# arxiv:physics/ v2 [physics.comp-ph] 9 Nov 2006

Save this PDF as:

Size: px
Start display at page:

## Transcription

3 3 ized by the standard deviation. The value δ 1 measures the price shift across the spread, corresponding to the case that the side of the trade changes from bid to ask or from ask to bid. The value δ 2 corresponds to the case that the side of the trade remains the same. If we assume that the four cases occurs with the same probability 1/4, the mean field approximation of autocorrelation functions gives the equation ρ i =< dp t dp t+i > /σ 2 = 1/4(δ2 2 δ1)δ 2 1i. From the normalization condition δ1 2 + δ2 2 = 2 and the inequality δ 1 >> δ 2 (because spread always exists, while the trade successively occurred on the same side do not necessarily move the price), we have the result ρ i 0.5δ 1i. The profile of the autocorrelation function is responsible for the value of the Hurst exponent H through the equation V ar(p t p 0 )/σ 2 = V ar( t i=1 dp i)/σ 2 = t + t i=1 (t i)ρ i t 2H. In such case of short memory as our model, we have the equation V ar(p t p 0 )/σ 2 = Dt t 2H for t >> 1. In our case, the diffusion constant D = 1+2 t i=1 ρ i is quite small owing to the equation ρ i 0.5δ 1i, and H=1/2 for large t. An empirical study of the price diffusion is presented in Fig. 5. We see from the panel (b) of Fig. 4 that the autocorrelation functions of the absolute value of price shift (empirical volatility) have long memory. Both data plotted there are well fitted by power laws. The original data, however, hold the memory of volatility stronger than the surrogate data does. V. CONCLUSIONS Taking the strategy leaving the decision of the limit price to the others in the stochastic model of financial markets driven by continuous double auction, the virtual market shows the power-law tail of the distribution of returns with the exponent near 3 according to the parameter which determines the ratio of the mimetic limit order. The short memory of returns and the long memory of volatilities are also reproduced by the model. The Hurst exponent H of our model is asymptotically 1/2. The mean field approximation explains the profile of the autocorrelation function, which is responsible for the value of the Hurst exponent H. The strategy assumed here are effective in holding the memory of market volatility strong. The author thanks D. Challet for attracting my notice to their papers. He learns a lot from them. [1] X. Gabaix, P. Gopikrishnan, V. Plerou, H. E. Stanley, A theory of power law distributions in financial market fluctuations, Nature 423 (2003) 267. [2] J. D. Farmer, L. Gillemot, F. Lillo, S. Mike, A. Sen, What really causes large price change?, Quantitative Finance 4 (2004) 383. [3] S. Maslov, Simple model of a limit order-driven market, Physica A 278 (2000) 571. [4] P. Gopikrishnan, M. Meyer, L. A. N. Amaral and H. E. Stanley, Inverse Cubic Law for the Distribution of Stock Price Variations, Eur. Phys. J. B 3 (1998) 139. [5] V. Plerou, P. Gopikrishnan, L. A. N. Amaral, M. Meyer, H. E. Stanley, Scaling of the distribution of price fluctuations of individual companies, Phys. Rev. E 60, (1999) [6] D. Challet, R. Stinchcombe, Non-constant rates and over-diffusive prices in a simple model of limit order market, Quantitative Finance 3 (2003) 155. [7] Y. Liu, P. Gopikrishnan, Cizeau, Meyer, Peng, H. E. Stanley, Statistical properties of the volatility of price fluctuations, Phys. Rev. E 60, (1999) [8] E. Smith, J. D. Farmer, L. Gillemot, S. Krishnamurthy, Statistical theory of the continuous double auction, Quantitative Finance 3 (2003) 481. [9] A.-L. Barabasi, R. Albert, Emergence of Scaling in Random Networks, Science 286 (1999) 509. [10] R. Albert, A.-L. Barabasi, Statistical mechanics of complex networks, Rev. of Mod. Phys. 74 (2002) 47. [11] F. Slanina Mean-field approximation for a limit order driven market model, Phys. Rev. E 64 (2001)

4 4 p=0.5 p=0.475 p=0.6 (a) CDF p=0.45 p=0.4 p=0.3 p= Price shift p=0.5 p=0.475 p=0.6 (b) CDF p=0.45 p=0.3 p=0.4 p= Price gap p=0.5 p=0.6 (c) p=0.475 CDF p=0.4 p=0.3 p=0 p= Spread FIG. 1: Cumulative distribution functions of price shifts, the gaps between ask and the second best sell limit price and spreads. The power law exponents of price shifts (the gaps, spreads) are 3.97 ± 0.11 (4.27 ± 0.12, 4.49 ± 0.11), 2.72 ± 0.08 (2.97 ± 0.11, 3.09 ± 0.08) and 3.78 ± 0.11 (3.80 ± 0.11, 4.14 ± 0.10) for p=0.45, and 0.5 respectively.

5 5 PDF Relative Limit price FIG. 2: Probability distribution function of the relative limit price. The results are shown for the three cases with p=0.3 (dotted line), p=0.4 (dashed line), p=0.5 (dot-dash line) and p=0.6 (solid line). PDF Price shift FIG. 3: Probability distribution function of price shift of the surrogate data. The original data is generated by 1,00 times runs of 10,000 step iterations with p=0.5. The comparison with that of the original data (dashed line) is also given.

6 6 1 (a) 0.5 ACF Time lag (b) 0.4 ACF Time lag FIG. 4: Autocorrelation functions of price shift and of the absolute value of price shift obtained by the numerical simulations of the model. In both panels, the unit of time increment corresponds to a buy market order. Empty circle ( ) represents the results for the original data, and filled circle ( ) for the surrogate data mentioned in the previous section. (a)the autocorrelation function of price shift. (b)the autocorrelation of the absolute value of price shift with the power law fittings(solid lines). The exponents of the power law fittings are estimated by linear regression of the data plotted in log-log plain. The result is (R 2 = 0.99) for the original data, and (R 2 = 0.79) for the surrogate data.

7 Var(p t p 0 )/σ Free diffusion 1.0 (1+2A)t 2B Time (trades) FIG. 5: Empirical study of the price diffusion. We analyzed about 45 millions transaction data from Nov through Oct of active 5 IT or e-commerce companies (Intel, Microsoft, Amazon, Oracle, Cisco) listed on Nasdaq using TAQ Database. The theoretical line is also given, where A = P t i=1 ρi and B = P t i=1 iρi.

### Stock price fluctuations and the mimetic behaviors of traders

Physica A 382 (2007) 172 178 www.elsevier.com/locate/physa Stock price fluctuations and the mimetic behaviors of traders Jun-ichi Maskawa Department of Management Information, Fukuyama Heisei University,

### An analysis of price impact function in order-driven markets

Available online at www.sciencedirect.com Physica A 324 (2003) 146 151 www.elsevier.com/locate/physa An analysis of price impact function in order-driven markets G. Iori a;, M.G. Daniels b, J.D. Farmer

### Trading and Price Diffusion: Stock Market Modeling Using the Approach of Statistical Physics Ph.D. thesis statements. Supervisors: Dr.

Trading and Price Diffusion: Stock Market Modeling Using the Approach of Statistical Physics Ph.D. thesis statements László Gillemot Supervisors: Dr. János Kertész Dr. Doyne Farmer BUDAPEST UNIVERSITY

### Trading activity as driven Poisson process: comparison with empirical data

Trading activity as driven Poisson process: comparison with empirical data V. Gontis, B. Kaulakys, J. Ruseckas Institute of Theoretical Physics and Astronomy of Vilnius University, A. Goštauto 2, LT-008

### The Power (Law) of Indian Markets: Analysing NSE and BSE Trading Statistics

The Power (Law) of Indian Markets: Analysing NSE and BSE Trading Statistics Sitabhra Sinha and Raj Kumar Pan The Institute of Mathematical Sciences, C. I. T. Campus, Taramani, Chennai - 6 113, India. sitabhra@imsc.res.in

### Scaling in an Agent Based Model of an artificial stock market. Zhenji Lu

Scaling in an Agent Based Model of an artificial stock market Zhenji Lu Erasmus Mundus (M) project report (ECTS) Department of Physics University of Gothenburg Scaling in an Agent Based Model of an artificial

### Modeling and simulation of a double auction artificial financial market

Modeling and simulation of a double auction artificial financial market Marco Raberto a,1 and Silvano Cincotti a a DIBE, Universit di Genova, Via Opera Pia 11a, 16145 Genova, Italy Abstract We present

### An empirical investigation of Australian Stock Exchange Data.

An empirical investigation of Australian Stock Exchange Data. William Bertram School of Mathematics and Statistics University of Sydney January 27, 2004 Abstract We present an empirical study of high frequency

### Statistical properties of trading activity in Chinese Stock Market

Physics Procedia 3 (2010) 1699 1706 Physics Procedia 00 (2010) 1 8 Physics Procedia www.elsevier.com/locate/procedia Statistical properties of trading activity in Chinese Stock Market Xiaoqian Sun a, Xueqi

### arxiv:nlin/0211010v2 [nlin.ao] 7 May 2003

Evolution and anti-evolution in a minimal stock market model arxiv:nlin/0211010v2 [nlin.ao] 7 May 2003 R. Rothenstein 1, K. Pawelzik Institut für Theoretische Physik, Universität Bremen, Otto-Hahn-Allee

### Simple model of a limit order-driven market

Physica A 278 (2000) 571 578 www.elsevier.com/locate/physa Simple model of a limit order-driven market Sergei Maslov Department of Physics, Brookhaven National Laboratory, Upton, NY 11973, USA Received

### Statistical properties of short term price trends in high frequency stock market data

Physica A 387 (2008) 1218 1224 www.elsevier.com/locate/physa Statistical properties of short term price trends in high frequency stock market data Paweł Sieczka, Janusz A. Hołyst Faculty of Physics and

### Understandingthe cubic and half-cubic laws of nancial uctuations

Available online at www.sciencedirect.com Physica A 324 (2003) 1 5 www.elsevier.com/locate/physa Understandingthe cubic and half-cubic laws of nancial uctuations Xavier Gabaix a;, Parameswaran Gopikrishnan

### Large stock price changes: volume or liquidity?

Quantitative Finance, Vol., No. 1, February, 7 1 Large stock price changes: volume or liquidity? PHILIPP WEBER and BERND ROSENOW* Institut fu r Theoretische Physik, Universita t zu Ko ln, Ko ln D-93, Germany

### MODELING OF STOCK RETURNS AND TRADING VOLUME. Abstract

MODELING OF TOCK ETUN AND TADING OLUME TAIEI KAIZOJI 1 Graduate chool of Arts and ciences, International Christian University, 3-10-2 Osawa, Mitaka, Tokyo 181-8585, Japan Abstract In this study, we investigate

### A statistical analysis of product prices in online markets

JSPS Grants-in-Aid for Creative Scientific Research Understanding Inflation Dynamics of the Japanese Economy Working Paper Series No.40 A statistical analysis of product prices in online markets Takayuki

This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author s institution, sharing

### Short-term market reaction after extreme price changes of liquid stocks

Short-term market reaction after extreme price changes of liquid stocks Ádám G. Zawadowski 1,2, György Andor 2, and János Kertész 3,4 1 Department of Economics, Princeton University, Princeton, NJ 08544,

### Measurable inhomogeneities in stock trading volume flow

August 2008 EPL, 83 (2008) 30003 doi: 10.1209/0295-5075/83/30003 www.epljournal.org Measurable inhomogeneities in stock trading volume flow A. A. G. Cortines, R. Riera and C. Anteneodo (a) Departamento

### High-frequency trading in a limit order book

High-frequency trading in a limit order book Marco Avellaneda & Sasha Stoikov October 5, 006 Abstract We study a stock dealer s strategy for submitting bid and ask quotes in a limit order book. The agent

### The Power of Patience: A Behavioral Regularity in Limit Order Placement

The Power of Patience: A Behavioral Regularity in Limit Order Placement Ilija I. Zovko J. Doyne Farmer SFI WORKING PAPER: 22-6-27 SFI Working Papers contain accounts of scientific work of the author(s)

### STock prices on electronic exchanges are determined at each tick by a matching algorithm which matches buyers with

JOURNAL OF STELLAR MS&E 444 REPORTS 1 Adaptive Strategies for High Frequency Trading Erik Anderson and Paul Merolla and Alexis Pribula STock prices on electronic exchanges are determined at each tick by

### There is a saying on Wall Street that it takes volume to move

Cross-correlations between volume change and price change Boris Podobnik a,b,c,1, Davor Horvatic d, Alexander M. Petersen a, and H. Eugene Stanley a,1 a Center for Polymer Studies and Department of Physics,

### Concentration of Trading in S&P 500 Stocks. Recent studies and news reports have noted an increase in the average correlation

Concentration of Trading in S&P 500 Stocks Recent studies and news reports have noted an increase in the average correlation between stock returns in the U.S. markets over the last decade, especially for

Quantitative Finance, Vol. 12, No. 4, April 212, 559 566 High-frequency trading model for a complex trading hierarchy BORIS PODOBNIK*yzx{, DUAN WANGy and H. EUGENE STANLEYy Downloaded by [Boston University],

### Algorithmic Trading: Model of Execution Probability and Order Placement Strategy

Algorithmic Trading: Model of Execution Probability and Order Placement Strategy Chaiyakorn Yingsaeree A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

### Maximum entropy distribution of stock price fluctuations

Maximum entropy distribution of stock price fluctuations Rosario Bartiromo a Istituto di Struttura della Materia del CNR, via Fosso del Cavaliere 100, 00133 Roma, and Dipartimento di Fisica, Università

### Greed, fear and stock market dynamics

Physica A 343 (2004) 635 642 www.elsevier.com/locate/physa Greed, fear and stock market dynamics Frank H. Westerhoff Department of Economics, University of Osnabrueck, Rolandstrasse 8, 49069 Osnabrueck,

### Price fluctuations, market activity and trading volume

RESEARCH PAPER Q UANTITATIVE F INANCE V OLUME 1 (1) 262 269 quant.iop.org I NSTITUTE OF P HYSICS P UBLISHING Price fluctuations, market activity and trading volume Vasiliki Plerou 1,2, Parameswaran Gopikrishnan

### CITY UNIVERSITY OF HONG KONG DEPARTMENT OF PHYSICS AND MATERIALS SCIENCE

CITY UNIVERSITY OF HONG KONG DEPARTMENT OF PHYSICS AND MATERIALS SCIENCE BACHELOR OF SCIENCE (HONS) IN APPLIED PHYSICS 2011-2012 PROJECT REPORT Price fluctuation in financial markets by Chan Pui Hang March

### There s more to volatility than volume

There s more to volatility than volume László Gillemot, 1, 2 J. Doyne Farmer, 1 and Fabrizio Lillo 1, 3 1 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501 2 Budapest University of Technology

INTRADAY DYNAMICS AND BUY SELL ASYMMETRIES OF FINANCIAL MARKETS AARON MILLER UNIVERSITY OF NEW MEXICO, ALBUQUERQUE, NM 87131 Abstract. Financial markets exhibit strong stochastic behavior, making predictions

### Some Quantitative Issues in Pairs Trading

Research Journal of Applied Sciences, Engineering and Technology 5(6): 2264-2269, 2013 ISSN: 2040-7459; e-issn: 2040-7467 Maxwell Scientific Organization, 2013 Submitted: October 30, 2012 Accepted: December

### Modeling a foreign exchange rate using moving average of Yen-Dollar market data

Modeling a foreign exchange rate using moving average of Yen-Dollar market data Takayuki Mizuno 1, Misako Takayasu 1, Hideki Takayasu 2 1 Department of Computational Intelligence and Systems Science, Interdisciplinary

### Using JMP Version 4 for Time Series Analysis Bill Gjertsen, SAS, Cary, NC

Using JMP Version 4 for Time Series Analysis Bill Gjertsen, SAS, Cary, NC Abstract Three examples of time series will be illustrated. One is the classical airline passenger demand data with definite seasonal

### 4. Simple regression. QBUS6840 Predictive Analytics. https://www.otexts.org/fpp/4

4. Simple regression QBUS6840 Predictive Analytics https://www.otexts.org/fpp/4 Outline The simple linear model Least squares estimation Forecasting with regression Non-linear functional forms Regression

### An Alternative Route to Performance Hypothesis Testing

EDHEC-Risk Institute 393-400 promenade des Anglais 06202 Nice Cedex 3 Tel.: +33 (0)4 93 18 32 53 E-mail: research@edhec-risk.com Web: www.edhec-risk.com An Alternative Route to Performance Hypothesis Testing

### The Behavior of Bonds and Interest Rates. An Impossible Bond Pricing Model. 780 w Interest Rate Models

780 w Interest Rate Models The Behavior of Bonds and Interest Rates Before discussing how a bond market-maker would delta-hedge, we first need to specify how bonds behave. Suppose we try to model a zero-coupon

### Modeling and Forecasting of Gold Prices on Financial Markets

Modeling and Forecasting of Gold Prices on Financial Markets Rebecca Davis Department of Mathematical Sciences Pentecost University College Accra-Ghana. Vincent Kofi Dedu Department of Mathematics Kwame

### Asymptotic behavior of the daily increment distribution of the IPC, the mexican stock market index

INVESTIGACIÓN REVISTA MEXICANA DE FÍSICA 51 (1) 27 31 FEBRERO 2005 Asymptotic behavior of the daily increment distribution of the IPC, the mexican stock market index H.F. Coronel-Brizio and A.R. Hernández-Montoya

### arxiv:0905.4815v1 [q-fin.tr] 29 May 2009

Trading leads to scale-free self-organization M. Ebert and W. Paul Department of Physics, Johannes-Gutenberg University, 55099 Mainz, Germany (Dated: June 2, 2009) arxiv:0905.4815v1 [q-fin.tr] 29 May 2009

### Truncated Levy walks applied to the study of the behavior of Market Indices

Truncated Levy walks applied to the study of the behavior of Market Indices M.P. Beccar Varela 1 - M. Ferraro 2,3 - S. Jaroszewicz 2 M.C. Mariani 1 This work is devoted to the study of statistical properties

### A THEORY OF LIMITED LIQUIDITY AND LARGE INVESTORS CAUSING SPIKES IN STOCK MARKET VOLATILITY AND TRADING VOLUME

A THEORY OF LIMITED LIQUIDITY AND LARGE INVESTORS CAUSING SPIKES IN STOCK MARKET VOLATILITY AND TRADING VOLUME Xavier Gabaix MIT Parameswaran Gopikrishnan Boston University Vasiliki Plerou Boston University

### Implied Volatility Skews in the Foreign Exchange Market. Empirical Evidence from JPY and GBP: 1997-2002

Implied Volatility Skews in the Foreign Exchange Market Empirical Evidence from JPY and GBP: 1997-2002 The Leonard N. Stern School of Business Glucksman Institute for Research in Securities Markets Faculty

### Highly Active Manual FX Trading Strategy. 1.Used indicators. 2. Theory. 2.1. Standard deviation (stddev Indicator - standard MetaTrader 4 Indicator)

Highly Active Manual FX Trading Strategy This strategy based on a mixture of two styles of trading: forex scalping, trend following short-term strategy. You can use it for any currency. Timeframe M15.

### Studies in Nonlinear Dynamics & Econometrics

Studies in Nonlinear Dynamics & Econometrics Volume 8, Issue 3 2004 Article 1 The Long Memory of the Efficient Market Fabrizio Lillo J. Doyne Farmer Santa Fe Institute and Istituto Nazionale per la Fisica

### Modeling Stock Pinning

Modeling Stock Pinning Marc Jeannin (King s College), Giulia Iori (Cit Universit), David Samuel (Roal Bank of Scotland) COST P10, Vilnius Ma 13-16, 2006 0-0 What is Stock Pinning? With Stock Pinning we

### Algorithmic Trading Session 1 Introduction. Oliver Steinki, CFA, FRM

Algorithmic Trading Session 1 Introduction Oliver Steinki, CFA, FRM Outline An Introduction to Algorithmic Trading Definition, Research Areas, Relevance and Applications General Trading Overview Goals

### Behind Stock Price Movement: Supply and Demand in Market Microstructure and Market Influence SUMMER 2015 V O LUME10NUMBER3 WWW.IIJOT.

WWW.IIJOT.COM OT SUMMER 2015 V O LUME10NUMBER3 The Voices of Influence iijournals.com Behind Stock Price Movement: Supply and Demand in Market Microstructure and Market Influence JINGLE LIU AND SANGHYUN

### Quantitative Analysis of Foreign Exchange Rates

Quantitative Analysis of Foreign Exchange Rates Alexander Becker, Ching-Hao Wang Boston University, Department of Physics (Dated: today) In our class project we have explored foreign exchange data. We

### Chapter 29 Scale-Free Network Topologies with Clustering Similar to Online Social Networks

Chapter 29 Scale-Free Network Topologies with Clustering Similar to Online Social Networks Imre Varga Abstract In this paper I propose a novel method to model real online social networks where the growing

### Trade arrival dynamics and quote imbalance in a limit order book

Trade arrival dynamics and quote imbalance in a limit order book arxiv:1312.0514v1 [q-fin.tr] 2 Dec 2013 Alexander Lipton, Umberto Pesavento and Michael G Sotiropoulos 2 December 2013 Abstract We examine

### Evaluating the Efficient Market Hypothesis by means of isoquantile surfaces and the Hurst exponent

Evaluating the Efficient Market Hypothesis by means of isoquantile surfaces and the Hurst exponent 1 Introduction Kristýna Ivanková 1, Ladislav Krištoufek 2, Miloslav Vošvrda 3 Abstract. This article extends

### Supplement to Call Centers with Delay Information: Models and Insights

Supplement to Call Centers with Delay Information: Models and Insights Oualid Jouini 1 Zeynep Akşin 2 Yves Dallery 1 1 Laboratoire Genie Industriel, Ecole Centrale Paris, Grande Voie des Vignes, 92290

### Execution Costs. Post-trade reporting. December 17, 2008 Robert Almgren / Encyclopedia of Quantitative Finance Execution Costs 1

December 17, 2008 Robert Almgren / Encyclopedia of Quantitative Finance Execution Costs 1 Execution Costs Execution costs are the difference in value between an ideal trade and what was actually done.

### CROSS-CORRELATION BETWEEN STOCK PRICES IN FINANCIAL MARKETS. 1. Introduction

CROSS-CORRELATION BETWEEN STOCK PRICES IN FINANCIAL MARKETS R. N. MANTEGNA Istituto Nazionale per la Fisica della Materia, Unità di Palermo and Dipartimento di Energetica ed Applicazioni di Fisica, Università

### The non-random walk of stock prices: the long-term correlation between signs and sizes

Eur. Phys. J. B (2008) DOI: 10.1140/epjb/e2008-00244-4 THE EUROPEAN PHYSICAL JOURNAL B The non-random walk of stock prices: the long-term correlation between signs and sizes G. La Spada 1,2,a,J.D.Farmer

### Is the Forward Exchange Rate a Useful Indicator of the Future Exchange Rate?

Is the Forward Exchange Rate a Useful Indicator of the Future Exchange Rate? Emily Polito, Trinity College In the past two decades, there have been many empirical studies both in support of and opposing

### Dynamics ofprice and trading volume in a spin model ofstock markets with heterogeneous agents

Physica A 316 (2002) 441 452 www.elsevier.com/locate/physa Dynamics ofprice and trading volume in a spin model ofstock markets with heterogeneous agents Taisei Kaizoji a;, Stefan Bornholdt b, Yoshi Fujiwara

### Lisa Borland. A multi-timescale statistical feedback model of volatility: Stylized facts and implications for option pricing

Evnine-Vaughan Associates, Inc. A multi-timescale statistical feedback model of volatility: Stylized facts and implications for option pricing Lisa Borland October, 2005 Acknowledgements: Jeremy Evnine

### LOCAL SCALING PROPERTIES AND MARKET TURNING POINTS AT PRAGUE STOCK EXCHANGE

Vol. 41 (2010) ACTA PHYSICA POLONICA B No 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 LOCAL SCALING PROPERTIES AND MARKET TURNING POINTS AT PRAGUE STOCK EXCHANGE Ladislav Kristoufek Institute

### TOWARDS A THEORY OF HETEROGENEOUS MARKETS

12 TOWARDS A THEORY OF HETEROGENEOUS MARKETS At the end of this in-depth review of some of the techniques and models used with high frequency data, there is a clear evidence that foreign exchange and other

### BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I

BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential

### Modelling Emergence of Money

Vol. 117 (2010) ACTA PHYSICA POLONICA A No. 4 Proceedings of the 4th Polish Symposium on Econo- and Sociophysics, Rzeszów, Poland, May 7 9, 2009 Modelling Emergence of Money A.Z. Górski a, S. Drożdż a,b

### Scale-free user-network approach to telephone network traffic analysis

Scale-free user-network approach to telephone network traffic analysis Yongxiang Xia,* Chi K. Tse, WaiM.Tam, Francis C. M. Lau, and Michael Small Department of Electronic and Information Engineering, Hong

### JetBlue Airways Stock Price Analysis and Prediction

JetBlue Airways Stock Price Analysis and Prediction Team Member: Lulu Liu, Jiaojiao Liu DSO530 Final Project JETBLUE AIRWAYS STOCK PRICE ANALYSIS AND PREDICTION 1 Motivation Started in February 2000, JetBlue

### MATH BOOK OF PROBLEMS SERIES. New from Pearson Custom Publishing!

MATH BOOK OF PROBLEMS SERIES New from Pearson Custom Publishing! The Math Book of Problems Series is a database of math problems for the following courses: Pre-algebra Algebra Pre-calculus Calculus Statistics

### CREATING A CORPORATE BOND SPOT YIELD CURVE FOR PENSION DISCOUNTING DEPARTMENT OF THE TREASURY OFFICE OF ECONOMIC POLICY WHITE PAPER FEBRUARY 7, 2005

CREATING A CORPORATE BOND SPOT YIELD CURVE FOR PENSION DISCOUNTING I. Introduction DEPARTMENT OF THE TREASURY OFFICE OF ECONOMIC POLICY WHITE PAPER FEBRUARY 7, 2005 Plan sponsors, plan participants and

### Lecture 8: More Continuous Random Variables

Lecture 8: More Continuous Random Variables 26 September 2005 Last time: the eponential. Going from saying the density e λ, to f() λe λ, to the CDF F () e λ. Pictures of the pdf and CDF. Today: the Gaussian

### LOGNORMAL MODEL FOR STOCK PRICES

LOGNORMAL MODEL FOR STOCK PRICES MICHAEL J. SHARPE MATHEMATICS DEPARTMENT, UCSD 1. INTRODUCTION What follows is a simple but important model that will be the basis for a later study of stock prices as

### Correlations and clustering in the trading of members of the London Stock Exchange

Correlations and clustering in the trading of members of the London Stock Exchange Ilija I. Zovko Center for Nonlinear Dynamics in Economics and Finance, University of Amsterdam, The Netherlands Santa

### Effects of node buffer and capacity on network traffic

Chin. Phys. B Vol. 21, No. 9 (212) 9892 Effects of node buffer and capacity on network traffic Ling Xiang( 凌 翔 ) a), Hu Mao-Bin( 胡 茂 彬 ) b), and Ding Jian-Xun( 丁 建 勋 ) a) a) School of Transportation Engineering,

### MARKETS, INFORMATION AND THEIR FRACTAL ANALYSIS. Mária Bohdalová and Michal Greguš Comenius University, Faculty of Management Slovak republic

MARKETS, INFORMATION AND THEIR FRACTAL ANALYSIS Mária Bohdalová and Michal Greguš Comenius University, Faculty of Management Slovak republic Abstract: We will summarize the impact of the conflict between

### The Performance of Option Trading Software Agents: Initial Results

The Performance of Option Trading Software Agents: Initial Results Omar Baqueiro, Wiebe van der Hoek, and Peter McBurney Department of Computer Science, University of Liverpool, Liverpool, UK {omar, wiebe,

### Multi-scaling Modelling in Financial Markets

Multi-scaling Modelling in Financial Markets Ruipeng Liu 1,2,3, Tomaso Aste 2 and T. Di Matteo 2 1 School of Acc. Econ. and Finance, Deakin University, Burwood, 3125 Melbourne, Australia 2 Department of

### Calculator Notes for the TI-Nspire and TI-Nspire CAS

CHAPTER 11 Calculator Notes for the Note 11A: Entering e In any application, press u to display the value e. Press. after you press u to display the value of e without an exponent. Note 11B: Normal Graphs

### Scaling the volatility of GDP growth rates

Economics Letters 60 (1998) 335 341 Scaling the volatility of GDP growth rates a,b, d c c c D. Canning *, L.A.N. Amaral, Y. Lee, M. Meyer, H.E. Stanley a Queen s University of Belfast, Belfast, UK b Harvard

### VI. Real Business Cycles Models

VI. Real Business Cycles Models Introduction Business cycle research studies the causes and consequences of the recurrent expansions and contractions in aggregate economic activity that occur in most industrialized

### Realized Volatility and Absolute Return Volatility: A Comparison Indicating Market Risk

: A Comparison Indicating Market Risk Zeyu Zheng 1,2 *., Zhi Qiao 2,3 *., Tetsuya Takaishi 4, H. Eugene Stanley 5, Baowen Li 2,3 1 Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang,

### Power-law Price-impact Models and Stock Pinning near Option Expiration Dates. Marco Avellaneda Gennady Kasyan Michael D. Lipkin

Power-law Price-impact Models and Stock Pinning near Option Expiration Dates Marco Avellaneda Gennady Kasyan Michael D. Lipkin PDE in Finance, Stockholm, August 7 Summary Empirical evidence of stock pinning

### PUBLIC TRANSPORT SYSTEMS IN POLAND: FROM BIAŁYSTOK TO ZIELONA GÓRA BY BUS AND TRAM USING UNIVERSAL STATISTICS OF COMPLEX NETWORKS

Vol. 36 (2005) ACTA PHYSICA POLONICA B No 5 PUBLIC TRANSPORT SYSTEMS IN POLAND: FROM BIAŁYSTOK TO ZIELONA GÓRA BY BUS AND TRAM USING UNIVERSAL STATISTICS OF COMPLEX NETWORKS Julian Sienkiewicz and Janusz

### Summary of Probability

Summary of Probability Mathematical Physics I Rules of Probability The probability of an event is called P(A), which is a positive number less than or equal to 1. The total probability for all possible

### arxiv:physics/0601033 v1 6 Jan 2006

Analysis of telephone network traffic based on a complex user network Yongxiang Xia, Chi K. Tse, Francis C. M. Lau, Wai Man Tam, Michael Small arxiv:physics/0601033 v1 6 Jan 2006 Department of Electronic

### Appendix C: Graphs. Vern Lindberg

Vern Lindberg 1 Making Graphs A picture is worth a thousand words. Graphical presentation of data is a vital tool in the sciences and engineering. Good graphs convey a great deal of information and can

### Tail-Dependence an Essential Factor for Correctly Measuring the Benefits of Diversification

Tail-Dependence an Essential Factor for Correctly Measuring the Benefits of Diversification Presented by Work done with Roland Bürgi and Roger Iles New Views on Extreme Events: Coupled Networks, Dragon

### A Simple Model for Intra-day Trading

A Simple Model for Intra-day Trading Anton Golub 1 1 Marie Curie Fellow, Manchester Business School April 15, 2011 Abstract Since currency market is an OTC market, there is no information about orders,

### Order book approach to price impact

Quantitative Finance, Vol. 5, No. 4, August 25, 357 364 Order book approach to price impact P. WEBER and B. ROSENOW* Institut fu r Theoretische Physik, Universita t zu Ko ln, D-5923 Germany (Received 16

### arxiv:cond-mat/0402591v2 [cond-mat.other] 4 Mar 2004

arxiv:cond-mat/0402591v2 [cond-mat.other] 4 Mar 2004 Inverse Statistics in the Foreign Exchange Market M.H.Jensen, a A.Johansen, b F.Petroni, c I.Simonsen d a Niels Bohr Institute, Blegdamsvej 17, DK-2100

### Winning the Kaggle Algorithmic Trading Challenge with the Composition of Many Models and Feature Engineering

IEICE Transactions on Information and Systems, vol.e96-d, no.3, pp.742-745, 2013. 1 Winning the Kaggle Algorithmic Trading Challenge with the Composition of Many Models and Feature Engineering Ildefons

### MATH. ALGEBRA I HONORS 9 th Grade 12003200 ALGEBRA I HONORS

* Students who scored a Level 3 or above on the Florida Assessment Test Math Florida Standards (FSA-MAFS) are strongly encouraged to make Advanced Placement and/or dual enrollment courses their first choices

### GRADES 7, 8, AND 9 BIG IDEAS

Table 1: Strand A: BIG IDEAS: MATH: NUMBER Introduce perfect squares, square roots, and all applications Introduce rational numbers (positive and negative) Introduce the meaning of negative exponents for

### 8. Time Series and Prediction

8. Time Series and Prediction Definition: A time series is given by a sequence of the values of a variable observed at sequential points in time. e.g. daily maximum temperature, end of day share prices,

### Forecasting Methods. What is forecasting? Why is forecasting important? How can we evaluate a future demand? How do we make mistakes?

Forecasting Methods What is forecasting? Why is forecasting important? How can we evaluate a future demand? How do we make mistakes? Prod - Forecasting Methods Contents. FRAMEWORK OF PLANNING DECISIONS....

### Online Appendix to Impatient Trading, Liquidity. Provision, and Stock Selection by Mutual Funds

Online Appendix to Impatient Trading, Liquidity Provision, and Stock Selection by Mutual Funds Zhi Da, Pengjie Gao, and Ravi Jagannathan This Draft: April 10, 2010 Correspondence: Zhi Da, Finance Department,

### Time Series Analysis

Time Series Analysis Identifying possible ARIMA models Andrés M. Alonso Carolina García-Martos Universidad Carlos III de Madrid Universidad Politécnica de Madrid June July, 2012 Alonso and García-Martos

### SIMPLIFIED PERFORMANCE MODEL FOR HYBRID WIND DIESEL SYSTEMS. J. F. MANWELL, J. G. McGOWAN and U. ABDULWAHID

SIMPLIFIED PERFORMANCE MODEL FOR HYBRID WIND DIESEL SYSTEMS J. F. MANWELL, J. G. McGOWAN and U. ABDULWAHID Renewable Energy Laboratory Department of Mechanical and Industrial Engineering University of

### Age to Age Factor Selection under Changing Development Chris G. Gross, ACAS, MAAA

Age to Age Factor Selection under Changing Development Chris G. Gross, ACAS, MAAA Introduction A common question faced by many actuaries when selecting loss development factors is whether to base the selected