Detrending Moving Average Algorithm: from finance to genom. materials
|
|
|
- Milo Long
- 10 years ago
- Views:
Transcription
1 Detrending Moving Average Algorithm: from finance to genomics and disordered materials Anna Carbone Physics Department Politecnico di Torino September 27, 2009
2 Publications 1. Second-order moving average and scaling of long-range correlated series E. Alessio, A. Carbone, G. Castelli, and V. Frappietro, Eur. Phys. Jour. B 27, 197 (2002). 2. Scaling of long-range correlated noisy signals: application to financial markets A. Carbone and G. Castelli, Proc. of SPIE, 407, 5114 (2003). 3. Analysis of the clusters formed by the moving average of a long-range correlated stochastic series A. Carbone, G. Castelli and H. E. Stanley, Phys. Rev. E 69, (2004). 4. Time-Dependent Hurst Exponent in Financial Time Series A. Carbone, G. Castelli and H. E. Stanley, Physica A 344, 267 (2004). 5. Directed self-organized critical patterns emerging from fractional Brownian paths A. Carbone and H. E. Stanley, Physica A 340, 544 (2004). 6. Spatio-temporal complexity in the clusters generated by fractional Brownian paths A. Carbone and H.E. Stanley, Proc. of SPIE 5471, 1 (2004). 7. Quantifying signals with power-law correlations L. Xu, P. Ch. Ivanov, C. Zhi, K. Hu, A. Carbone, H. E. Stanley, Phys. Rev. E 71, (2005). 8. Scaling properties and entropy of long range correlated series A. Carbone and H.E. Stanley, Physica A 384, 21 (2007). 9. Tails and Ties A. Carbone, G. Kaniadakis, and A.M. Scarfone, Eur. Phys. J. B 57, (2007). 10. Where do we stand on econophysics? A. Carbone, G. Kaniadakis and A.M. Scarfone, Physica A 382, xi-xiv (2007). 11. Detrending Moving Average (DMA) Algorithm: a closed form approximation of the scaling law S. Arianos and A. Carbone, Physica A 382, 9 (2007). 12. Algorithm to estimate the Hurst exponent of high-dimensional fractals A. Carbone, Phys. Rev. E 76, (2007). 13. Cross-correlation of long-range correlated series S. Arianos and A. Carbone, J. Stat. Mech: Theory and Experiment P03037, (2009).
3 The Efficient Market Hypothesis...and Its Critics A Random Walk Down Wall Street First edition published in the 70 s by Burton Malkiel on the wave of the academic success of the influential survey on the Efficient Market Hypothesis (EMH) by Eugene Fama (1970). A Non-Random Walk Down Wall Street First edition published in 1999 by Andrew Lo and Craig MacKinley
4 A Moving Average Walk... Down Wall Street
5 Surveys on the use of Technical Analysis by Finance Professionals Horizons min % max% intraday 50% 100% 1 week 50% 80% 1 month 40% 70% 3 months 30% 50% 6 months 20% 30% 1 year 2% 25% 1 Charts, Noise and Fundamentals in the London Foreign Exchange Market. H.L. Allen and M.P. Taylor, The Economic Journal, 100, (1990) 2 Technical trading rule profitability and foreign exchange intervention, B. LeBaron, Journal of International Economics 49, 125 (1999) 3 The Obstinate Passion of foreign Exchange Professional: Technical Analysis. Lukas Menkhoff and Mark P. Taylor, Journal of Economic Literature 45, 4 (2007)
6 Fractional Brownian or Levy Walk H > 0.5 positive correlation (persistence) H = 0.5 Random walk H < 0.5 negative correlation (anti-persistence)
7 Detrending Moving Average Algorithm (DMA) 20 ~ y n (i) σ 2 DMA = 1 N N i=n [ ] 2 y(i) ỹ n (i) \L y(i) FOXVWHU ỹ n (i) = 1 n n y(i k) k=0 σ 2 DMA n2h i c (j) L i c (j+1) τ j =i c (j+1)-i c (j) 2680
8 Detrending Moving Average Algorithm (DMA) σ 2 DMA n2h The log-log plot is a straight-line whose slope can be used to calculate the Hurst exponent H of the time series.
9 Detrending Moving Average Algorithm (DMA) Self-similarity of a time series x(t) σdma 2 is generalized variance for nonstationary signals. It can be derived from the auto-correlation function C xx (t, τ), which measures the self-similarity of a signal: σ xx (t, τ) [x(t) x(t)][x (t + τ) x (t + τ)] By taking τ = 0 and x = x(t), x n (i) = 1 n n k=0 x(i k) the autocovariance C xx (t, τ) reduces to the function σdma S. Arianos and A. Carbone Physica A 382, 9 (2007)
10 DAX (Deutscher AktienindeX) Prices (a) P(t) Log Returns (b) r(t) = lnp(t + t ) lnp(t) Volatility σ T (t) 2 = 1 T T 1 t=1 [r(t) r(t) T ] 2 (c) with T = 300min (one half trading day) (d) with T = 660min (one trading day)
11 FIB30 futures: PRICES The FIB30 is a future contract on the MIB30 index, which considers the thirty firms with higher capitalization and trading (the top 30 blue-chip index) of the MIBTEL ( (Since 2004 it is named S&P MIB index).
12 FIB30 futures: VOLATILITIES T=660min (1 trading day) T=6600min (10 trading days) σ DMA Fract. Brown. Motion H= n
13 Cross-Similarity of two stochastic series x(t) and y(t) In many cases, the coupling between two systems (time series) might be of interest. A measure of cross-correlation can be implemented 5 by defining: σ xy (t, τ) [x(t) x(t)][y (t + τ) ỹ (t + τ)] Now it must be τ 0. Moreover x = x(t) and y = y(t) x n (i) = 1 n n k=0 x(i k) and ỹ n(i) = 1 n n k=0 y(i k). 5 S. Arianos and A.Carbone, J. Stat. Mech.: Theory and Experiment P03037, (2009).
14 Cross-Similarity of return and volatility σ 2 DMA nh 1+H 2 The log-log plot is a straight-line. The slope is given by the sum of the Hurst exponents H 1 and H 2 of the two time series. 6 6 S. Arianos and A.Carbone, J. Stat. Mech: Theory and Experiment P03037, (2009).
15 Leverage effect: DAX DMA Cross-correlation as a function of the lag τ for the return and volatility of the DAX series. 7 7 S. Arianos and A.Carbone, J. Stat. Mech: Theory and Experiment P03037, (2009).
16 Scaling law of the moving average clusters 8 9 n=200 n=600 y(t) y(t) n=1000 area n=2000 t duration t Anna Carbone 8 A.Carbone, Physics Department G.Castelli Politecnico anddih.e. TorinoStanley, Detrending Phys. Moving Rev. Average E, 69, Algorithm: from (2004) finance to genom
17 Scaling law of the cluster lengths l 10 5 (a) (a) l 10 2 ψ l H τ H l τ ψ l ψ l = 1
18 Scaling law of the cluster areas s (b) 1.9 (b) s ψ s H H τ H s τ ψs ψ s = 1 + H
19 Scaling law of the pdf of the cluster length and duration H= β=2-h ) P(τ) 10-3 β x x10-5 (a) τ (a) H P(τ, n) τ β F (τ, n) with β = 2 H the fractal dimension of the time series and F (τ, n) defined as: F(τ, n) = e τ/τ.
20 Scaling law of the pdf of the cluster area γ=2/(1+h) P(s) (b) H=0.80 H=0.20 H= s γγγ (b) H with γ = 2/(1 + H) and: P(s, n) s γ F (s, n) F(s, n) = e s/s.
21 Self-organized criticality of the moving average clusters t addition of particles/energy y j t y addition of particles/energy Brownian path fractional Brownian path j+1 Brownian path cluster lifetime j+2 smoothed fractional Brownian path cluster diameter l dissipation of particles/energies dissipation of particles/energy Moving Average Clusters SOC Clusters l τ ψ l ψ l = 1 ψ l = 1 s τ ψ s ψ s = 1 + H ψ s = 3/2 P(l, n) l α α = 2 H α = 3/2 P(τ, n) τ β β = 2 H β = 3/2 P(s, n) s γ γ = 2/(1 + H) γ = 4/3
22 Entropy of long-range correlated time series 10 1 l n n=500 A n=1000 n=2000 n=3000 S(l,n) A' A'' D log l n= l S(l, n) µ(l,n) P(l, n) log P(l, n). S(l, n) = S 0 + D log l + l n. 10 A. Carbone and H.E. Stanley Physica A 385, 21 (2007)
23 Genome Heterogeneity G A T C C T T G A A G C G C C C C C A A G G G C A T C T T C T 1. The sequence of the nucleotide bases ATGC is mapped to a numeric sequence. 2. If the base is a purine (A,G) is mapped to +1, otherwise if the base is a pyrimidine (C,T) is mapped to The sequence of +1 and 1 steps is summed and a random walk y(x) is obtained.
24 Genome Heterogeneity % A, C, G, T % A, C, G, T % A, C, G, T 50 CHR1 40 n=2 A 30 T 20 C 10 G CHR1 n=4 40 A 30 T 20 C 10 G CHR1 40 n=10 A 30 T 20 C 10 G length (bp)
25 Genome Heterogeneity % A, C, G, T % A, C, G, T % A, C, G, T 50 CHR14 A 40 n=2 T C 0 G CHR14 n=4 A T C 0 G CHR14 40 A n=10 T C G length (bp)
26 DMA for high-dimensional fractals (e.g. selfsimilar networks, rough surfaces) 11 Fractal surfaces 0.5 f(i 1,i 2 ) H= f(i 1,i 2 ) H= (b) i i (a) i i A. Carbone Phys. Rev. E 76, (2007)
27 DMA for high-dimensional fractals (e.g. selfsimilar networks, rough surfaces) 12 Moving Average Surface for the fractal surface with H = ~ f(i 1,i 2 ) n 1 x n 2 =15 x ~ f(i 1,i 2 ) n 1 x n 2 = 25 x (a) i i (b) i i A. Carbone Phys. Rev. E 76, (2007)
28 DMA for high-dimensional fractals (e.g. selfsimilar networks, rough surfaces) 13 DMA (c) N 1 x N 2 =4096 x s The plot of σ 2 DMA vs. S = (n n2 2 ) is a straight line. It corresponds to the scaling relation: i.e.: σ 2 DMA [ (n n2 2 ) ] 2H σ 2 DMA S2H 13 A. Carbone Phys. Rev. E 76, (2007)
29 THANK YOU!
How To Calculate A Non Random Walk Down Wall Street
Detrending Moving Average Algorithm: a Non-Random Walk down financial series, genomes, disordered materials... Anna Carbone Politecnico di Torino www.polito.it/noiselab September 13, 2013 The Efficient
Hurst exponents, power laws, and efficiency in the Brazilian foreign exchange market
Hurst exponents, power laws, and efficiency in the Brazilian foreign exchange market Sergio Da Silva 1, Raul Matsushita 2, Iram Gleria 3, Annibal Figueiredo 4 1 Department of Economics, Federal University
Trading activity as driven Poisson process: comparison with empirical data
Trading activity as driven Poisson process: comparison with empirical data V. Gontis, B. Kaulakys, J. Ruseckas Institute of Theoretical Physics and Astronomy of Vilnius University, A. Goštauto 2, LT-008
MARKETS, INFORMATION AND THEIR FRACTAL ANALYSIS. Mária Bohdalová and Michal Greguš Comenius University, Faculty of Management Slovak republic
MARKETS, INFORMATION AND THEIR FRACTAL ANALYSIS Mária Bohdalová and Michal Greguš Comenius University, Faculty of Management Slovak republic Abstract: We will summarize the impact of the conflict between
Stock price fluctuations and the mimetic behaviors of traders
Physica A 382 (2007) 172 178 www.elsevier.com/locate/physa Stock price fluctuations and the mimetic behaviors of traders Jun-ichi Maskawa Department of Management Information, Fukuyama Heisei University,
arxiv:physics/0607202v2 [physics.comp-ph] 9 Nov 2006
Stock price fluctuations and the mimetic behaviors of traders Jun-ichi Maskawa Department of Management Information, Fukuyama Heisei University, Fukuyama, Hiroshima 720-0001, Japan (Dated: February 2,
PhDr. Ladislav KRIŠTOUFEK, Ph.D.: Seznam publikací
PhDr. Ladislav KRIŠTOUFEK, Ph.D.: Seznam publikací A) Vědecké monografie B) Kapitoly v monografiích [1] KRIŠTOUFEK, L., 2010. Efficiency, persistence and predictability of Central European Stock Markets
NONLINEAR TIME SERIES ANALYSIS
NONLINEAR TIME SERIES ANALYSIS HOLGER KANTZ AND THOMAS SCHREIBER Max Planck Institute for the Physics of Complex Sy stems, Dresden I CAMBRIDGE UNIVERSITY PRESS Preface to the first edition pug e xi Preface
Measurable inhomogeneities in stock trading volume flow
August 2008 EPL, 83 (2008) 30003 doi: 10.1209/0295-5075/83/30003 www.epljournal.org Measurable inhomogeneities in stock trading volume flow A. A. G. Cortines, R. Riera and C. Anteneodo (a) Departamento
Computing the Fractal Dimension of Stock Market Indices
Computing the Fractal Dimension of Stock Market Indices Melina Kompella, COSMOS 2014 Chaos is an ancient idea that only recently was developed into a field of mathematics. Before the development of scientific
PITFALLS IN TIME SERIES ANALYSIS. Cliff Hurvich Stern School, NYU
PITFALLS IN TIME SERIES ANALYSIS Cliff Hurvich Stern School, NYU The t -Test If x 1,..., x n are independent and identically distributed with mean 0, and n is not too small, then t = x 0 s n has a standard
A Statistical Model of the Sleep-Wake Dynamics of the Cardiac Rhythm
A Statistical Model of the Sleep-Wake Dynamics of the Cardiac Rhythm PE McSharry 1,2, GD Clifford 1 1 Department of Engineering Science, University of Oxford, Oxford, UK 2 Mathematical Institute, University
Financial Market Efficiency and Its Implications
Financial Market Efficiency: The Efficient Market Hypothesis (EMH) Financial Market Efficiency and Its Implications Financial markets are efficient if current asset prices fully reflect all currently available
Quantitative Analysis of Foreign Exchange Rates
Quantitative Analysis of Foreign Exchange Rates Alexander Becker, Ching-Hao Wang Boston University, Department of Physics (Dated: today) In our class project we have explored foreign exchange data. We
Tutorial on Markov Chain Monte Carlo
Tutorial on Markov Chain Monte Carlo Kenneth M. Hanson Los Alamos National Laboratory Presented at the 29 th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Technology,
Measuring Line Edge Roughness: Fluctuations in Uncertainty
Tutor6.doc: Version 5/6/08 T h e L i t h o g r a p h y E x p e r t (August 008) Measuring Line Edge Roughness: Fluctuations in Uncertainty Line edge roughness () is the deviation of a feature edge (as
Univariate and Multivariate Methods PEARSON. Addison Wesley
Time Series Analysis Univariate and Multivariate Methods SECOND EDITION William W. S. Wei Department of Statistics The Fox School of Business and Management Temple University PEARSON Addison Wesley Boston
An Evaluation of Irregularities of Milled Surfaces by the Wavelet Analysis
An Evaluation of Irregularities of Milled Surfaces by the Wavelet Analysis Włodzimierz Makieła Abstract This paper presents an introductory to wavelet analysis and its application in assessing the surface
CROSS-CORRELATION BETWEEN STOCK PRICES IN FINANCIAL MARKETS. 1. Introduction
CROSS-CORRELATION BETWEEN STOCK PRICES IN FINANCIAL MARKETS R. N. MANTEGNA Istituto Nazionale per la Fisica della Materia, Unità di Palermo and Dipartimento di Energetica ed Applicazioni di Fisica, Università
4. Simple regression. QBUS6840 Predictive Analytics. https://www.otexts.org/fpp/4
4. Simple regression QBUS6840 Predictive Analytics https://www.otexts.org/fpp/4 Outline The simple linear model Least squares estimation Forecasting with regression Non-linear functional forms Regression
DECENTRALIZED SCALE-FREE NETWORK CONSTRUCTION AND LOAD BALANCING IN MASSIVE MULTIUSER VIRTUAL ENVIRONMENTS
DECENTRALIZED SCALE-FREE NETWORK CONSTRUCTION AND LOAD BALANCING IN MASSIVE MULTIUSER VIRTUAL ENVIRONMENTS Markus Esch, Eric Tobias - University of Luxembourg MOTIVATION HyperVerse project Massive Multiuser
SAIF-2011 Report. Rami Reddy, SOA, UW_P
1) Title: Market Efficiency Test of Lean Hog Futures prices using Inter-Day Technical Trading Rules 2) Abstract: We investigated the effectiveness of most popular technical trading rules on the closing
Greed, fear and stock market dynamics
Physica A 343 (2004) 635 642 www.elsevier.com/locate/physa Greed, fear and stock market dynamics Frank H. Westerhoff Department of Economics, University of Osnabrueck, Rolandstrasse 8, 49069 Osnabrueck,
Lisa Borland. A multi-timescale statistical feedback model of volatility: Stylized facts and implications for option pricing
Evnine-Vaughan Associates, Inc. A multi-timescale statistical feedback model of volatility: Stylized facts and implications for option pricing Lisa Borland October, 2005 Acknowledgements: Jeremy Evnine
Dynamics ofprice and trading volume in a spin model ofstock markets with heterogeneous agents
Physica A 316 (2002) 441 452 www.elsevier.com/locate/physa Dynamics ofprice and trading volume in a spin model ofstock markets with heterogeneous agents Taisei Kaizoji a;, Stefan Bornholdt b, Yoshi Fujiwara
Stock Price Forecasting Using Information from Yahoo Finance and Google Trend
Stock Price Forecasting Using Information from Yahoo Finance and Google Trend Selene Yue Xu (UC Berkeley) Abstract: Stock price forecasting is a popular and important topic in financial and academic studies.
12: Analysis of Variance. Introduction
1: Analysis of Variance Introduction EDA Hypothesis Test Introduction In Chapter 8 and again in Chapter 11 we compared means from two independent groups. In this chapter we extend the procedure to consider
2. What is the general linear model to be used to model linear trend? (Write out the model) = + + + or
Simple and Multiple Regression Analysis Example: Explore the relationships among Month, Adv.$ and Sales $: 1. Prepare a scatter plot of these data. The scatter plots for Adv.$ versus Sales, and Month versus
Hurst analysis of electricity price dynamics
Physica A 283 (2000) 462 468 www.elsevier.com/locate/physa Hurst analysis of electricity price dynamics Rafal Weron ; 1, Beata Przyby lowicz Hugo Steinhaus Center for Stochastic Methods, Wroc law University
Master of Mathematical Finance: Course Descriptions
Master of Mathematical Finance: Course Descriptions CS 522 Data Mining Computer Science This course provides continued exploration of data mining algorithms. More sophisticated algorithms such as support
Introduction to Probability
Introduction to Probability EE 179, Lecture 15, Handout #24 Probability theory gives a mathematical characterization for experiments with random outcomes. coin toss life of lightbulb binary data sequence
Chapter 9: Univariate Time Series Analysis
Chapter 9: Univariate Time Series Analysis In the last chapter we discussed models with only lags of explanatory variables. These can be misleading if: 1. The dependent variable Y t depends on lags of
Online Appendix for Demand for Crash Insurance, Intermediary Constraints, and Risk Premia in Financial Markets
Online Appendix for Demand for Crash Insurance, Intermediary Constraints, and Risk Premia in Financial Markets Hui Chen Scott Joslin Sophie Ni August 3, 2015 1 An Extension of the Dynamic Model Our model
Algorithmic Trading Session 6 Trade Signal Generation IV Momentum Strategies. Oliver Steinki, CFA, FRM
Algorithmic Trading Session 6 Trade Signal Generation IV Momentum Strategies Oliver Steinki, CFA, FRM Outline Introduction What is Momentum? Tests to Discover Momentum Interday Momentum Strategies Intraday
Statistical properties of trading activity in Chinese Stock Market
Physics Procedia 3 (2010) 1699 1706 Physics Procedia 00 (2010) 1 8 Physics Procedia www.elsevier.com/locate/procedia Statistical properties of trading activity in Chinese Stock Market Xiaoqian Sun a, Xueqi
Characterizing Digital Cameras with the Photon Transfer Curve
Characterizing Digital Cameras with the Photon Transfer Curve By: David Gardner Summit Imaging (All rights reserved) Introduction Purchasing a camera for high performance imaging applications is frequently
CONNECTING LESSONS NGSS STANDARD
CONNECTING LESSONS TO NGSS STANDARDS 1 This chart provides an overview of the NGSS Standards that can be met by, or extended to meet, specific STEAM Student Set challenges. Information on how to fulfill
Currency Trading Using the Fractal Market Hypothesis
Currency Trading Using the Fractal Market Hypothesis Jonathan Blackledge and Kieran Murphy Dublin Institute of Technology Ireland 7 1. Introduction We report on a research and development programme in
Intraday Trading Invariance. E-Mini S&P 500 Futures Market
in the E-Mini S&P 500 Futures Market University of Illinois at Chicago Joint with Torben G. Andersen, Pete Kyle, and Anna Obizhaeva R/Finance 2015 Conference University of Illinois at Chicago May 29-30,
Internet Traffic Variability (Long Range Dependency Effects) Dheeraj Reddy CS8803 Fall 2003
Internet Traffic Variability (Long Range Dependency Effects) Dheeraj Reddy CS8803 Fall 2003 Self-similarity and its evolution in Computer Network Measurements Prior models used Poisson-like models Origins
Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic.
WDS'09 Proceedings of Contributed Papers, Part I, 148 153, 2009. ISBN 978-80-7378-101-9 MATFYZPRESS Volatility Modelling L. Jarešová Charles University, Faculty of Mathematics and Physics, Prague, Czech
The Power (Law) of Indian Markets: Analysing NSE and BSE Trading Statistics
The Power (Law) of Indian Markets: Analysing NSE and BSE Trading Statistics Sitabhra Sinha and Raj Kumar Pan The Institute of Mathematical Sciences, C. I. T. Campus, Taramani, Chennai - 6 113, India. [email protected]
Information Theory and Stock Market
Information Theory and Stock Market Pongsit Twichpongtorn University of Illinois at Chicago E-mail: [email protected] 1 Abstract This is a short survey paper that talks about the development of important
ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino
ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Probabilistic Fundamentals in Robotics Robot Motion Probabilistic models of mobile robots Robot motion Kinematics Velocity motion model Odometry
HU CZ FI PL SI PT IT ES NO NL FR DK SE IE GB AT DE CH LU 0 10 20 30 40 Foreigners' share Source: Eurostat More trust 3 4 5 6 7 PL HU CZ SI PT GR ES DK FI SE
arxiv:1309.1492v1 [q-fin.st] 5 Sep 2013
Commodity futures and market efficiency Ladislav Kristoufek a,b, Miloslav Vosvrda a,b a Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Pod Vodarenskou Vezi 4,
Exercise 1.12 (Pg. 22-23)
Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.
CONTENTS. List of Figures List of Tables. List of Abbreviations
List of Figures List of Tables Preface List of Abbreviations xiv xvi xviii xx 1 Introduction to Value at Risk (VaR) 1 1.1 Economics underlying VaR measurement 2 1.1.1 What is VaR? 4 1.1.2 Calculating VaR
Scale-free user-network approach to telephone network traffic analysis
Scale-free user-network approach to telephone network traffic analysis Yongxiang Xia,* Chi K. Tse, WaiM.Tam, Francis C. M. Lau, and Michael Small Department of Electronic and Information Engineering, Hong
1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
Introduction to Time Series Analysis. Lecture 1.
Introduction to Time Series Analysis. Lecture 1. Peter Bartlett 1. Organizational issues. 2. Objectives of time series analysis. Examples. 3. Overview of the course. 4. Time series models. 5. Time series
Are the crude oil markets becoming weakly efficient over time? A test for time-varying long-range dependence in prices and volatility
Energy Economics 29 (2007) 28 36 www.elsevier.com/locate/eneco Are the crude oil markets becoming weakly efficient over time? A test for time-varying long-range dependence in prices and volatility Benjamin
2. Simple Linear Regression
Research methods - II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according
DNA Insertions and Deletions in the Human Genome. Philipp W. Messer
DNA Insertions and Deletions in the Human Genome Philipp W. Messer Genetic Variation CGACAATAGCGCTCTTACTACGTGTATCG : : CGACAATGGCGCT---ACTACGTGCATCG 1. Nucleotide mutations 2. Genomic rearrangements 3.
Quant DSL Language Guide
Quant DSL Language Guide Appropriate Software Foundation June 24, 2011 Contents 1 Synthesis 2 2 Syntax 3 2.1 Expressions............................ 3 2.2 Markets and Dates........................ 3 2.3
Stock Price Dynamics, Dividends and Option Prices with Volatility Feedback
Stock Price Dynamics, Dividends and Option Prices with Volatility Feedback Juho Kanniainen Tampere University of Technology New Thinking in Finance 12 Feb. 2014, London Based on J. Kanniainen and R. Piche,
Pattern Recognition and Prediction in Equity Market
Pattern Recognition and Prediction in Equity Market Lang Lang, Kai Wang 1. Introduction In finance, technical analysis is a security analysis discipline used for forecasting the direction of prices through
Real Business Cycle Models
Real Business Cycle Models Lecture 2 Nicola Viegi April 2015 Basic RBC Model Claim: Stochastic General Equlibrium Model Is Enough to Explain The Business cycle Behaviour of the Economy Money is of little
The Greatest Common Factor; Factoring by Grouping
296 CHAPTER 5 Factoring and Applications 5.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.
Chapter 4: Vector Autoregressive Models
Chapter 4: Vector Autoregressive Models 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie IV.1 Vector Autoregressive Models (VAR)...
Introduction to Learning & Decision Trees
Artificial Intelligence: Representation and Problem Solving 5-38 April 0, 2007 Introduction to Learning & Decision Trees Learning and Decision Trees to learning What is learning? - more than just memorizing
p(x,t) = 1 t δ F ( x t δ ),
15 July 2002 Physics Letters A 299 (2002) 565 570 www.elsevier.com/locate/pla Lévy statistics in coding and non-coding nucleotide sequences Nicola Scafetta a,b,, Vito Latora c, Paolo Grigolini b,d,e a
