Vertex Cover. Linear Progamming and Approximation Algorithms. Joshua Wetzel


 Kevin Stanley
 1 years ago
 Views:
Transcription
1 Linear Progamming and Approximation Algorithms Joshua Wetzel Department of Computer Science Rutgers University Camden March 24, 29 Joshua Wetzel / 52
2 What is Linear Programming? Optimize a linear objective fn subject to linear constraints. Examples: min 7x + x 2 + 3x 3 s.t. x x 2 + 3x 3 5x + 2x 2 x 3 6 x, x 2, x 3 max 6x + 2x 2 4x 3 s.t. 5x + x 2 2x 3 4 2x 2x 2 + 4x 3 2 x, x 2, x 3 Joshua Wetzel 2 / 52
3 Feasible Solutions: Upper Bounding OPT Linear Program: min 7x + x 2 + 3x 3 s.t. x x 2 + 3x 3 5x + 2x 2 x 3 6 x, x 2, x 3 Feasible Solutions: x = 2, x 2 =, x 3 = 4 7(2) + () + 5(4) = 35 x = 8 5, x 2 = 2, x 3 = 3 7( 8 5 ) + ( 2 ) + 5(3) = 26.7 All constraints are satisfied. OPT 35, OPT 26.7 Joshua Wetzel 3 / 52
4 Finding a Lower Bound on OPT Linear Program: min 7x + x 2 + 3x 3 s.t. x x 2 + 3x 3 5x + 2x 2 x 3 6 x, x 2, x 3 OPT? Joshua Wetzel 4 / 52
5 Lower Bounding OPT: Adding the Constraints min 7x + x 2 + 3x 3 s.t. x x 2 + 3x 3 + 5x + 2x 2 x 3 6 6x + x 2 + 2x 3 6 OPT 6 Joshua Wetzel 5 / 52
6 Lower Bounding OPT min 7x + x 2 + 3x 3 s.t. x x 2 + 3x 3 (y ) + 5x + 2x 2 x 3 6 (y 2 ) x ( y + 5y 2 ) + x 2 ( y + 2y 2 ) + x 3 ( 3y y 2 ) y + 6y 2 y + 6y 2 is a lower bound on OPT if: y + 5y 2 7 y + 2y 2 3y y 2 3 Joshua Wetzel 6 / 52
7 LP to Lower Bound OPT max y + 6y 2 s.t. y + 5y 2 7 y + 2y 2 3y y 2 3 y, y 2 Joshua Wetzel 7 / 52
8 Primal LP and Dual LP Primal LP: min 7x + x 2 + 3x 3 s.t. x x 2 + 3x 3 5x + 2x 2 x 3 6 x, x 2, x 3 Dual LP: max y + 6y 2 s.t. y + 5y 2 7 y + 2y 2 3y y 2 3 y, y 2 Every primal LP has a corresponding dual LP. If the primal is a min problem, the dual is a max problem. There is a dual constraint corresponding to each primal variable. Joshua Wetzel 8 / 52
9 LP Duality Theorems Dual Feasible Dual OPT = Primal OPT Primal Feasible The Primal LP: min 7x + x 2 + 3x 3 s.t. x x 2 + 3x 3 5x + 2x 2 x 3 6 x, x 2, x 3 The Dual LP: max y + 6y 2 s.t. y + 5y 2 7 y + 2y 2 3y y 2 3 y, y 2 Joshua Wetzel 9 / 52
10 Input: Given G = (V, E) Nonnegative weights on vertices Objective: Find a leastweight collection of vertices such that each edge in G in incident on at least one vertex in the collection. Joshua Wetzel / 52
11 : Example COST = 97 COST = 8 Joshua Wetzel / 52
12 Approximation Algorithms NPhard problems. No optimal polytime algorithms are known βapproximation alg., A, for a minimization problem P polytime algorithm. for every instance I of P, A produces solution of cost at most β OPT(I) OPT(I)? Joshua Wetzel 2 / 52
13 Approximation Algorithms compute a lower bound on OPT. compare cost of our solution with the lower bound. lower bound OPT upper bound β Joshua Wetzel 3 / 52
14 Input: Given G = (V, E) Nonnegative weights on vertices Objective: Find a leastweight collection of vertices such that each edge in G in incident on at least one vertex in the collection Joshua Wetzel 4 / 52
15 Unweighted : Algorithm Find a maximal matching in G Include in our cover both vertices incident on each edge of the matching Joshua Wetzel 5 / 52
16 Unweighted : Example Joshua Wetzel 6 / 52
17 Unweighted : Example Joshua Wetzel 7 / 52
18 Unweighted : Example Joshua Wetzel 8 / 52
19 Unweighted : Example Cost = 6 Joshua Wetzel 9 / 52
20 Analysis: Feasibility Every black edge shares a vertex with a green edge Joshua Wetzel 2 / 52
21 Analysis: Approximation Guarantee OPT has to choose at least one endpoint from each green edge. We choose both endpoints for each green edge. Hence: Our Cost 2OPT Joshua Wetzel 2 / 52
22 Unweighted : Tight Example OPT = 3 COST Alg = 6 Joshua Wetzel 22 / 52
23 Bad Example OPT = Cost Alg = 2 Joshua Wetzel 23 / 52
24 : IP Formulation x v if v is in our cover, otherwise min w v x v s.t. v V x a + x b, e = (a, b) x v {, }, v V Joshua Wetzel 24 / 52
25 LP Relaxation Integer programs have been shown to be NPhard Relax the integrality constraints x v {, }, v V min s.t. w v x v v V x a + x b, e = (a, b) x v, v V Joshua Wetzel 25 / 52
26 Why Do This? LP can be solved in polynomial time Every solution to the IP is also a solution to the LP Hence: OPT LP OPT IP We can use OPT LP as a lower bound on OPT IP Joshua Wetzel 26 / 52
27 LP Solution: Example x a + x b, e = (a, b) x v, v V /2 x a + x b, e = (a, b) x v {, }, v V /2 /2 OPT LP =.5 OPT IP = 2 Joshua Wetzel 27 / 52
28 Algorithm x optimal LP soln. ˆx v if x v 2, otherwise ˆx v Include v in our cover iff ˆx v = Joshua Wetzel 28 / 52
29 Analysis: Feasibility min s.t. w v x v v V x a + x b, e = (a, b) x v, v V x a 2 or x b 2 ˆx a = or ˆx b = Joshua Wetzel 29 / 52
30 Analysis: Approximation Guarantee Our Cost = v C w v = v V w vˆx v v V w v (2x v) = 2 v V w v x v = 2OPT LP 2OPT IP Joshua Wetzel 3 / 52
31 : Tight Example /2 /2 /2 OPT LP =.5 Our Cost = 3 Joshua Wetzel 3 / 52
32 Method Primal OPT OPT IP Solving the LP is expensive. Dual Feasible Dual OPT = Primal OPT Primal Feasible Better Alternative: Construct the dual LP Construct an algorithm that manually tightens dual constraints to obtain a maximal dual solution Joshua Wetzel 32 / 52
33 Constructing the Dual LP Primal LP: min s.t. w v x v v V x a + x b, e = (a, b) (y e ) x v, v V Joshua Wetzel 33 / 52
34 Primal LP and Dual LP min s.t. Primal LP: w v x max v v V x a + x b, e = (a, b) x v, v V s.t. e E Dual LP: y e y e w v, v V e : e hits v y e, e E Joshua Wetzel 34 / 52
35 BarYehuda and Even Algorithm Inititally all edges are uncovered. While an uncovered edge in G: Choose an arbitrary edge, e Raise the value of y e for that edge until one of its incident vertices, v, becomes full (i.e y e = w v ) e:e hits v C C {v} Any edge that touches v is considered to be covered Return C as our vertex cover Joshua Wetzel 35 / 52
36 BarYehuda and Even Algorithm: Example Joshua Wetzel 36 / 52
37 BarYehuda and Even Algorithm: Example y e w v e:e hits v Arbitrarily choose e and raise y e until a vertex is full Joshua Wetzel 37 / 52
38 BarYehuda and Even Algorithm: Example y e w v e:e hits v Joshua Wetzel 38 / 52
39 BarYehuda and Even Algorithm: Example y e w v e:e hits v Joshua Wetzel 39 / 52
40 BarYehuda and Even Algorithm: Example y e w v e:e hits v Joshua Wetzel 4 / 52
41 BarYehuda and Even Algorithm: Example y e w v e:e hits v Joshua Wetzel 4 / 52
42 BarYehuda and Even Algorithm: Example y e w v e:e hits v Joshua Wetzel 42 / 52
43 BarYehuda and Even Algorithm: Example y e w v e:e hits v Joshua Wetzel 43 / 52
44 BarYehuda and Even Algorithm: Example y e w v e:e hits v Joshua Wetzel 44 / 52
45 BarYehuda and Even Algorithm: Example y e w v e:e hits v Joshua Wetzel 45 / 52
46 BarYehuda and Even Algorithm: Example y e w v e:e hits v Joshua Wetzel 46 / 52
47 BarYehuda and Even Algorithm: Example Cost = 7 Joshua Wetzel 47 / 52
48 BarYehuda and Even Algorithm: Analysis Dual Obj. Fn: max e y e y e w v e:e hits v Our Cost = wt(red vertices) 2 e hits red 2 e = 2DFS y e 2OPT y e Joshua Wetzel 48 / 52
49 BarYehuda and Even Algorithm: Tight Example 6 6 COST OPT = 6 COST BarYehuda = 2 Joshua Wetzel 49 / 52
50 Integrality Gap /2 /2 /2 OPT LP =.5 OPT IP = 2 For a complete graph of n vertices OPT LP = n/2 OPT IP = n OPT lim IP n OPT LP = lim n n (n/2) = 2 Joshua Wetzel 5 / 52
51 Reference R. BarYehuda and S. Even. A linear time approximation algorithm for the weighted vertex cover problem. J. of Algorithms 2:9823, 98. Joshua Wetzel 5 / 52
52 Thank You. Joshua Wetzel 52 / 52
Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling
Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NPhard problem. What should I do? A. Theory says you're unlikely to find a polytime algorithm. Must sacrifice one
More information! Solve problem to optimality. ! Solve problem in polytime. ! Solve arbitrary instances of the problem. #approximation algorithm.
Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NPhard problem What should I do? A Theory says you're unlikely to find a polytime algorithm Must sacrifice one of three
More information! Solve problem to optimality. ! Solve problem in polytime. ! Solve arbitrary instances of the problem. !approximation algorithm.
Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NPhard problem What should I do? A Theory says you're unlikely to find a polytime algorithm Must sacrifice one of
More informationAlgorithm Design and Analysis
Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;
More informationApproximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NPCompleteness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
More informationMinimum Makespan Scheduling
Minimum Makespan Scheduling Minimum makespan scheduling: Definition and variants Factor 2 algorithm for identical machines PTAS for identical machines Factor 2 algorithm for unrelated machines Martin Zachariasen,
More informationApplied Algorithm Design Lecture 5
Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design
More informationLinear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.
Linear Programming Widget Factory Example Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory:, Vertices, Existence of Solutions. Equivalent formulations.
More informationLecture 3: Linear Programming Relaxations and Rounding
Lecture 3: Linear Programming Relaxations and Rounding 1 Approximation Algorithms and Linear Relaxations For the time being, suppose we have a minimization problem. Many times, the problem at hand can
More information11. APPROXIMATION ALGORITHMS
11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Lecture slides by Kevin Wayne Copyright 2005
More information4.6 Linear Programming duality
4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal
More informationDefinition of a Linear Program
Definition of a Linear Program Definition: A function f(x 1, x,..., x n ) of x 1, x,..., x n is a linear function if and only if for some set of constants c 1, c,..., c n, f(x 1, x,..., x n ) = c 1 x 1
More informationTopic: Greedy Approximations: Set Cover and Min Makespan Date: 1/30/06
CS880: Approximations Algorithms Scribe: Matt Elder Lecturer: Shuchi Chawla Topic: Greedy Approximations: Set Cover and Min Makespan Date: 1/30/06 3.1 Set Cover The Set Cover problem is: Given a set of
More informationProximal mapping via network optimization
L. Vandenberghe EE236C (Spring 234) Proximal mapping via network optimization minimum cut and maximum flow problems parametric minimum cut problem application to proximal mapping Introduction this lecture:
More information3. Linear Programming and Polyhedral Combinatorics
Massachusetts Institute of Technology Handout 6 18.433: Combinatorial Optimization February 20th, 2009 Michel X. Goemans 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the
More informationCombinatorial Algorithms for Data Migration to Minimize Average Completion Time
Combinatorial Algorithms for Data Migration to Minimize Average Completion Time Rajiv Gandhi 1 and Julián Mestre 1 Department of Computer Science, Rutgers UniversityCamden, Camden, NJ 0810. Research partially
More information2.3 Scheduling jobs on identical parallel machines
2.3 Scheduling jobs on identical parallel machines There are jobs to be processed, and there are identical machines (running in parallel) to which each job may be assigned Each job = 1,,, must be processed
More informationLECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method
LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method Introduction to dual linear program Given a constraint matrix A, right
More informationprinceton univ. F 13 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Sanjeev Arora
princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Sanjeev Arora Scribe: One of the running themes in this course is the notion of
More informationLecture 11: 01 Quadratic Program and Lower Bounds
Lecture :  Quadratic Program and Lower Bounds (3 units) Outline Problem formulations Reformulation: Linearization & continuous relaxation Branch & Bound Method framework Simple bounds, LP bound and semidefinite
More informationPermutation Betting Markets: Singleton Betting with Extra Information
Permutation Betting Markets: Singleton Betting with Extra Information Mohammad Ghodsi Sharif University of Technology ghodsi@sharif.edu Hamid Mahini Sharif University of Technology mahini@ce.sharif.edu
More informationLinear Programming Notes V Problem Transformations
Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material
More informationDefinition 11.1. Given a graph G on n vertices, we define the following quantities:
Lecture 11 The Lovász ϑ Function 11.1 Perfect graphs We begin with some background on perfect graphs. graphs. First, we define some quantities on Definition 11.1. Given a graph G on n vertices, we define
More informationNan Kong, Andrew J. Schaefer. Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA
A Factor 1 2 Approximation Algorithm for TwoStage Stochastic Matching Problems Nan Kong, Andrew J. Schaefer Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA Abstract We introduce
More informationOnline Adwords Allocation
Online Adwords Allocation Shoshana Neuburger May 6, 2009 1 Overview Many search engines auction the advertising space alongside search results. When Google interviewed Amin Saberi in 2004, their advertisement
More information5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1
5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition
More information8.1 Min Degree Spanning Tree
CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree
More informationA Branch and Bound Algorithm for Solving the Binary Bilevel Linear Programming Problem
A Branch and Bound Algorithm for Solving the Binary Bilevel Linear Programming Problem John Karlof and Peter Hocking Mathematics and Statistics Department University of North Carolina Wilmington Wilmington,
More informationTHE PROBLEM WORMS (1) WORMS (2) THE PROBLEM OF WORM PROPAGATION/PREVENTION THE MINIMUM VERTEX COVER PROBLEM
1 THE PROBLEM OF WORM PROPAGATION/PREVENTION I.E. THE MINIMUM VERTEX COVER PROBLEM Prof. Tiziana Calamoneri Network Algorithms A.y. 2014/15 2 THE PROBLEM WORMS (1)! A computer worm is a standalone malware
More informationRouting in Line Planning for Public Transport
KonradZuseZentrum für Informationstechnik Berlin Takustraße 7 D14195 BerlinDahlem Germany MARC E. PFETSCH RALF BORNDÖRFER Routing in Line Planning for Public Transport Supported by the DFG Research
More informationApproximating Minimum Bounded Degree Spanning Trees to within One of Optimal
Approximating Minimum Bounded Degree Spanning Trees to within One of Optimal ABSTACT Mohit Singh Tepper School of Business Carnegie Mellon University Pittsburgh, PA USA mohits@andrew.cmu.edu In the MINIMUM
More informationARTICLE IN PRESS. European Journal of Operational Research xxx (2004) xxx xxx. Discrete Optimization. Nan Kong, Andrew J.
A factor 1 European Journal of Operational Research xxx (00) xxx xxx Discrete Optimization approximation algorithm for twostage stochastic matching problems Nan Kong, Andrew J. Schaefer * Department of
More informationCSC2420 Spring 2015: Lecture 3
CSC2420 Spring 2015: Lecture 3 Allan Borodin January 22, 2015 1 / 1 Announcements and todays agenda Assignment 1 due next Thursday. I may add one or two additional questions today or tomorrow. Todays agenda
More informationSome Optimization Fundamentals
ISyE 3133B Engineering Optimization Some Optimization Fundamentals Shabbir Ahmed Email: sahmed@isye.gatech.edu Homepage: www.isye.gatech.edu/~sahmed Basic Building Blocks min or max s.t. objective as
More informationTransportation Polytopes: a Twenty year Update
Transportation Polytopes: a Twenty year Update Jesús Antonio De Loera University of California, Davis Based on various papers joint with R. Hemmecke, E.Kim, F. Liu, U. Rothblum, F. Santos, S. Onn, R. Yoshida,
More informationPrimalDual Schema for Capacitated Covering Problems
PrimalDual Schema for Capacitated Covering Problems Tim Carnes and David Shmoys Cornell University, Ithaca NY 14853, USA Abstract. Primaldual algorithms have played an integral role in recent developments
More informationAnalysis of Approximation Algorithms for kset Cover using FactorRevealing Linear Programs
Analysis of Approximation Algorithms for kset Cover using FactorRevealing Linear Programs Stavros Athanassopoulos, Ioannis Caragiannis, and Christos Kaklamanis Research Academic Computer Technology Institute
More informationOn the effect of forwarding table size on SDN network utilization
IBM Haifa Research Lab On the effect of forwarding table size on SDN network utilization Rami Cohen IBM Haifa Research Lab Liane Lewin Eytan Yahoo Research, Haifa Seffi Naor CS Technion, Israel Danny Raz
More informationONLINE DEGREEBOUNDED STEINER NETWORK DESIGN. Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015
ONLINE DEGREEBOUNDED STEINER NETWORK DESIGN Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015 ONLINE STEINER FOREST PROBLEM An initially given graph G. s 1 s 2 A sequence of demands (s i, t i ) arriving
More informationArrangements And Duality
Arrangements And Duality 3.1 Introduction 3 Point configurations are tbe most basic structure we study in computational geometry. But what about configurations of more complicated shapes? For example,
More information. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2
4. Basic feasible solutions and vertices of polyhedra Due to the fundamental theorem of Linear Programming, to solve any LP it suffices to consider the vertices (finitely many) of the polyhedron P of the
More information9th MaxPlanck Advanced Course on the Foundations of Computer Science (ADFOCS) PrimalDual Algorithms for Online Optimization: Lecture 1
9th MaxPlanck Advanced Course on the Foundations of Computer Science (ADFOCS) PrimalDual Algorithms for Online Optimization: Lecture 1 Seffi Naor Computer Science Dept. Technion Haifa, Israel Introduction
More informationDuality in General Programs. Ryan Tibshirani Convex Optimization 10725/36725
Duality in General Programs Ryan Tibshirani Convex Optimization 10725/36725 1 Last time: duality in linear programs Given c R n, A R m n, b R m, G R r n, h R r : min x R n c T x max u R m, v R r b T
More informationAnswers to some of the exercises.
Answers to some of the exercises. Chapter 2. Ex.2.1 (a) There are several ways to do this. Here is one possibility. The idea is to apply the kcenter algorithm first to D and then for each center in D
More informationOnline Matching and Ad Allocation. Contents
Foundations and Trends R in Theoretical Computer Science Vol. 8, No. 4 (2012) 265 368 c 2013 A. Mehta DOI: 10.1561/0400000057 Online Matching and Ad Allocation By Aranyak Mehta Contents 1 Introduction
More informationPermutation Betting Markets: Singleton Betting with Extra Information
Permutation Betting Markets: Singleton Betting with Extra Information Mohammad Ghodsi Sharif University of Technology ghodsi@sharif.edu Hamid Mahini Sharif University of Technology mahini@ce.sharif.edu
More informationSolving Integer Programming with BranchandBound Technique
Solving Integer Programming with BranchandBound Technique This is the divide and conquer method. We divide a large problem into a few smaller ones. (This is the branch part.) The conquering part is done
More informationDiscrete Optimization
Discrete Optimization [Chen, Batson, Dang: Applied integer Programming] Chapter 3 and 4.14.3 by Johan Högdahl and Victoria Svedberg Seminar 2, 20150331 Todays presentation Chapter 3 Transforms using
More informationMax Flow, Min Cut, and Matchings (Solution)
Max Flow, Min Cut, and Matchings (Solution) 1. The figure below shows a flow network on which an st flow is shown. The capacity of each edge appears as a label next to the edge, and the numbers in boxes
More informationOn the Unique Games Conjecture
On the Unique Games Conjecture Antonios Angelakis National Technical University of Athens June 16, 2015 Antonios Angelakis (NTUA) Theory of Computation June 16, 2015 1 / 20 Overview 1 Introduction 2 Preliminary
More information56:171. Operations Research  Sample Homework Assignments Fall 1992 Dennis Bricker Dept. of Industrial Engineering University of Iowa.
56:171 Operations Research  Sample Homework Assignments Fall 1992 Dennis Bricker Dept. of Industrial Engineering University of Iowa Homework #1 (1.) Linear Programming Model Formulation. SunCo processes
More informationLecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method
Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming
More informationCHAPTER 9. Integer Programming
CHAPTER 9 Integer Programming An integer linear program (ILP) is, by definition, a linear program with the additional constraint that all variables take integer values: (9.1) max c T x s t Ax b and x integral
More informationFacility Location: Discrete Models and Local Search Methods
Facility Location: Discrete Models and Local Search Methods Yury KOCHETOV Sobolev Institute of Mathematics, Novosibirsk, Russia Abstract. Discrete location theory is one of the most dynamic areas of operations
More information5.1 Bipartite Matching
CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the FordFulkerson
More informationA2 1 10Approximation Algorithm for a Generalization of the Weighted EdgeDominating Set Problem
Journal of Combinatorial Optimization, 5, 317 326, 2001 c 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. A2 1 Approximation Algorithm for a Generalization of the Weighted EdgeDominating
More informationScheduling Parallel Machine Scheduling. Tim Nieberg
Scheduling Parallel Machine Scheduling Tim Nieberg Problem P C max : m machines n jobs with processing times p 1,..., p n Problem P C max : m machines n jobs with processing times p 1,..., p { n 1 if job
More informationEfficient and Robust Allocation Algorithms in Clouds under Memory Constraints
Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Olivier Beaumont,, Paul RenaudGoud Inria & University of Bordeaux Bordeaux, France 9th Scheduling for Large Scale Systems
More information26 Linear Programming
The greatest flood has the soonest ebb; the sorest tempest the most sudden calm; the hottest love the coldest end; and from the deepest desire oftentimes ensues the deadliest hate. Th extremes of glory
More informationDantzigWolfe bound and DantzigWolfe cookbook
DantzigWolfe bound and DantzigWolfe cookbook thst@man.dtu.dk DTUManagement Technical University of Denmark 1 Outline LP strength of the DantzigWolfe The exercise from last week... The DantzigWolfe
More informationMathematical finance and linear programming (optimization)
Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may
More informationScheduling Shop Scheduling. Tim Nieberg
Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations
More informationBranch and Cut for TSP
Branch and Cut for TSP jla,jc@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark 1 BranchandCut for TSP BranchandCut is a general technique applicable e.g. to solve symmetric
More informationAn Approximation Algorithm for Bounded Degree Deletion
An Approximation Algorithm for Bounded Degree Deletion Tomáš Ebenlendr Petr Kolman Jiří Sgall Abstract Bounded Degree Deletion is the following generalization of Vertex Cover. Given an undirected graph
More informationA Numerical Study on the Wiretap Network with a Simple Network Topology
A Numerical Study on the Wiretap Network with a Simple Network Topology Fan Cheng and Vincent Tan Department of Electrical and Computer Engineering National University of Singapore Mathematical Tools of
More information1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.
Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S
More informationGuessing Game: NPComplete?
Guessing Game: NPComplete? 1. LONGESTPATH: Given a graph G = (V, E), does there exists a simple path of length at least k edges? YES 2. SHORTESTPATH: Given a graph G = (V, E), does there exists a simple
More informationThe Design of Approximation Algorithms
The Design of Approximation Algorithms David P. Williamson David B. Shmoys Copyright c 2010 by David P. Williamson and David B. Shmoys. All rights reserved. To be published by Cambridge University Press.
More informationApproximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs
Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Yong Zhang 1.2, Francis Y.L. Chin 2, and HingFung Ting 2 1 College of Mathematics and Computer Science, Hebei University,
More informationResource Allocation and Scheduling
Lesson 3: Resource Allocation and Scheduling DEIS, University of Bologna Outline Main Objective: joint resource allocation and scheduling problems In particular, an overview of: Part 1: Introduction and
More information1 Linear Programming. 1.1 Introduction. Problem description: motivate by mincost flow. bit of history. everything is LP. NP and conp. P breakthrough.
1 Linear Programming 1.1 Introduction Problem description: motivate by mincost flow bit of history everything is LP NP and conp. P breakthrough. general form: variables constraints: linear equalities
More informationEquilibrium computation: Part 1
Equilibrium computation: Part 1 Nicola Gatti 1 Troels Bjerre Sorensen 2 1 Politecnico di Milano, Italy 2 Duke University, USA Nicola Gatti and Troels Bjerre Sørensen ( Politecnico di Milano, Italy, Equilibrium
More informationLinear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.
1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that
More informationLinear Programming Sensitivity Analysis
Linear Programming Sensitivity Analysis Massachusetts Institute of Technology LP Sensitivity Analysis Slide 1 of 22 Sensitivity Analysis Rationale Shadow Prices Definition Use Sign Range of Validity Opportunity
More information1. spectral. Either global (e.g., Cheeger inequality,) or local.
CS369M: Algorithms for Modern Massive Data Set Analysis Lecture 1211/04/2009 Introduction to Graph Partitioning Lecturer: Michael Mahoney Scribes: Noah Youngs and Weidong Shao *Unedited Notes 1 Graph
More information3. Evaluate the objective function at each vertex. Put the vertices into a table: Vertex P=3x+2y (0, 0) 0 min (0, 5) 10 (15, 0) 45 (12, 2) 40 Max
SOLUTION OF LINEAR PROGRAMMING PROBLEMS THEOREM 1 If a linear programming problem has a solution, then it must occur at a vertex, or corner point, of the feasible set, S, associated with the problem. Furthermore,
More informationCan linear programs solve NPhard problems?
Can linear programs solve NPhard problems? p. 1/9 Can linear programs solve NPhard problems? Ronald de Wolf Linear programs Can linear programs solve NPhard problems? p. 2/9 Can linear programs solve
More informationMinimal Cost Reconfiguration of Data Placement in a Storage Area Network
Minimal Cost Reconfiguration of Data Placement in a Storage Area Network Hadas Shachnai Gal Tamir Tami Tamir Abstract VideoonDemand (VoD) services require frequent updates in file configuration on the
More informationMeasuring Rationality with the Minimum Cost of Revealed Preference Violations. Mark Dean and Daniel Martin. Online Appendices  Not for Publication
Measuring Rationality with the Minimum Cost of Revealed Preference Violations Mark Dean and Daniel Martin Online Appendices  Not for Publication 1 1 Algorithm for Solving the MASP In this online appendix
More informationAn Introduction on SemiDefinite Program
An Introduction on SemiDefinite Program from the viewpoint of computation Hayato Waki Institute of Mathematics for Industry, Kyushu University 20151008 Combinatorial Optimization at Work, Berlin, 2015
More information1 Solving LPs: The Simplex Algorithm of George Dantzig
Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.
More informationNPCompleteness I. Lecture 19. 19.1 Overview. 19.2 Introduction: Reduction and Expressiveness
Lecture 19 NPCompleteness I 19.1 Overview In the past few lectures we have looked at increasingly more expressive problems that we were able to solve using efficient algorithms. In this lecture we introduce
More informationThe Generalized Assignment Problem with Minimum Quantities
The Generalized Assignment Problem with Minimum Quantities Sven O. Krumke a, Clemens Thielen a, a University of Kaiserslautern, Department of Mathematics PaulEhrlichStr. 14, D67663 Kaiserslautern, Germany
More informationCMPSCI611: Approximating MAXCUT Lecture 20
CMPSCI611: Approximating MAXCUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NPhard problems. Today we consider MAXCUT, which we proved to
More informationSteiner Tree Approximation via IRR. Randomized Rounding
Steiner Tree Approximation via Iterative Randomized Rounding Graduate Program in Logic, Algorithms and Computation μπλ Network Algorithms and Complexity June 18, 2013 Overview 1 Introduction Scope Related
More informationSingle machine parallel batch scheduling with unbounded capacity
Workshop on Combinatorics and Graph Theory 21th, April, 2006 Nankai University Single machine parallel batch scheduling with unbounded capacity Yuan Jinjiang Department of mathematics, Zhengzhou University
More informationNotes on NP Completeness
Notes on NP Completeness Rich Schwartz November 10, 2013 1 Overview Here are some notes which I wrote to try to understand what NP completeness means. Most of these notes are taken from Appendix B in Douglas
More informationJUSTINTIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004
Scientiae Mathematicae Japonicae Online, Vol. 10, (2004), 431 437 431 JUSTINTIME SCHEDULING WITH PERIODIC TIME SLOTS Ondřej Čepeka and Shao Chin Sung b Received December May 12, 2003; revised February
More informationLinear Programming I
Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins
More informationCompressing Forwarding Tables for Datacenter Scalability
TECHNICAL REPORT TR1203, TECHNION, ISRAEL 1 Compressing Forwarding Tables for Datacenter Scalability Ori Rottenstreich, Marat Radan, Yuval Cassuto, Isaac Keslassy, Carmi Arad, Tal Mizrahi, Yoram Revah
More informationImproved Results for Data Migration and Open Shop Scheduling
Improved Results for Data Migration and Open Shop Scheduling Rajiv Gandhi 1, Magnús M. Halldórsson, Guy Kortsarz 1, and Hadas Shachnai 3 1 Department of Computer Science, Rutgers University, Camden, NJ
More informationBicolored Shortest Paths in Graphs with Applications to Network Overlay Design
Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Hongsik Choi and HyeongAh Choi Department of Electrical Engineering and Computer Science George Washington University Washington,
More informationEnergy Efficient Monitoring in Sensor Networks
Energy Efficient Monitoring in Sensor Networks Amol Deshpande, Samir Khuller, Azarakhsh Malekian, Mohammed Toossi Computer Science Department, University of Maryland, A.V. Williams Building, College Park,
More informationIntegrating Benders decomposition within Constraint Programming
Integrating Benders decomposition within Constraint Programming Hadrien Cambazard, Narendra Jussien email: {hcambaza,jussien}@emn.fr École des Mines de Nantes, LINA CNRS FRE 2729 4 rue Alfred Kastler BP
More informationAdaptive Linear Programming Decoding
Adaptive Linear Programming Decoding Mohammad H. Taghavi and Paul H. Siegel ECE Department, University of California, San Diego Email: (mtaghavi, psiegel)@ucsd.edu ISIT 2006, Seattle, USA, July 9 14, 2006
More information3.1 Solving Systems Using Tables and Graphs
Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system
More information2.3 Convex Constrained Optimization Problems
42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions
More informationAnalysis of Algorithms, I
Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadthfirst search (BFS) 4 Applications
More informationA Working Knowledge of Computational Complexity for an Optimizer
A Working Knowledge of Computational Complexity for an Optimizer ORF 363/COS 323 Instructor: Amir Ali Ahmadi TAs: Y. Chen, G. Hall, J. Ye Fall 2014 1 Why computational complexity? What is computational
More informationLecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs
CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like
More information