Introduction to Time Series Analysis. Lecture 1.


 Justina Bryant
 3 years ago
 Views:
Transcription
1 Introduction to Time Series Analysis. Lecture 1. Peter Bartlett 1. Organizational issues. 2. Objectives of time series analysis. Examples. 3. Overview of the course. 4. Time series models. 5. Time series modelling: Chasing stationarity. 1
2 Organizational Issues Peter Bartlett. Office hours: Tue 1112, Thu (Evans 399). Joe Neeman. Office hours: Wed 1:30 2:30, Fri 23 (Evans???). bartlett/courses/153fall2010/ Check it for announcements, assignments, slides,... Text: Time Series Analysis and its Applications. With R Examples, Shumway and Stoffer. 2nd Edition
3 Organizational Issues Classroom and Computer Lab Section: Friday 9 11, in 344 Evans. Starting tomorrow, August 27: Sign up for computer accounts. Introduction to R. Assessment: Lab/Homework Assignments (25%): posted on the website. These involve a mix of penandpaper and computer exercises. You may use any programming language you choose (R, Splus, Matlab, python). Midterm Exams (30%): scheduled for October 7 and November 9, at the lecture. Project (10%): Analysis of a data set that you choose. Final Exam (35%): scheduled for Friday, December 17. 3
4 A Time Series
5 A Time Series year 5
6 A Time Series $ year 6
7 A Time Series 400 SP500: $ year 7
8 A Time Series 340 SP500: Jan Jun $ year 8
9 A Time Series 30 SP500 Jan Jun Histogram $ 9
10 A Time Series 340 SP500: Jan Jun Permuted $
11 Objectives of Time Series Analysis 1. Compact description of data. 2. Interpretation. 3. Forecasting. 4. Control. 5. Hypothesis testing. 6. Simulation. 11
12 Classical decomposition: An example Monthly sales for a souvenir shop at a beach resort town in Queensland. (Makridakis, Wheelwright and Hyndman, 1998) 12 x
13 Transformed data
14 Trend
15 Residuals
16 Trend and seasonal variation
17 Objectives of Time Series Analysis 1. Compact description of data. Example: Classical decomposition: X t = T t + S t + Y t. 2. Interpretation. Example: Seasonal adjustment. 3. Forecasting. Example: Predict sales. 4. Control. 5. Hypothesis testing. 6. Simulation. 17
18 Unemployment data Monthly number of unemployed people in Australia. (Hipel and McLeod, 1994) 8 x
19 Trend 8 x
20 Trend plus seasonal variation 8 x
21 Residuals 8 x
22 Predictions based on a (simulated) variable 8 x
23 Objectives of Time Series Analysis 1. Compact description of data: X t = T t + S t + f(y t ) + W t. 2. Interpretation. Example: Seasonal adjustment. 3. Forecasting. Example: Predict unemployment. 4. Control. Example: Impact of monetary policy on unemployment. 5. Hypothesis testing. Example: Global warming. 6. Simulation. Example: Estimate probability of catastrophic events. 23
24 Overview of the Course 1. Time series models 2. Time domain methods 3. Spectral analysis 4. State space models(?) 24
25 Overview of the Course 1. Time series models (a) Stationarity. (b) Autocorrelation function. (c) Transforming to stationarity. 2. Time domain methods 3. Spectral analysis 4. State space models(?) 25
26 Overview of the Course 1. Time series models 2. Time domain methods (a) AR/MA/ARMA models. (b) ACF and partial autocorrelation function. (c) Forecasting (d) Parameter estimation (e) ARIMA models/seasonal ARIMA models 3. Spectral analysis 4. State space models(?) 26
27 Overview of the Course 1. Time series models 2. Time domain methods 3. Spectral analysis (a) Spectral density (b) Periodogram (c) Spectral estimation 4. State space models(?) 27
28 Overview of the Course 1. Time series models 2. Time domain methods 3. Spectral analysis 4. State space models(?) (a) ARMAX models. (b) Forecasting, Kalman filter. (c) Parameter estimation. 28
29 Time Series Models A time series model specifies the joint distribution of the sequence {X t } of random variables. For example: P[X 1 x 1,...,X t x t ] for all t and x 1,...,x t. Notation: X 1, X 2,... is a stochastic process. x 1, x 2,... is a single realization. We ll mostly restrict our attention to secondorder properties only: EX t, E(X t1, X t2 ). 29
30 Time Series Models Example: White noise: X t WN(0, σ 2 ). i.e., {X t } uncorrelated, EX t = 0, VarX t = σ 2. Example: i.i.d. noise: {X t } independent and identically distributed. P[X 1 x 1,...,X t x t ] = P[X 1 x 1 ] P[X t x t ]. Not interesting for forecasting: P[X t x t X 1,...,X t 1 ] = P[X t x t ]. 30
31 Gaussian white noise P[X t x t ] = Φ(x t ) = 1 2π xt e x2 /2 dx
32 Gaussian white noise
33 Time Series Models Example: Binary i.i.d. P[X t = 1] = P[X t = 1] = 1/
34 Random walk S t = t i=1 X i. Differences: S t = S t S t 1 = X t
35 Random walk ES t? VarS t?
36 Random Walk Recall S&P500 data. (Notice that it s smooth) 340 SP500: Jan Jun $ year 36
37 Random Walk Differences: S t = S t S t 1 = X t. 10 SP500, Jan Jun first differences $ year 37
38 Trend and Seasonal Models X t = T t + S t + E t = β 0 + β 1 t + i (β i cos(λ i t) + γ i sin(λ i t)) + E t
39 Trend and Seasonal Models X t = T t + E t = β 0 + β 1 t + E t
40 Trend and Seasonal Models X t = T t + S t + E t = β 0 + β 1 t + i (β i cos(λ i t) + γ i sin(λ i t)) + E t
41 Trend and Seasonal Models: Residuals
42 Time Series Modelling 1. Plot the time series. Look for trends, seasonal components, step changes, outliers. 2. Transform data so that residuals are stationary. (a) Estimate and subtract T t, S t. (b) Differencing. (c) Nonlinear transformations (log, ). 3. Fit model to residuals. 42
43 Nonlinear transformations Recall: Monthly sales. (Makridakis, Wheelwright and Hyndman, 1998) 12 x
44 Time Series Modelling 1. Plot the time series. Look for trends, seasonal components, step changes, outliers. 2. Transform data so that residuals are stationary. (a) Estimate and subtract T t, S t. (b) Differencing. (c) Nonlinear transformations (log, ). 3. Fit model to residuals. 44
45 Differencing Recall: S&P 500 data. 340 SP500: Jan Jun SP500, Jan Jun first differences $ 280 $ year year 45
46 Differencing and Trend Define the lag1 difference operator, (think first derivative ) X t = X t X t 1 = (1 B)X t, where B is the backshift operator, BX t = X t 1. If X t = β 0 + β 1 t + Y t, then If X t = k i=0 β it i + Y t, then X t = β 1 + Y t. k X t = k!β k + k Y t, where k X t = ( k 1 X t ) and 1 X t = X t. 46
47 Differencing and Seasonal Variation Define the lags difference operator, s X t = X t X t s = (1 B s )X t, where B s is the backshift operator applied s times, B s X t = B(B s 1 X t ) and B 1 X t = BX t. If X t = T t + S t + Y t, and S t has period s (that is, S t = S t s for all t), then s X t = T t T t s + s Y t. 47
48 Time Series Modelling 1. Plot the time series. Look for trends, seasonal components, step changes, outliers. 2. Transform data so that residuals are stationary. (a) Estimate and subtract T t, S t. (b) Differencing. (c) Nonlinear transformations (log, ). 3. Fit model to residuals. 48
49 Outline 1. Objectives of time series analysis. Examples. 2. Overview of the course. 3. Time series models. 4. Time series modelling: Chasing stationarity. 49
Univariate and Multivariate Methods PEARSON. Addison Wesley
Time Series Analysis Univariate and Multivariate Methods SECOND EDITION William W. S. Wei Department of Statistics The Fox School of Business and Management Temple University PEARSON Addison Wesley Boston
More informationRob J Hyndman. Forecasting using. 11. Dynamic regression OTexts.com/fpp/9/1/ Forecasting using R 1
Rob J Hyndman Forecasting using 11. Dynamic regression OTexts.com/fpp/9/1/ Forecasting using R 1 Outline 1 Regression with ARIMA errors 2 Example: Japanese cars 3 Using Fourier terms for seasonality 4
More informationTIME SERIES ANALYSIS
TIME SERIES ANALYSIS L.M. BHAR AND V.K.SHARMA Indian Agricultural Statistics Research Institute Library Avenue, New Delhi0 02 lmb@iasri.res.in. Introduction Time series (TS) data refers to observations
More informationTIME SERIES ANALYSIS
TIME SERIES ANALYSIS Ramasubramanian V. I.A.S.R.I., Library Avenue, New Delhi 110 012 ram_stat@yahoo.co.in 1. Introduction A Time Series (TS) is a sequence of observations ordered in time. Mostly these
More informationTime Series Laboratory
Time Series Laboratory Computing in Weber Classrooms 205206: To log in, make sure that the DOMAIN NAME is set to MATHSTAT. Use the workshop username: primesw The password will be distributed during the
More informationState Space Time Series Analysis
State Space Time Series Analysis p. 1 State Space Time Series Analysis Siem Jan Koopman http://staff.feweb.vu.nl/koopman Department of Econometrics VU University Amsterdam Tinbergen Institute 2011 State
More informationUsing JMP Version 4 for Time Series Analysis Bill Gjertsen, SAS, Cary, NC
Using JMP Version 4 for Time Series Analysis Bill Gjertsen, SAS, Cary, NC Abstract Three examples of time series will be illustrated. One is the classical airline passenger demand data with definite seasonal
More information2.2 Elimination of Trend and Seasonality
26 CHAPTER 2. TREND AND SEASONAL COMPONENTS 2.2 Elimination of Trend and Seasonality Here we assume that the TS model is additive and there exist both trend and seasonal components, that is X t = m t +
More informationTime Series Analysis: Basic Forecasting.
Time Series Analysis: Basic Forecasting. As published in Benchmarks RSS Matters, April 2015 http://web3.unt.edu/benchmarks/issues/2015/04/rssmatters Jon Starkweather, PhD 1 Jon Starkweather, PhD jonathan.starkweather@unt.edu
More informationDiscrete Time Series Analysis with ARMA Models
Discrete Time Series Analysis with ARMA Models Veronica Sitsofe Ahiati (veronica@aims.ac.za) African Institute for Mathematical Sciences (AIMS) Supervised by Tina Marquardt Munich University of Technology,
More informationPromotional Forecast Demonstration
Exhibit 2: Promotional Forecast Demonstration Consider the problem of forecasting for a proposed promotion that will start in December 1997 and continues beyond the forecast horizon. Assume that the promotion
More informationAnalysis of algorithms of time series analysis for forecasting sales
SAINTPETERSBURG STATE UNIVERSITY Mathematics & Mechanics Faculty Chair of Analytical Information Systems Garipov Emil Analysis of algorithms of time series analysis for forecasting sales Course Work Scientific
More informationTime Series Analysis of Aviation Data
Time Series Analysis of Aviation Data Dr. Richard Xie February, 2012 What is a Time Series A time series is a sequence of observations in chorological order, such as Daily closing price of stock MSFT in
More informationSales forecasting # 2
Sales forecasting # 2 Arthur Charpentier arthur.charpentier@univrennes1.fr 1 Agenda Qualitative and quantitative methods, a very general introduction Series decomposition Short versus long term forecasting
More informationChapter 7 The ARIMA Procedure. Chapter Table of Contents
Chapter 7 Chapter Table of Contents OVERVIEW...193 GETTING STARTED...194 TheThreeStagesofARIMAModeling...194 IdentificationStage...194 Estimation and Diagnostic Checking Stage...... 200 Forecasting Stage...205
More informationMGT 267 PROJECT. Forecasting the United States Retail Sales of the Pharmacies and Drug Stores. Done by: Shunwei Wang & Mohammad Zainal
MGT 267 PROJECT Forecasting the United States Retail Sales of the Pharmacies and Drug Stores Done by: Shunwei Wang & Mohammad Zainal Dec. 2002 The retail sale (Million) ABSTRACT The present study aims
More informationCOMP6053 lecture: Time series analysis, autocorrelation. jn2@ecs.soton.ac.uk
COMP6053 lecture: Time series analysis, autocorrelation jn2@ecs.soton.ac.uk Time series analysis The basic idea of time series analysis is simple: given an observed sequence, how can we build a model that
More informationITSMR Reference Manual
ITSMR Reference Manual George Weigt June 5, 2015 1 Contents 1 Introduction 3 1.1 Time series analysis in a nutshell............................... 3 1.2 White Noise Variance.....................................
More informationTime Series Analysis
JUNE 2012 Time Series Analysis CONTENT A time series is a chronological sequence of observations on a particular variable. Usually the observations are taken at regular intervals (days, months, years),
More informationIBM SPSS Forecasting 22
IBM SPSS Forecasting 22 Note Before using this information and the product it supports, read the information in Notices on page 33. Product Information This edition applies to version 22, release 0, modification
More informationTime Series  ARIMA Models. Instructor: G. William Schwert
APS 425 Fall 25 Time Series : ARIMA Models Instructor: G. William Schwert 585275247 schwert@schwert.ssb.rochester.edu Topics Typical time series plot Pattern recognition in auto and partial autocorrelations
More informationTime Series Analysis
Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK2800 Kgs. Lyngby 1 Outline of the lecture Identification of univariate time series models, cont.:
More informationTraffic Safety Facts. Research Note. Time Series Analysis and Forecast of Crash Fatalities during Six Holiday Periods Cejun Liu* and ChouLin Chen
Traffic Safety Facts Research Note March 2004 DOT HS 809 718 Time Series Analysis and Forecast of Crash Fatalities during Six Holiday Periods Cejun Liu* and ChouLin Chen Summary This research note uses
More informationTime Series HILARY TERM 2010 PROF. GESINE REINERT http://www.stats.ox.ac.uk/~reinert
Time Series HILARY TERM 2010 PROF. GESINE REINERT http://www.stats.ox.ac.uk/~reinert Overview Chapter 1: What are time series? Types of data, examples, objectives. Definitions, stationarity and autocovariances.
More informationTime Series Analysis in Economics. Klaus Neusser
Time Series Analysis in Economics Klaus Neusser May 26, 2015 Contents I Univariate Time Series Analysis 3 1 Introduction 1 1.1 Some examples.......................... 2 1.2 Formal definitions.........................
More informationSoftware Review: ITSM 2000 Professional Version 6.0.
Lee, J. & Strazicich, M.C. (2002). Software Review: ITSM 2000 Professional Version 6.0. International Journal of Forecasting, 18(3): 455459 (June 2002). Published by Elsevier (ISSN: 01692070). http://0
More informationIntroduction to Time Series and Forecasting, Second Edition
Introduction to Time Series and Forecasting, Second Edition Peter J. Brockwell Richard A. Davis Springer Springer Texts in Statistics Advisors: George Casella Stephen Fienberg Ingram Olkin Springer New
More informationFinancial TIme Series Analysis: Part II
Department of Mathematics and Statistics, University of Vaasa, Finland January 29 February 13, 2015 Feb 14, 2015 1 Univariate linear stochastic models: further topics Unobserved component model Signal
More informationA course in Time Series Analysis. Suhasini Subba Rao Email: suhasini.subbarao@stat.tamu.edu
A course in Time Series Analysis Suhasini Subba Rao Email: suhasini.subbarao@stat.tamu.edu August 5, 205 Contents Introduction 8. Time Series data................................. 8.. R code....................................2
More informationThreshold Autoregressive Models in Finance: A Comparative Approach
University of Wollongong Research Online Applied Statistics Education and Research Collaboration (ASEARC)  Conference Papers Faculty of Informatics 2011 Threshold Autoregressive Models in Finance: A Comparative
More informationEnergy Load Mining Using Univariate Time Series Analysis
Energy Load Mining Using Univariate Time Series Analysis By: Taghreed Alghamdi & Ali Almadan 03/02/2015 Caruth Hall 0184 Energy Forecasting Energy Saving Energy consumption Introduction: Energy consumption.
More informationIBM SPSS Forecasting 21
IBM SPSS Forecasting 21 Note: Before using this information and the product it supports, read the general information under Notices on p. 107. This edition applies to IBM SPSS Statistics 21 and to all
More informationPredicting Indian GDP. And its relation with FMCG Sales
Predicting Indian GDP And its relation with FMCG Sales GDP A Broad Measure of Economic Activity Definition The monetary value of all the finished goods and services produced within a country's borders
More informationTime Series Analysis and Forecasting
Time Series Analysis and Forecasting Math 667 Al Nosedal Department of Mathematics Indiana University of Pennsylvania Time Series Analysis and Forecasting p. 1/11 Introduction Many decisionmaking applications
More informationPITFALLS IN TIME SERIES ANALYSIS. Cliff Hurvich Stern School, NYU
PITFALLS IN TIME SERIES ANALYSIS Cliff Hurvich Stern School, NYU The t Test If x 1,..., x n are independent and identically distributed with mean 0, and n is not too small, then t = x 0 s n has a standard
More informationTrend and Seasonal Components
Chapter 2 Trend and Seasonal Components If the plot of a TS reveals an increase of the seasonal and noise fluctuations with the level of the process then some transformation may be necessary before doing
More informationProbability and Random Variables. Generation of random variables (r.v.)
Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly
More informationGraphical Tools for Exploring and Analyzing Data From ARIMA Time Series Models
Graphical Tools for Exploring and Analyzing Data From ARIMA Time Series Models William Q. Meeker Department of Statistics Iowa State University Ames, IA 50011 January 13, 2001 Abstract Splus is a highly
More informationLecture 4: Seasonal Time Series, Trend Analysis & Component Model Bus 41910, Time Series Analysis, Mr. R. Tsay
Lecture 4: Seasonal Time Series, Trend Analysis & Component Model Bus 41910, Time Series Analysis, Mr. R. Tsay Business cycle plays an important role in economics. In time series analysis, business cycle
More informationChapter 4: Vector Autoregressive Models
Chapter 4: Vector Autoregressive Models 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie IV.1 Vector Autoregressive Models (VAR)...
More informationTime Series Analysis
Time Series Analysis Identifying possible ARIMA models Andrés M. Alonso Carolina GarcíaMartos Universidad Carlos III de Madrid Universidad Politécnica de Madrid June July, 2012 Alonso and GarcíaMartos
More informationTIMESERIES ANALYSIS, MODELLING AND FORECASTING USING SAS SOFTWARE
TIMESERIES ANALYSIS, MODELLING AND FORECASTING USING SAS SOFTWARE Ramasubramanian V. IA.S.R.I., Library Avenue, Pusa, New Delhi 110 012 ramsub@iasri.res.in 1. Introduction Time series (TS) data refers
More informationCase Study: Fixing Residual Trading Day Effects in the Seasonally Adjusted Series Catherine C. H. Hood, Catherine Hood Consulting
Case Study: Fixing Residual Trading Day Effects in the Seasonally Adjusted Series Catherine C. H. Hood, Catherine Hood Consulting Spectral graphs are one of the most useful diagnostics we have. It s through
More informationTime Series Analysis III
Lecture 12: Time Series Analysis III MIT 18.S096 Dr. Kempthorne Fall 2013 MIT 18.S096 Time Series Analysis III 1 Outline Time Series Analysis III 1 Time Series Analysis III MIT 18.S096 Time Series Analysis
More informationForecasting Methods. What is forecasting? Why is forecasting important? How can we evaluate a future demand? How do we make mistakes?
Forecasting Methods What is forecasting? Why is forecasting important? How can we evaluate a future demand? How do we make mistakes? Prod  Forecasting Methods Contents. FRAMEWORK OF PLANNING DECISIONS....
More informationLuciano Rispoli Department of Economics, Mathematics and Statistics Birkbeck College (University of London)
Luciano Rispoli Department of Economics, Mathematics and Statistics Birkbeck College (University of London) 1 Forecasting: definition Forecasting is the process of making statements about events whose
More informationStudying Achievement
Journal of Business and Economics, ISSN 21557950, USA November 2014, Volume 5, No. 11, pp. 20522056 DOI: 10.15341/jbe(21557950)/11.05.2014/009 Academic Star Publishing Company, 2014 http://www.academicstar.us
More informationLecture 2: ARMA(p,q) models (part 3)
Lecture 2: ARMA(p,q) models (part 3) Florian Pelgrin University of Lausanne, École des HEC Department of mathematics (IMEANice) Sept. 2011  Jan. 2012 Florian Pelgrin (HEC) Univariate time series Sept.
More informationIntroduction to Time Series Analysis. Lecture 6.
Introduction to Time Series Analysis. Lecture 6. Peter Bartlett www.stat.berkeley.edu/ bartlett/courses/153fall2010 Last lecture: 1. Causality 2. Invertibility 3. AR(p) models 4. ARMA(p,q) models 1 Introduction
More informationTime Series Analysis
Time Series 1 April 9, 2013 Time Series Analysis This chapter presents an introduction to the branch of statistics known as time series analysis. Often the data we collect in environmental studies is collected
More informationKATE GLEASON COLLEGE OF ENGINEERING. John D. Hromi Center for Quality and Applied Statistics
ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM KATE GLEASON COLLEGE OF ENGINEERING John D. Hromi Center for Quality and Applied Statistics NEW (or REVISED) COURSE (KCOECQAS 873  Time Series Analysis
More informationThe SAS Time Series Forecasting System
The SAS Time Series Forecasting System An Overview for Public Health Researchers Charles DiMaggio, PhD College of Physicians and Surgeons Departments of Anesthesiology and Epidemiology Columbia University
More informationRecent Developments of Statistical Application in. Finance. Ruey S. Tsay. Graduate School of Business. The University of Chicago
Recent Developments of Statistical Application in Finance Ruey S. Tsay Graduate School of Business The University of Chicago Guanghua Conference, June 2004 Summary Focus on two parts: Applications in Finance:
More informationUSE OF ARIMA TIME SERIES AND REGRESSORS TO FORECAST THE SALE OF ELECTRICITY
Paper PO10 USE OF ARIMA TIME SERIES AND REGRESSORS TO FORECAST THE SALE OF ELECTRICITY Beatrice Ugiliweneza, University of Louisville, Louisville, KY ABSTRACT Objectives: To forecast the sales made by
More informationChapter 10 Introduction to Time Series Analysis
Chapter 1 Introduction to Time Series Analysis A time series is a collection of observations made sequentially in time. Examples are daily mortality counts, particulate air pollution measurements, and
More informationPromotional Analysis and Forecasting for Demand Planning: A Practical Time Series Approach Michael Leonard, SAS Institute Inc.
Promotional Analysis and Forecasting for Demand Planning: A Practical Time Series Approach Michael Leonard, SAS Institute Inc. Cary, NC, USA Abstract Many businesses use sales promotions to increase the
More informationTime Series in Mathematical Finance
Instituto Superior Técnico (IST, Portugal) and CEMAT cnunes@math.ist.utl.pt European Summer School in Industrial Mathematics Universidad Carlos III de Madrid July 2013 Outline The objective of this short
More informationSPSS TRAINING SESSION 3 ADVANCED TOPICS (PASW STATISTICS 17.0) Sun Li Centre for Academic Computing lsun@smu.edu.sg
SPSS TRAINING SESSION 3 ADVANCED TOPICS (PASW STATISTICS 17.0) Sun Li Centre for Academic Computing lsun@smu.edu.sg IN SPSS SESSION 2, WE HAVE LEARNT: Elementary Data Analysis Group Comparison & Oneway
More informationForecasting areas and production of rice in India using ARIMA model
International Journal of Farm Sciences 4(1) :99106, 2014 Forecasting areas and production of rice in India using ARIMA model K PRABAKARAN and C SIVAPRAGASAM* Agricultural College and Research Institute,
More informationSpringer Texts in Statistics
Springer Texts in Statistics Series Editors G. Casella S. Fienberg I. Olkin For other titles published in this series, go to www.springer.com/series/417 Robert H. Shumway David S. Stoffer Time Series
More informationBNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I
BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential
More information5 Transforming Time Series
5 Transforming Time Series In many situations, it is desirable or necessary to transform a time series data set before using the sophisticated methods we study in this course: 1. Almost all methods assume
More informationCore Resources on Time Series Analysis for Academic Libraries: A Selected, Annotated Bibliography
Purdue University Purdue epubs Charleston Library Conference Core Resources on Time Series Analysis for Academic Libraries: A Selected, Annotated Bibliography Sarah H. Jeong Wake Forest University, jeongsh@wfu.edu
More informationTime Series Analysis by Higher Order Crossings. Benjamin Kedem Department of Mathematics & ISR University of Maryland College Park, MD
Time Series Analysis by Higher Order Crossings Benjamin Kedem Department of Mathematics & ISR University of Maryland College Park, MD 1 Stochastic Process A stochastic or random process {Z t },, 1,0,1,,
More informationCASH DEMAND FORECASTING FOR ATMS
Report of summer project Institute for development and research in banking technology 13 May 13 July, 2013 CASH DEMAND FORECASTING FOR ATMS Guided By Dr. Mahil Carr Associate Professor IDRBT, Hyderabad
More information1 Short Introduction to Time Series
ECONOMICS 7344, Spring 202 Bent E. Sørensen January 24, 202 Short Introduction to Time Series A time series is a collection of stochastic variables x,.., x t,.., x T indexed by an integer value t. The
More informationOverview of Monte Carlo Simulation, Probability Review and Introduction to Matlab
Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?
More informationOUTLIER ANALYSIS. Data Mining 1
OUTLIER ANALYSIS Data Mining 1 What Are Outliers? Outlier: A data object that deviates significantly from the normal objects as if it were generated by a different mechanism Ex.: Unusual credit card purchase,
More informationUNDERGRADUATE DEGREE DETAILS : BACHELOR OF SCIENCE WITH
QATAR UNIVERSITY COLLEGE OF ARTS & SCIENCES Department of Mathematics, Statistics, & Physics UNDERGRADUATE DEGREE DETAILS : Program Requirements and Descriptions BACHELOR OF SCIENCE WITH A MAJOR IN STATISTICS
More informationForecasting in supply chains
1 Forecasting in supply chains Role of demand forecasting Effective transportation system or supply chain design is predicated on the availability of accurate inputs to the modeling process. One of the
More informationManagement Science. Academic Year 201516
Management Science Spreadsheet Modelling and Demand Forecasting Academic Year 201516 MS924 Credit value: 10  Standard/level: 5  Core/optional: Core  Semester: 1  Prerequisites: None Lecturers: Ashwin
More informationAdvanced Signal Processing and Digital Noise Reduction
Advanced Signal Processing and Digital Noise Reduction Saeed V. Vaseghi Queen's University of Belfast UK WILEY HTEUBNER A Partnership between John Wiley & Sons and B. G. Teubner Publishers Chichester New
More informationCOURSE DESCRIPTOR Signal Processing II Signalbehandling II 7.5 ECTS credit points (7,5 högskolepoäng)
Blekinge Institute of Technology School of Engineering, ASB Andhra University College of Engineering (A) TWO YEAR DOUBLE DEGREE MASTERS PROGRAM MS (SIGNAL PROCESSING) FIRST YEAR I SEMESTER CODE Name of
More informationTime Series Analysis 1. Lecture 8: Time Series Analysis. Time Series Analysis MIT 18.S096. Dr. Kempthorne. Fall 2013 MIT 18.S096
Lecture 8: Time Series Analysis MIT 18.S096 Dr. Kempthorne Fall 2013 MIT 18.S096 Time Series Analysis 1 Outline Time Series Analysis 1 Time Series Analysis MIT 18.S096 Time Series Analysis 2 A stochastic
More informationAnalysis and Computation for Finance Time Series  An Introduction
ECMM703 Analysis and Computation for Finance Time Series  An Introduction Alejandra González Harrison 161 Email: mag208@exeter.ac.uk Time Series  An Introduction A time series is a sequence of observations
More informationTime Series and Forecasting
Chapter 22 Page 1 Time Series and Forecasting A time series is a sequence of observations of a random variable. Hence, it is a stochastic process. Examples include the monthly demand for a product, the
More informationINTRODUCTION TO GEOSTATISTICS And VARIOGRAM ANALYSIS
INTRODUCTION TO GEOSTATISTICS And VARIOGRAM ANALYSIS C&PE 940, 17 October 2005 Geoff Bohling Assistant Scientist Kansas Geological Survey geoff@kgs.ku.edu 8642093 Overheads and other resources available
More informationFORECASTING IN SAPSCM (SUPPLY CHAIN MANAGEMENT)
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 2, Issue. 7, July 2013, pg.114
More informationTime Series Analysis and Forecasting Methods for Temporal Mining of Interlinked Documents
Time Series Analysis and Forecasting Methods for Temporal Mining of Interlinked Documents Prasanna Desikan and Jaideep Srivastava Department of Computer Science University of Minnesota. @cs.umn.edu
More information9th Russian Summer School in Information Retrieval Big Data Analytics with R
9th Russian Summer School in Information Retrieval Big Data Analytics with R Introduction to Time Series with R A. Karakitsiou A. Migdalas Industrial Logistics, ETS Institute Luleå University of Technology
More informationLecture 1: Asset pricing and the equity premium puzzle
Lecture 1: Asset pricing and the equity premium puzzle Simon Gilchrist Boston Univerity and NBER EC 745 Fall, 2013 Overview Some basic facts. Study the asset pricing implications of household portfolio
More informationALARM DETECTION METHODS FOR PHYSIOLOGICAL VARIABLES
ALARM DETECTION METHODS FOR PHYSIOLOGICAL VARIABLES Sandra Ramos, Isabel Silva ½, M. Eduarda Silva, Teresa Mendonça Departamento de Matemática Aplicada, Faculdade de Ciências  Universidade do Porto, Rua
More information11. Time series and dynamic linear models
11. Time series and dynamic linear models Objective To introduce the Bayesian approach to the modeling and forecasting of time series. Recommended reading West, M. and Harrison, J. (1997). models, (2 nd
More informationEstimating and Forecasting Network Traffic Performance based on Statistical Patterns Observed in SNMP data.
Estimating and Forecasting Network Traffic Performance based on Statistical Patterns Observed in SNMP data. K. Hu 1,2, A. Sim 1, Demetris Antoniades 3, Constantine Dovrolis 3 1 Lawrence Berkeley National
More informationSimple Methods and Procedures Used in Forecasting
Simple Methods and Procedures Used in Forecasting The project prepared by : Sven Gingelmaier Michael Richter Under direction of the Maria JadamusHacura What Is Forecasting? Prediction of future events
More information7 Time series analysis
7 Time series analysis In Chapters 16, 17, 33 36 in Zuur, Ieno and Smith (2007), various time series techniques are discussed. Applying these methods in Brodgar is straightforward, and most choices are
More informationAutocovariance and Autocorrelation
Chapter 3 Autocovariance and Autocorrelation If the {X n } process is weakly stationary, the covariance of X n and X n+k depends only on the lag k. This leads to the following definition of the autocovariance
More informationSLANGTNG  SOFTWARE FOR STOCHASTIC STRUCTURAL ANALYSIS MADE EASY
Meccanica dei Materiali e delle Strutture Vol. 3 (2012), no.4, pp. 1017 ISSN: 2035679X Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, Dei Materiali DICAM SLANGTNG  SOFTWARE FOR STOCHASTIC
More informationLAUREA MAGISTRALE  CURRICULUM IN INTERNATIONAL MANAGEMENT, LEGISLATION AND SOCIETY. 1st TERM (14 SEPT  27 NOV)
LAUREA MAGISTRALE  CURRICULUM IN INTERNATIONAL MANAGEMENT, LEGISLATION AND SOCIETY 1st TERM (14 SEPT  27 NOV) Week 1 9.3010.30 10.3011.30 11.3012.30 12.3013.30 13.3014.30 14.3015.30 15.3016.30
More information**BEGINNING OF EXAMINATION** The annual number of claims for an insured has probability function: , 0 < q < 1.
**BEGINNING OF EXAMINATION** 1. You are given: (i) The annual number of claims for an insured has probability function: 3 p x q q x x ( ) = ( 1 ) 3 x, x = 0,1,, 3 (ii) The prior density is π ( q) = q,
More informationReview of Transpower s. electricity demand. forecasting methods. Professor Rob J Hyndman. B.Sc. (Hons), Ph.D., A.Stat. Contact details: Report for
Review of Transpower s electricity demand forecasting methods Professor Rob J Hyndman B.Sc. (Hons), Ph.D., A.Stat. Contact details: Telephone: 0458 903 204 Email: robjhyndman@gmail.com Web: robjhyndman.com
More informationLecture 8: Signal Detection and Noise Assumption
ECE 83 Fall Statistical Signal Processing instructor: R. Nowak, scribe: Feng Ju Lecture 8: Signal Detection and Noise Assumption Signal Detection : X = W H : X = S + W where W N(, σ I n n and S = [s, s,...,
More informationMonitoring the SARS Epidemic in China: A Time Series Analysis
Journal of Data Science 3(2005), 279293 Monitoring the SARS Epidemic in China: A Time Series Analysis Dejian Lai The University of Texas and Jiangxi University of Finance and Economics Abstract: In this
More informationA spot market model for pricing derivatives in electricity markets
A spot market model for pricing derivatives in electricity markets Markus Burger, Bernhard Klar, Alfred Müller* and Gero Schindlmayr EnBW Gesellschaft für Stromhandel, Risk Controlling, Durlacher Allee
More information96 PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011) Time Series Analysis in Python with statsmodels
96 PROC. OF HE 10th PYHON IN SCIENCE CONF. (SCIPY 2011) ime Series Analysis in Python with statsmodels Wes McKinney, Josef Perktold, Skipper Seabold Abstract We introduce the new time series analysis features
More informationI. Introduction. II. Background. KEY WORDS: Time series forecasting, Structural Models, CPS
Predicting the National Unemployment Rate that the "Old" CPS Would Have Produced Richard Tiller and Michael Welch, Bureau of Labor Statistics Richard Tiller, Bureau of Labor Statistics, Room 4985, 2 Mass.
More informationARMA, GARCH and Related Option Pricing Method
ARMA, GARCH and Related Option Pricing Method Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook September
More information(More Practice With Trend Forecasts)
Stats for Strategy HOMEWORK 11 (Topic 11 Part 2) (revised Jan. 2016) DIRECTIONS/SUGGESTIONS You may conveniently write answers to Problems A and B within these directions. Some exercises include special
More informationTime Series Analysis
Time Series Analysis Forecasting with ARIMA models Andrés M. Alonso Carolina GarcíaMartos Universidad Carlos III de Madrid Universidad Politécnica de Madrid June July, 2012 Alonso and GarcíaMartos (UC3MUPM)
More informationAgenda. Managing Uncertainty in the Supply Chain. The Economic Order Quantity. Classic inventory theory
Agenda Managing Uncertainty in the Supply Chain TIØ485 Produkjons og nettverksøkonomi Lecture 3 Classic Inventory models Economic Order Quantity (aka Economic Lot Size) The (s,s) Inventory Policy Managing
More information