividends, let t current time T exercise
More informationSession IX: Lecturer: Dr. Jose Olmo. Module: Economics of Financial Markets. MSc. Financial Economics
Session IX: Stock Options: Properties, Mechanics and Valuation Lecturer: Dr. Jose Olmo Module: Economics of Financial Markets MSc. Financial Economics Department of Economics, City University, London Stock
More informationOn the Valuation of PowerReverse Duals and EquityRates Hybrids
On the Valuation of PowerReverse Duals and EquityRates Hybrids Oliver Caps oliver.caps@dkib.com RMT Model Validation Rates Dresdner Bank Examples of Hybrid Products Pricing of Hybrid Products using a
More informationPricing Dual Spread Options by the LieTrotter Operator Splitting Method
Pricing Dual Spread Options by the LieTrotter Operator Splitting Method C.F. Lo Abstract In this paper, based upon the Lie Trotter operator splitting method proposed by Lo 04, we present a simple closedform
More informationThe TwoFactor HullWhite Model : Pricing and Calibration of Interest Rates Derivatives
The TwoFactor HullWhite Model : Pricing and Calibration of Interest Rates Derivatives Arnaud Blanchard Under the supervision of Filip Lindskog 2 Abstract In this paper, we study interest rate models
More informationFTS Real Time System Project: Using Options to Manage Price Risk
FTS Real Time System Project: Using Options to Manage Price Risk Question: How can you manage price risk using options? Introduction The option Greeks provide measures of sensitivity to price and volatility
More informationINTEREST RATES AND FX MODELS
INTEREST RATES AND FX MODELS 8. Portfolio greeks Andrew Lesniewski Courant Institute of Mathematical Sciences New York University New York March 27, 2013 2 Interest Rates & FX Models Contents 1 Introduction
More informationValuation of the Minimum Guaranteed Return Embedded in Life Insurance Products
Financial Institutions Center Valuation of the Minimum Guaranteed Return Embedded in Life Insurance Products by Knut K. Aase SveinArne Persson 9620 THE WHARTON FINANCIAL INSTITUTIONS CENTER The Wharton
More informationOption pricing. Vinod Kothari
Option pricing Vinod Kothari Notation we use this Chapter will be as follows: S o : Price of the share at time 0 S T : Price of the share at time T T : time to maturity of the option r : risk free rate
More informationSimple formulas to option pricing and hedging in the Black Scholes model
Simple formulas to option pricing and hedging in the Black Scholes model Paolo Pianca Department of Applied Mathematics University Ca Foscari of Venice Dorsoduro 385/E, 3013 Venice, Italy pianca@unive.it
More informationOption Valuation. Chapter 21
Option Valuation Chapter 21 Intrinsic and Time Value intrinsic value of inthemoney options = the payoff that could be obtained from the immediate exercise of the option for a call option: stock price
More informationThe Irony In The Derivatives Discounting
The Irony In The Derivatives Discounting Marc Henrard Head of Quantitative Research, Banking Department, Bank for International Settlements, CH4002 Basel (Switzerland), email: Marc.Henrard@bis.org Abstract
More informationExample 1. Consider the following two portfolios: 2. Buy one c(s(t), 20, τ, r) and sell one c(s(t), 10, τ, r).
Chapter 4 PutCall Parity 1 Bull and Bear Financial analysts use words such as bull and bear to describe the trend in stock markets. Generally speaking, a bull market is characterized by rising prices.
More informationAn exact formula for default swaptions pricing in the SSRJD stochastic intensity model
An exact formula for default swaptions pricing in the SSRJD stochastic intensity model Naoufel ElBachir (joint work with D. Brigo, Banca IMI) Radon Institute, Linz May 31, 2007 ICMA Centre, University
More informationF3 Excel Edition Release Notes
F3 Excel Edition Release Notes F3 Excel Edition Release Notes Software Version: 4.3 Release Date: July 2014 Document Revision Number: A Disclaimer FINCAD makes no warranty either express or implied, including,
More informationThe Implied Volatility Surfaces
The Implied Volatility Surfaces August 13, 2007 1 Introduction The volatility surface, or matrix (we will use without any distinction the two terms), is the map of the implied volatilities quoted by the
More informationASimpleMarketModel. 2.1 Model Assumptions. Assumption 2.1 (Two trading dates)
2 ASimpleMarketModel In the simplest possible market model there are two assets (one stock and one bond), one time step and just two possible future scenarios. Many of the basic ideas of mathematical finance
More informationOption Pricing. Chapter 4 Including dividends in the BS model. Stefan Ankirchner. University of Bonn. last update: 6th November 2013
Option Pricing Chapter 4 Including dividends in the BS model Stefan Ankirchner University of Bonn last update: 6th November 2013 Stefan Ankirchner Option Pricing 1 Dividend payments So far: we assumed
More informationLisa Borland. A multitimescale statistical feedback model of volatility: Stylized facts and implications for option pricing
EvnineVaughan Associates, Inc. A multitimescale statistical feedback model of volatility: Stylized facts and implications for option pricing Lisa Borland October, 2005 Acknowledgements: Jeremy Evnine
More informationOptions Trading Strategies
Options Trading Strategies Liuren Wu Zicklin School of Business, Baruch College Options Markets (Hull chapter: ) Liuren Wu (Baruch) Options Trading Strategies Options Markets 1 / 18 Objectives A strategy
More information