# Vertex Cover. Linear Progamming and Approximation Algorithms. Joshua Wetzel

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Linear Progamming and Approximation Algorithms Joshua Wetzel Department of Computer Science Rutgers University Camden March 24, 29 Joshua Wetzel / 52

2 What is Linear Programming? Optimize a linear objective fn subject to linear constraints. Examples: min 7x + x 2 + 3x 3 s.t. x x 2 + 3x 3 5x + 2x 2 x 3 6 x, x 2, x 3 max 6x + 2x 2 4x 3 s.t. 5x + x 2 2x 3 4 2x 2x 2 + 4x 3 2 x, x 2, x 3 Joshua Wetzel 2 / 52

3 Feasible Solutions: Upper Bounding OPT Linear Program: min 7x + x 2 + 3x 3 s.t. x x 2 + 3x 3 5x + 2x 2 x 3 6 x, x 2, x 3 Feasible Solutions: x = 2, x 2 =, x 3 = 4 7(2) + () + 5(4) = 35 x = 8 5, x 2 = 2, x 3 = 3 7( 8 5 ) + ( 2 ) + 5(3) = 26.7 All constraints are satisfied. OPT 35, OPT 26.7 Joshua Wetzel 3 / 52

4 Finding a Lower Bound on OPT Linear Program: min 7x + x 2 + 3x 3 s.t. x x 2 + 3x 3 5x + 2x 2 x 3 6 x, x 2, x 3 OPT? Joshua Wetzel 4 / 52

5 Lower Bounding OPT: Adding the Constraints min 7x + x 2 + 3x 3 s.t. x x 2 + 3x 3 + 5x + 2x 2 x 3 6 6x + x 2 + 2x 3 6 OPT 6 Joshua Wetzel 5 / 52

6 Lower Bounding OPT min 7x + x 2 + 3x 3 s.t. x x 2 + 3x 3 (y ) + 5x + 2x 2 x 3 6 (y 2 ) x ( y + 5y 2 ) + x 2 ( y + 2y 2 ) + x 3 ( 3y y 2 ) y + 6y 2 y + 6y 2 is a lower bound on OPT if: y + 5y 2 7 y + 2y 2 3y y 2 3 Joshua Wetzel 6 / 52

7 LP to Lower Bound OPT max y + 6y 2 s.t. y + 5y 2 7 y + 2y 2 3y y 2 3 y, y 2 Joshua Wetzel 7 / 52

8 Primal LP and Dual LP Primal LP: min 7x + x 2 + 3x 3 s.t. x x 2 + 3x 3 5x + 2x 2 x 3 6 x, x 2, x 3 Dual LP: max y + 6y 2 s.t. y + 5y 2 7 y + 2y 2 3y y 2 3 y, y 2 Every primal LP has a corresponding dual LP. If the primal is a min problem, the dual is a max problem. There is a dual constraint corresponding to each primal variable. Joshua Wetzel 8 / 52

9 LP Duality Theorems Dual Feasible Dual OPT = Primal OPT Primal Feasible The Primal LP: min 7x + x 2 + 3x 3 s.t. x x 2 + 3x 3 5x + 2x 2 x 3 6 x, x 2, x 3 The Dual LP: max y + 6y 2 s.t. y + 5y 2 7 y + 2y 2 3y y 2 3 y, y 2 Joshua Wetzel 9 / 52

10 Input: Given G = (V, E) Non-negative weights on vertices Objective: Find a least-weight collection of vertices such that each edge in G in incident on at least one vertex in the collection. Joshua Wetzel / 52

11 : Example COST = 97 COST = 8 Joshua Wetzel / 52

12 Approximation Algorithms NP-hard problems. No optimal poly-time algorithms are known β-approximation alg., A, for a minimization problem P poly-time algorithm. for every instance I of P, A produces solution of cost at most β OPT(I) OPT(I)? Joshua Wetzel 2 / 52

13 Approximation Algorithms compute a lower bound on OPT. compare cost of our solution with the lower bound. lower bound OPT upper bound β Joshua Wetzel 3 / 52

14 Input: Given G = (V, E) Non-negative weights on vertices Objective: Find a least-weight collection of vertices such that each edge in G in incident on at least one vertex in the collection Joshua Wetzel 4 / 52

15 Unweighted : Algorithm Find a maximal matching in G Include in our cover both vertices incident on each edge of the matching Joshua Wetzel 5 / 52

16 Unweighted : Example Joshua Wetzel 6 / 52

17 Unweighted : Example Joshua Wetzel 7 / 52

18 Unweighted : Example Joshua Wetzel 8 / 52

19 Unweighted : Example Cost = 6 Joshua Wetzel 9 / 52

20 Analysis: Feasibility Every black edge shares a vertex with a green edge Joshua Wetzel 2 / 52

21 Analysis: Approximation Guarantee OPT has to choose at least one endpoint from each green edge. We choose both endpoints for each green edge. Hence: Our Cost 2OPT Joshua Wetzel 2 / 52

22 Unweighted : Tight Example OPT = 3 COST Alg = 6 Joshua Wetzel 22 / 52

23 Bad Example OPT = Cost Alg = 2 Joshua Wetzel 23 / 52

24 : IP Formulation x v if v is in our cover, otherwise min w v x v s.t. v V x a + x b, e = (a, b) x v {, }, v V Joshua Wetzel 24 / 52

25 LP Relaxation Integer programs have been shown to be NP-hard Relax the integrality constraints x v {, }, v V min s.t. w v x v v V x a + x b, e = (a, b) x v, v V Joshua Wetzel 25 / 52

26 Why Do This? LP can be solved in polynomial time Every solution to the IP is also a solution to the LP Hence: OPT LP OPT IP We can use OPT LP as a lower bound on OPT IP Joshua Wetzel 26 / 52

27 LP Solution: Example x a + x b, e = (a, b) x v, v V /2 x a + x b, e = (a, b) x v {, }, v V /2 /2 OPT LP =.5 OPT IP = 2 Joshua Wetzel 27 / 52

28 Algorithm x optimal LP soln. ˆx v if x v 2, otherwise ˆx v Include v in our cover iff ˆx v = Joshua Wetzel 28 / 52

29 Analysis: Feasibility min s.t. w v x v v V x a + x b, e = (a, b) x v, v V x a 2 or x b 2 ˆx a = or ˆx b = Joshua Wetzel 29 / 52

30 Analysis: Approximation Guarantee Our Cost = v C w v = v V w vˆx v v V w v (2x v) = 2 v V w v x v = 2OPT LP 2OPT IP Joshua Wetzel 3 / 52

31 : Tight Example /2 /2 /2 OPT LP =.5 Our Cost = 3 Joshua Wetzel 3 / 52

32 Method Primal OPT OPT IP Solving the LP is expensive. Dual Feasible Dual OPT = Primal OPT Primal Feasible Better Alternative: Construct the dual LP Construct an algorithm that manually tightens dual constraints to obtain a maximal dual solution Joshua Wetzel 32 / 52

33 Constructing the Dual LP Primal LP: min s.t. w v x v v V x a + x b, e = (a, b) (y e ) x v, v V Joshua Wetzel 33 / 52

34 Primal LP and Dual LP min s.t. Primal LP: w v x max v v V x a + x b, e = (a, b) x v, v V s.t. e E Dual LP: y e y e w v, v V e : e hits v y e, e E Joshua Wetzel 34 / 52

35 Bar-Yehuda and Even Algorithm Inititally all edges are uncovered. While an uncovered edge in G: Choose an arbitrary edge, e Raise the value of y e for that edge until one of its incident vertices, v, becomes full (i.e y e = w v ) e:e hits v C C {v} Any edge that touches v is considered to be covered Return C as our vertex cover Joshua Wetzel 35 / 52

36 Bar-Yehuda and Even Algorithm: Example Joshua Wetzel 36 / 52

37 Bar-Yehuda and Even Algorithm: Example y e w v e:e hits v Arbitrarily choose e and raise y e until a vertex is full Joshua Wetzel 37 / 52

38 Bar-Yehuda and Even Algorithm: Example y e w v e:e hits v Joshua Wetzel 38 / 52

39 Bar-Yehuda and Even Algorithm: Example y e w v e:e hits v Joshua Wetzel 39 / 52

40 Bar-Yehuda and Even Algorithm: Example y e w v e:e hits v Joshua Wetzel 4 / 52

41 Bar-Yehuda and Even Algorithm: Example y e w v e:e hits v Joshua Wetzel 4 / 52

42 Bar-Yehuda and Even Algorithm: Example y e w v e:e hits v Joshua Wetzel 42 / 52

43 Bar-Yehuda and Even Algorithm: Example y e w v e:e hits v Joshua Wetzel 43 / 52

44 Bar-Yehuda and Even Algorithm: Example y e w v e:e hits v Joshua Wetzel 44 / 52

45 Bar-Yehuda and Even Algorithm: Example y e w v e:e hits v Joshua Wetzel 45 / 52

46 Bar-Yehuda and Even Algorithm: Example y e w v e:e hits v Joshua Wetzel 46 / 52

47 Bar-Yehuda and Even Algorithm: Example Cost = 7 Joshua Wetzel 47 / 52

48 Bar-Yehuda and Even Algorithm: Analysis Dual Obj. Fn: max e y e y e w v e:e hits v Our Cost = wt(red vertices) 2 e hits red 2 e = 2DFS y e 2OPT y e Joshua Wetzel 48 / 52

49 Bar-Yehuda and Even Algorithm: Tight Example 6 6 COST OPT = 6 COST Bar-Yehuda = 2 Joshua Wetzel 49 / 52

50 Integrality Gap /2 /2 /2 OPT LP =.5 OPT IP = 2 For a complete graph of n vertices OPT LP = n/2 OPT IP = n OPT lim IP n OPT LP = lim n n (n/2) = 2 Joshua Wetzel 5 / 52

51 Reference R. Bar-Yehuda and S. Even. A linear time approximation algorithm for the weighted vertex cover problem. J. of Algorithms 2:98-23, 98. Joshua Wetzel 5 / 52

52 Thank You. Joshua Wetzel 52 / 52

Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one

### ! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.

Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three

### ! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.

Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of

### Algorithm Design and Analysis

Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;

### Approximation Algorithms

Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

### Minimum Makespan Scheduling

Minimum Makespan Scheduling Minimum makespan scheduling: Definition and variants Factor 2 algorithm for identical machines PTAS for identical machines Factor 2 algorithm for unrelated machines Martin Zachariasen,

### Applied Algorithm Design Lecture 5

Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design

### Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.

Linear Programming Widget Factory Example Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory:, Vertices, Existence of Solutions. Equivalent formulations.

### Lecture 3: Linear Programming Relaxations and Rounding

Lecture 3: Linear Programming Relaxations and Rounding 1 Approximation Algorithms and Linear Relaxations For the time being, suppose we have a minimization problem. Many times, the problem at hand can

### 11. APPROXIMATION ALGORITHMS

11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Lecture slides by Kevin Wayne Copyright 2005

### 4.6 Linear Programming duality

4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal

### Definition of a Linear Program

Definition of a Linear Program Definition: A function f(x 1, x,..., x n ) of x 1, x,..., x n is a linear function if and only if for some set of constants c 1, c,..., c n, f(x 1, x,..., x n ) = c 1 x 1

### Topic: Greedy Approximations: Set Cover and Min Makespan Date: 1/30/06

CS880: Approximations Algorithms Scribe: Matt Elder Lecturer: Shuchi Chawla Topic: Greedy Approximations: Set Cover and Min Makespan Date: 1/30/06 3.1 Set Cover The Set Cover problem is: Given a set of

### Proximal mapping via network optimization

L. Vandenberghe EE236C (Spring 23-4) Proximal mapping via network optimization minimum cut and maximum flow problems parametric minimum cut problem application to proximal mapping Introduction this lecture:

### 3. Linear Programming and Polyhedral Combinatorics

Massachusetts Institute of Technology Handout 6 18.433: Combinatorial Optimization February 20th, 2009 Michel X. Goemans 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the

### Combinatorial Algorithms for Data Migration to Minimize Average Completion Time

Combinatorial Algorithms for Data Migration to Minimize Average Completion Time Rajiv Gandhi 1 and Julián Mestre 1 Department of Computer Science, Rutgers University-Camden, Camden, NJ 0810. Research partially

### 2.3 Scheduling jobs on identical parallel machines

2.3 Scheduling jobs on identical parallel machines There are jobs to be processed, and there are identical machines (running in parallel) to which each job may be assigned Each job = 1,,, must be processed

### LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method

LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method Introduction to dual linear program Given a constraint matrix A, right

### princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Sanjeev Arora

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Sanjeev Arora Scribe: One of the running themes in this course is the notion of

### Lecture 11: 0-1 Quadratic Program and Lower Bounds

Lecture : - Quadratic Program and Lower Bounds (3 units) Outline Problem formulations Reformulation: Linearization & continuous relaxation Branch & Bound Method framework Simple bounds, LP bound and semidefinite

### Permutation Betting Markets: Singleton Betting with Extra Information

Permutation Betting Markets: Singleton Betting with Extra Information Mohammad Ghodsi Sharif University of Technology ghodsi@sharif.edu Hamid Mahini Sharif University of Technology mahini@ce.sharif.edu

### Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

### Definition 11.1. Given a graph G on n vertices, we define the following quantities:

Lecture 11 The Lovász ϑ Function 11.1 Perfect graphs We begin with some background on perfect graphs. graphs. First, we define some quantities on Definition 11.1. Given a graph G on n vertices, we define

### Nan Kong, Andrew J. Schaefer. Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA

A Factor 1 2 Approximation Algorithm for Two-Stage Stochastic Matching Problems Nan Kong, Andrew J. Schaefer Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA Abstract We introduce

Online Adwords Allocation Shoshana Neuburger May 6, 2009 1 Overview Many search engines auction the advertising space alongside search results. When Google interviewed Amin Saberi in 2004, their advertisement

### 5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition

### 8.1 Min Degree Spanning Tree

CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree

### A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem

A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem John Karlof and Peter Hocking Mathematics and Statistics Department University of North Carolina Wilmington Wilmington,

### THE PROBLEM WORMS (1) WORMS (2) THE PROBLEM OF WORM PROPAGATION/PREVENTION THE MINIMUM VERTEX COVER PROBLEM

1 THE PROBLEM OF WORM PROPAGATION/PREVENTION I.E. THE MINIMUM VERTEX COVER PROBLEM Prof. Tiziana Calamoneri Network Algorithms A.y. 2014/15 2 THE PROBLEM WORMS (1)! A computer worm is a standalone malware

### Routing in Line Planning for Public Transport

Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany MARC E. PFETSCH RALF BORNDÖRFER Routing in Line Planning for Public Transport Supported by the DFG Research

### Approximating Minimum Bounded Degree Spanning Trees to within One of Optimal

Approximating Minimum Bounded Degree Spanning Trees to within One of Optimal ABSTACT Mohit Singh Tepper School of Business Carnegie Mellon University Pittsburgh, PA USA mohits@andrew.cmu.edu In the MINIMUM

### ARTICLE IN PRESS. European Journal of Operational Research xxx (2004) xxx xxx. Discrete Optimization. Nan Kong, Andrew J.

A factor 1 European Journal of Operational Research xxx (00) xxx xxx Discrete Optimization approximation algorithm for two-stage stochastic matching problems Nan Kong, Andrew J. Schaefer * Department of

### CSC2420 Spring 2015: Lecture 3

CSC2420 Spring 2015: Lecture 3 Allan Borodin January 22, 2015 1 / 1 Announcements and todays agenda Assignment 1 due next Thursday. I may add one or two additional questions today or tomorrow. Todays agenda

### Some Optimization Fundamentals

ISyE 3133B Engineering Optimization Some Optimization Fundamentals Shabbir Ahmed E-mail: sahmed@isye.gatech.edu Homepage: www.isye.gatech.edu/~sahmed Basic Building Blocks min or max s.t. objective as

### Transportation Polytopes: a Twenty year Update

Transportation Polytopes: a Twenty year Update Jesús Antonio De Loera University of California, Davis Based on various papers joint with R. Hemmecke, E.Kim, F. Liu, U. Rothblum, F. Santos, S. Onn, R. Yoshida,

### Primal-Dual Schema for Capacitated Covering Problems

Primal-Dual Schema for Capacitated Covering Problems Tim Carnes and David Shmoys Cornell University, Ithaca NY 14853, USA Abstract. Primal-dual algorithms have played an integral role in recent developments

### Analysis of Approximation Algorithms for k-set Cover using Factor-Revealing Linear Programs

Analysis of Approximation Algorithms for k-set Cover using Factor-Revealing Linear Programs Stavros Athanassopoulos, Ioannis Caragiannis, and Christos Kaklamanis Research Academic Computer Technology Institute

### On the effect of forwarding table size on SDN network utilization

IBM Haifa Research Lab On the effect of forwarding table size on SDN network utilization Rami Cohen IBM Haifa Research Lab Liane Lewin Eytan Yahoo Research, Haifa Seffi Naor CS Technion, Israel Danny Raz

### ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN. Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015

ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015 ONLINE STEINER FOREST PROBLEM An initially given graph G. s 1 s 2 A sequence of demands (s i, t i ) arriving

### Arrangements And Duality

Arrangements And Duality 3.1 Introduction 3 Point configurations are tbe most basic structure we study in computational geometry. But what about configurations of more complicated shapes? For example,

### . P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2

4. Basic feasible solutions and vertices of polyhedra Due to the fundamental theorem of Linear Programming, to solve any LP it suffices to consider the vertices (finitely many) of the polyhedron P of the

### 9th Max-Planck Advanced Course on the Foundations of Computer Science (ADFOCS) Primal-Dual Algorithms for Online Optimization: Lecture 1

9th Max-Planck Advanced Course on the Foundations of Computer Science (ADFOCS) Primal-Dual Algorithms for Online Optimization: Lecture 1 Seffi Naor Computer Science Dept. Technion Haifa, Israel Introduction

### Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725

Duality in General Programs Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: duality in linear programs Given c R n, A R m n, b R m, G R r n, h R r : min x R n c T x max u R m, v R r b T

### Answers to some of the exercises.

Answers to some of the exercises. Chapter 2. Ex.2.1 (a) There are several ways to do this. Here is one possibility. The idea is to apply the k-center algorithm first to D and then for each center in D

### Online Matching and Ad Allocation. Contents

Foundations and Trends R in Theoretical Computer Science Vol. 8, No. 4 (2012) 265 368 c 2013 A. Mehta DOI: 10.1561/0400000057 Online Matching and Ad Allocation By Aranyak Mehta Contents 1 Introduction

### Permutation Betting Markets: Singleton Betting with Extra Information

Permutation Betting Markets: Singleton Betting with Extra Information Mohammad Ghodsi Sharif University of Technology ghodsi@sharif.edu Hamid Mahini Sharif University of Technology mahini@ce.sharif.edu

### Solving Integer Programming with Branch-and-Bound Technique

Solving Integer Programming with Branch-and-Bound Technique This is the divide and conquer method. We divide a large problem into a few smaller ones. (This is the branch part.) The conquering part is done

### Discrete Optimization

Discrete Optimization [Chen, Batson, Dang: Applied integer Programming] Chapter 3 and 4.1-4.3 by Johan Högdahl and Victoria Svedberg Seminar 2, 2015-03-31 Todays presentation Chapter 3 Transforms using

### Max Flow, Min Cut, and Matchings (Solution)

Max Flow, Min Cut, and Matchings (Solution) 1. The figure below shows a flow network on which an s-t flow is shown. The capacity of each edge appears as a label next to the edge, and the numbers in boxes

### On the Unique Games Conjecture

On the Unique Games Conjecture Antonios Angelakis National Technical University of Athens June 16, 2015 Antonios Angelakis (NTUA) Theory of Computation June 16, 2015 1 / 20 Overview 1 Introduction 2 Preliminary

### 56:171. Operations Research -- Sample Homework Assignments Fall 1992 Dennis Bricker Dept. of Industrial Engineering University of Iowa.

56:171 Operations Research -- Sample Homework Assignments Fall 1992 Dennis Bricker Dept. of Industrial Engineering University of Iowa Homework #1 (1.) Linear Programming Model Formulation. SunCo processes

### Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method

Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming

### CHAPTER 9. Integer Programming

CHAPTER 9 Integer Programming An integer linear program (ILP) is, by definition, a linear program with the additional constraint that all variables take integer values: (9.1) max c T x s t Ax b and x integral

### Facility Location: Discrete Models and Local Search Methods

Facility Location: Discrete Models and Local Search Methods Yury KOCHETOV Sobolev Institute of Mathematics, Novosibirsk, Russia Abstract. Discrete location theory is one of the most dynamic areas of operations

### 5.1 Bipartite Matching

CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson

### A2 1 10-Approximation Algorithm for a Generalization of the Weighted Edge-Dominating Set Problem

Journal of Combinatorial Optimization, 5, 317 326, 2001 c 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. A2 1 -Approximation Algorithm for a Generalization of the Weighted Edge-Dominating

### Scheduling Parallel Machine Scheduling. Tim Nieberg

Scheduling Parallel Machine Scheduling Tim Nieberg Problem P C max : m machines n jobs with processing times p 1,..., p n Problem P C max : m machines n jobs with processing times p 1,..., p { n 1 if job

### Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints

Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Olivier Beaumont,, Paul Renaud-Goud Inria & University of Bordeaux Bordeaux, France 9th Scheduling for Large Scale Systems

### 26 Linear Programming

The greatest flood has the soonest ebb; the sorest tempest the most sudden calm; the hottest love the coldest end; and from the deepest desire oftentimes ensues the deadliest hate. Th extremes of glory

### Dantzig-Wolfe bound and Dantzig-Wolfe cookbook

Dantzig-Wolfe bound and Dantzig-Wolfe cookbook thst@man.dtu.dk DTU-Management Technical University of Denmark 1 Outline LP strength of the Dantzig-Wolfe The exercise from last week... The Dantzig-Wolfe

### Mathematical finance and linear programming (optimization)

Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may

### Scheduling Shop Scheduling. Tim Nieberg

Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations

### Branch and Cut for TSP

Branch and Cut for TSP jla,jc@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark 1 Branch-and-Cut for TSP Branch-and-Cut is a general technique applicable e.g. to solve symmetric

### An Approximation Algorithm for Bounded Degree Deletion

An Approximation Algorithm for Bounded Degree Deletion Tomáš Ebenlendr Petr Kolman Jiří Sgall Abstract Bounded Degree Deletion is the following generalization of Vertex Cover. Given an undirected graph

### A Numerical Study on the Wiretap Network with a Simple Network Topology

A Numerical Study on the Wiretap Network with a Simple Network Topology Fan Cheng and Vincent Tan Department of Electrical and Computer Engineering National University of Singapore Mathematical Tools of

### 1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.

Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S

### Guessing Game: NP-Complete?

Guessing Game: NP-Complete? 1. LONGEST-PATH: Given a graph G = (V, E), does there exists a simple path of length at least k edges? YES 2. SHORTEST-PATH: Given a graph G = (V, E), does there exists a simple

### Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs

Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Yong Zhang 1.2, Francis Y.L. Chin 2, and Hing-Fung Ting 2 1 College of Mathematics and Computer Science, Hebei University,

### Resource Allocation and Scheduling

Lesson 3: Resource Allocation and Scheduling DEIS, University of Bologna Outline Main Objective: joint resource allocation and scheduling problems In particular, an overview of: Part 1: Introduction and

### 1 Linear Programming. 1.1 Introduction. Problem description: motivate by min-cost flow. bit of history. everything is LP. NP and conp. P breakthrough.

1 Linear Programming 1.1 Introduction Problem description: motivate by min-cost flow bit of history everything is LP NP and conp. P breakthrough. general form: variables constraints: linear equalities

### Equilibrium computation: Part 1

Equilibrium computation: Part 1 Nicola Gatti 1 Troels Bjerre Sorensen 2 1 Politecnico di Milano, Italy 2 Duke University, USA Nicola Gatti and Troels Bjerre Sørensen ( Politecnico di Milano, Italy, Equilibrium

### Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.

1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that

### Linear Programming Sensitivity Analysis

Linear Programming Sensitivity Analysis Massachusetts Institute of Technology LP Sensitivity Analysis Slide 1 of 22 Sensitivity Analysis Rationale Shadow Prices Definition Use Sign Range of Validity Opportunity

### 1. spectral. Either global (e.g., Cheeger inequality,) or local.

CS369M: Algorithms for Modern Massive Data Set Analysis Lecture 12-11/04/2009 Introduction to Graph Partitioning Lecturer: Michael Mahoney Scribes: Noah Youngs and Weidong Shao *Unedited Notes 1 Graph

### 3. Evaluate the objective function at each vertex. Put the vertices into a table: Vertex P=3x+2y (0, 0) 0 min (0, 5) 10 (15, 0) 45 (12, 2) 40 Max

SOLUTION OF LINEAR PROGRAMMING PROBLEMS THEOREM 1 If a linear programming problem has a solution, then it must occur at a vertex, or corner point, of the feasible set, S, associated with the problem. Furthermore,

### Can linear programs solve NP-hard problems?

Can linear programs solve NP-hard problems? p. 1/9 Can linear programs solve NP-hard problems? Ronald de Wolf Linear programs Can linear programs solve NP-hard problems? p. 2/9 Can linear programs solve

### Minimal Cost Reconfiguration of Data Placement in a Storage Area Network

Minimal Cost Reconfiguration of Data Placement in a Storage Area Network Hadas Shachnai Gal Tamir Tami Tamir Abstract Video-on-Demand (VoD) services require frequent updates in file configuration on the

### Measuring Rationality with the Minimum Cost of Revealed Preference Violations. Mark Dean and Daniel Martin. Online Appendices - Not for Publication

Measuring Rationality with the Minimum Cost of Revealed Preference Violations Mark Dean and Daniel Martin Online Appendices - Not for Publication 1 1 Algorithm for Solving the MASP In this online appendix

### An Introduction on SemiDefinite Program

An Introduction on SemiDefinite Program from the viewpoint of computation Hayato Waki Institute of Mathematics for Industry, Kyushu University 2015-10-08 Combinatorial Optimization at Work, Berlin, 2015

### 1 Solving LPs: The Simplex Algorithm of George Dantzig

Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

### NP-Completeness I. Lecture 19. 19.1 Overview. 19.2 Introduction: Reduction and Expressiveness

Lecture 19 NP-Completeness I 19.1 Overview In the past few lectures we have looked at increasingly more expressive problems that we were able to solve using efficient algorithms. In this lecture we introduce

### The Generalized Assignment Problem with Minimum Quantities

The Generalized Assignment Problem with Minimum Quantities Sven O. Krumke a, Clemens Thielen a, a University of Kaiserslautern, Department of Mathematics Paul-Ehrlich-Str. 14, D-67663 Kaiserslautern, Germany

### CMPSCI611: Approximating MAX-CUT Lecture 20

CMPSCI611: Approximating MAX-CUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NP-hard problems. Today we consider MAX-CUT, which we proved to

### Steiner Tree Approximation via IRR. Randomized Rounding

Steiner Tree Approximation via Iterative Randomized Rounding Graduate Program in Logic, Algorithms and Computation μπλ Network Algorithms and Complexity June 18, 2013 Overview 1 Introduction Scope Related

### Single machine parallel batch scheduling with unbounded capacity

Workshop on Combinatorics and Graph Theory 21th, April, 2006 Nankai University Single machine parallel batch scheduling with unbounded capacity Yuan Jinjiang Department of mathematics, Zhengzhou University

### Notes on NP Completeness

Notes on NP Completeness Rich Schwartz November 10, 2013 1 Overview Here are some notes which I wrote to try to understand what NP completeness means. Most of these notes are taken from Appendix B in Douglas

### JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004

Scientiae Mathematicae Japonicae Online, Vol. 10, (2004), 431 437 431 JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS Ondřej Čepeka and Shao Chin Sung b Received December May 12, 2003; revised February

### Linear Programming I

Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

### Compressing Forwarding Tables for Datacenter Scalability

TECHNICAL REPORT TR12-03, TECHNION, ISRAEL 1 Compressing Forwarding Tables for Datacenter Scalability Ori Rottenstreich, Marat Radan, Yuval Cassuto, Isaac Keslassy, Carmi Arad, Tal Mizrahi, Yoram Revah

### Improved Results for Data Migration and Open Shop Scheduling

Improved Results for Data Migration and Open Shop Scheduling Rajiv Gandhi 1, Magnús M. Halldórsson, Guy Kortsarz 1, and Hadas Shachnai 3 1 Department of Computer Science, Rutgers University, Camden, NJ

### Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design

Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Hongsik Choi and Hyeong-Ah Choi Department of Electrical Engineering and Computer Science George Washington University Washington,

### Energy Efficient Monitoring in Sensor Networks

Energy Efficient Monitoring in Sensor Networks Amol Deshpande, Samir Khuller, Azarakhsh Malekian, Mohammed Toossi Computer Science Department, University of Maryland, A.V. Williams Building, College Park,

### Integrating Benders decomposition within Constraint Programming

Integrating Benders decomposition within Constraint Programming Hadrien Cambazard, Narendra Jussien email: {hcambaza,jussien}@emn.fr École des Mines de Nantes, LINA CNRS FRE 2729 4 rue Alfred Kastler BP

Adaptive Linear Programming Decoding Mohammad H. Taghavi and Paul H. Siegel ECE Department, University of California, San Diego Email: (mtaghavi, psiegel)@ucsd.edu ISIT 2006, Seattle, USA, July 9 14, 2006

### 3.1 Solving Systems Using Tables and Graphs

Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system

### 2.3 Convex Constrained Optimization Problems

42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

### Analysis of Algorithms, I

Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadth-first search (BFS) 4 Applications