Plastics: Synthetic Polymers

Size: px
Start display at page:

Download "Plastics: Synthetic Polymers"

Transcription

1 Date Lab Time Name Objective Plastics: Synthetic Polymers Synthesizing nylon (a polyamide) and silly putty will illustrate the chemical production of plastics. Some physical properties of these polymers will be examined. Background Polymers are large, chain-like molecules made of hundreds or thousands or smaller, repeating molecular units called monomers. Many occur naturally in plants and animals such as cellulose, which is a natural plant polymer made of glucose monomers. Wool and hair are natural animal polymers made of protein monomers. Since the early 1900 s, synthetic polymers or plastics have been produced for a variety of industrial and household uses. One common method for joining molecular units together to produce synthetic polymers is called condensation polymerization. During this chemical reaction, a small molecule such as H 2 O or HCl is eliminated as the larger polymer molecule is formed. In the early pioneering days of polymer research, DuPont successfully synthesized nylon utilizing such techniques. There are different nylon type polymers. The reaction of sebacoyl chloride with 1,6-hexanediamine to form Nylon 6-10 is used in this experiment. Nylon 6-10 is thus a copolymer made by the chemical combination of two different monomers. Each of these monomers is dissolved separately in two immiscible liquids, water and tetrachloroethylene (TCE). When these two solutions are in contact with each other, the monomers can only react at the interface between them. The nylon rope is drawn from this polymer film that forms at the interface. As soon as old polymer film is removed, new film forms immediately behind it. Thus, the reaction results in the continuous creation of polymeric material until at least one of the reactant monomers is completely consumed. Addition polymerization is another method of synthetic polymer production. In this chemical reaction, monomer units of the same molecule link together to form the long-chain polymer molecule without the elimination of any small molecules. Polyethylene (Tupperware, plastic tarpaulins, etc.) and polystyrene (Styrofoam ) are common examples of polymers produced in this fashion. Polystyrene can be molded into either a hard solid or a light foamed shape and is generally cheap to produce. This low cost makes foamed polystyrene economical as a paper substitute for applications such as food and fragile object packaging. However, an increasing number of such products are being banned by states because the low boiling liquid, methylene chloride, used as the foaming agent is thought to be harmful to the earth s ozone layer. Materials needed 100 ml beaker sebacoyl chloride in TCE 350 ml beaker 1,6-hexanediamine in water stirring rod paper cup and wax paper 100 ml graduated cylinder (3) distilled water forceps or tweezers acetone or methanol meter stick Elmer s glue disposable gloves 4% sodium borate safranin 0 (optional) orcein (optional) Plastics: Synthetic Polymers 1

2 Date Lab Time Name Procedure Part I: Nylon 1. CAUTION: Wear disposable plastic gloves while performing this part of the experiment and do not breathe vapors nor let any of the chemicals contact your skin. Carry out the chemical reaction in a fume hood. 2. Fill a 350 ml collection beaker with 200 ml of water and 50 ml of acetone or methanol. This beaker will be used to collect and rinse the nylon that is produced in the reaction. 3. Measure 30 ml of the sebacoyl chloride solution in a graduated cylinder and pour into the 100 ml beaker. 4. Measure 15 ml of the 1,6-hexanediamine solution in a clean graduated cylinder and slowly and carefully pour it on top of the sebacoyl chloride solution already in the 100 ml beaker. Do not stir or agitate the beaker contents. Note your observations on your report sheet. 5. COLOR OPTION: If you wish, you can dye your polymer some interesting colors by adding food coloring to the 100 ml reaction beaker. Only 1 or 2 drops in the top liquid layer is needed. 6. Use tweezers or forceps to reach down through the top liquid layer and carefully grasp the center of the thin interfacial polymer film. Slowly pull the large mass up through the top liquid. Tear off the large nylon mass and continue to bring the thin nylon cord from the center of the beaker. Slowly and steadily (to keep the nylon from getting too thin) feed it into the 350 ml beaker until the top layer of liquid is gone. TIP: Place the end of the cord over the side of the beaker so you can easily find it later. 7. When the polymerization is complete, drain off (into the appropriate collection container) the water/acetone mixture until there is just enough to keep the nylon submerged. Add enough cold water to bring the level back to its original amount. 8. While the cord is still in the 350 ml beaker, grab the free end and place it on the table top. Walk along the table with the beaker while gently pulling the rope out. Once you have completely stretched out your nylon cord, use a meter stick to measure its total length. 9. Record the following observations on the report sheet: a. Describe the color, appearance, texture, shape and tensile strength of your damp nylon rope. b. Spread out your polymer on the bench top in such a way that you can measure its total length with a meter stick. Record your results on the report sheet. c. Test the inertness (non-reactivity) of your polymer with the solvent acetone by placing a peasized polymer wad into about 10 ml of acetone in a 50 ml beaker. Plastics: Synthetic Polymers 2

3 Date Lab Time Name Part II: Silly Putty 1. Wear disposable plastic gloves while performing this part of the experiment. 2. Use a graduated cylinder to measure out 25 ml of water. Pour into a paper cup and mark the water level. Discard the water. 3. Fill the paper cup with glue up to the mark 4. COLOR OPTION: If you would like to create a colored piece of silly putty, place 2-3 drops into your cup at this point. 5. Add 20 ml of water to the cup and stir with stirring rod for several minutes. 6. Add 10 ml of 4% sodium borate and stir with stirring rod for several minutes. 7. Remove polymer from the cup and place on wax paper until the polymer becomes firm and rubbery. 8. Make the following observations on your report sheet: room temperature, the total time for polymer formation & some physical properties. 9. After the silly putty has sufficiently hardened and is no longer sticky, describe the physical properties of the polymer such as hardness, texture, color, and general appearance. 10. Test the inertness of your polymer by placing a few drops of acetone onto a surface of your polymer. Rub the plastic surface with your finger where the acetone has been dropped. Note your observations on the report sheet. Disposal Procedure *** Dispose of all remaining chemicals in the appropriate collection containers. *** The nylon rope can be rolled up and taken home or placed in the appropriate collection container. *** Silly Putty can be taken home or placed in the appropriate collection container *** The rubber gloves, paper cup and wax paper can be placed in the trash. *** Wash and dry all glass containers and stirring rods and return them to their proper location. Plastics: Synthetic Polymers 3

4 Date Lab Time Name Report Sheet Data Analysis Part I: Nylon * Observations upon mixing the monomer solutions: Physical properties of the nylon rope: Color Texture Shape Tensile Strength Total length of rope (show calculations, if necessary): # of breaks feet meters 1 m = ft 1 ft = m * Observations on solubility in acetone: Part II: Silly putty Room temperature: Time required for polymer formation: * Observations during preparation: Physical Properties of the Silly Putty: Hardness Texture Color * Observations on solubility in acetone: Plastics: Synthetic Polymers 4

5 Date Lab Time Name Post-lab questions: 1. What was the purpose of washing the newly formed polymer with an acetone/water solution? 2. List three principle consumer uses for nylon. 3. List several examples of a naturally occurring plant polymers and where they are produced. 4. Why does the price of plastics depend on the price of oil? Plastics: Synthetic Polymers 5

6 Date Lab Time Name Summary/Conclusions: Plastics: Synthetic Polymers 6

#9 Condensation Polymerization: Preparation of Nylon 6/10

#9 Condensation Polymerization: Preparation of Nylon 6/10 #9 Condensation Polymerization: Preparation of Nylon 6/10 Submitted by: Arturo Contreras, Visiting Scholar, Center for Chemical Education, Miami University, Middletown, OH; 1996 1997. I. INTRODUCTION Description

More information

# 12 Condensation Polymerization: Preparation of Two Types of Polyesters

# 12 Condensation Polymerization: Preparation of Two Types of Polyesters # 12 Condensation Polymerization: Preparation of Two Types of Polyesters Submitted by: Arturo Contreras, Visiting Scholar, Center for Chemical Education, Miami University, Middletown, OH; 1996 1997. I.

More information

Recovery of Elemental Copper from Copper (II) Nitrate

Recovery of Elemental Copper from Copper (II) Nitrate Recovery of Elemental Copper from Copper (II) Nitrate Objectives: Challenge: Students should be able to - recognize evidence(s) of a chemical change - convert word equations into formula equations - perform

More information

SEPARATION OF A MIXTURE OF SUBSTANCES LAB

SEPARATION OF A MIXTURE OF SUBSTANCES LAB SEPARATION OF A MIXTURE OF SUBSTANCES LAB Purpose: Every chemical has a set of defined physical properties, and when combined they present a unique fingerprint for that chemical. When chemicals are present

More information

Hands-On Labs SM-1 Lab Manual

Hands-On Labs SM-1 Lab Manual EXPERIMENT 4: Separation of a Mixture of Solids Read the entire experiment and organize time, materials, and work space before beginning. Remember to review the safety sections and wear goggles when appropriate.

More information

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point.. Identification of a Substance by Physical Properties 2009 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included Every substance has a unique set

More information

ISOLATION OF CAFFEINE FROM TEA

ISOLATION OF CAFFEINE FROM TEA ISLATIN F CAFFEINE FRM TEA Introduction In this experiment, caffeine is isolated from tealeaves. The chief problem with the isolation is that caffeine does not exist alone in the tealeaves, but other natural

More information

Determination of a Chemical Formula

Determination of a Chemical Formula 1 Determination of a Chemical Formula Introduction Molar Ratios Elements combine in fixed ratios to form compounds. For example, consider the compound TiCl 4 (titanium chloride). Each molecule of TiCl

More information

Paper Chromatography: Separation and Identification of Five Metal Cations

Paper Chromatography: Separation and Identification of Five Metal Cations Paper Chromatography: Separation and Identification of Five Metal Cations Objectives Known and unknown solutions of the metal ions Ag +, Fe 3+, Co 2+, Cu 2+ and Hg 2+ will be analyzed using paper chromatography.

More information

PREPARATION AND PROPERTIES OF A SOAP

PREPARATION AND PROPERTIES OF A SOAP (adapted from Blackburn et al., Laboratory Manual to Accompany World of Chemistry, 2 nd ed., (1996) Saunders College Publishing: Fort Worth) Purpose: To prepare a sample of soap and to examine its properties.

More information

IDENTIFICATION OF POLYMERS 1998 by David A. Katz. All rights reserved

IDENTIFICATION OF POLYMERS 1998 by David A. Katz. All rights reserved IDENTIFICATION OF POLYMERS 1998 by David A. Katz. All rights reserved David A. Katz Chemist, Educator, Science Communicator, and Consultant 133 N. Desert Stream Dr., Tucson, AZ 85745 Voice/Fax: 520-624-2207

More information

Neutralization Reactions. Evaluation copy

Neutralization Reactions. Evaluation copy Neutralization Reactions Computer 6 If an acid is added to a base, a chemical reaction called neutralization occurs. An example is the reaction between nitric acid, HNO 3, and the base potassium hydroxide,

More information

DYES AND DYEING 2003 by David A. Katz. All rights reserved. Permission for classroom use provided original copyright is included.

DYES AND DYEING 2003 by David A. Katz. All rights reserved. Permission for classroom use provided original copyright is included. DYES AND DYEING 2003 by David A. Katz. All rights reserved. Permission for classroom use provided original copyright is included. Dyeing of textiles has been practiced for thousands of years with the first

More information

PHYSICAL SEPARATION TECHNIQUES. Introduction

PHYSICAL SEPARATION TECHNIQUES. Introduction PHYSICAL SEPARATION TECHNIQUES Lab #2 Introduction When two or more substances, that do not react chemically, are blended together, the result is a mixture in which each component retains its individual

More information

Polarity and Properties Lab PURPOSE: To investigate polar and non-polar molecules and the affect of polarity on molecular properties.

Polarity and Properties Lab PURPOSE: To investigate polar and non-polar molecules and the affect of polarity on molecular properties. Name!!!! date Polarity and Properties Lab PURPOSE: To investigate polar and non-polar molecules and the affect of polarity on molecular properties. STATION 1: Oil and water do not mix. We all know that.

More information

Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Chemicals Needed:

Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Chemicals Needed: Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Your Name: Date: Partner(s) Names: Objectives: React magnesium metal with hydrochloric acid, collecting the hydrogen over water. Calculate the grams

More information

Chapter 5, Lesson 3 Why Does Water Dissolve Salt?

Chapter 5, Lesson 3 Why Does Water Dissolve Salt? Chapter 5, Lesson 3 Why Does Water Dissolve Salt? Key Concepts The polarity of water molecules enables water to dissolve many ionically bonded substances. Salt (sodium chloride) is made from positive sodium

More information

#10 Condensation Polymerization: Preparation of Nylon 6/6

#10 Condensation Polymerization: Preparation of Nylon 6/6 #10 Condensation Polymerization: Preparation of Nylon 6/6 Submitted by: Arturo Contreras, Visiting Scholar, Center for Chemical Education, Miami University, Middletown, OH; 1996 1997. I. INTRODUCTION To

More information

Making Biodiesel from Virgin Vegetable Oil: Teacher Manual

Making Biodiesel from Virgin Vegetable Oil: Teacher Manual Making Biodiesel from Virgin Vegetable Oil: Teacher Manual Learning Goals: Students will understand how to produce biodiesel from virgin vegetable oil. Students will understand the effect of an exothermic

More information

AN EXPERIMENT IN ALCHEMY: COPPER TO SILVER TO GOLD 2005, 2000, 1996 by David A. Katz. All rights reserved

AN EXPERIMENT IN ALCHEMY: COPPER TO SILVER TO GOLD 2005, 2000, 1996 by David A. Katz. All rights reserved AN EXPERIMENT IN ALCHEMY: COPPER TO SILVER TO GOLD 2005, 2000, 1996 by David A. Katz. All rights reserved INTRODUCTION One of the goals of the ancient alchemists was to convert base metals into gold. Although

More information

Amino Acids, Peptides, and Proteins

Amino Acids, Peptides, and Proteins 1 Amino Acids, Peptides, and Proteins Introduction Amino Acids Amino acids are the building blocks of proteins. In class you learned the structures of the 20 common amino acids that make up proteins. All

More information

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration.

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration. 81 experiment5 LECTURE AND LAB SKILLS EMPHASIZED Synthesizing an organic substance. Understanding and applying the concept of limiting reagents. Determining percent yield. Learning how to perform a vacuum

More information

Extraction: Separation of Acidic Substances

Extraction: Separation of Acidic Substances Extraction: Separation of Acidic Substances Chemists frequently find it necessary to separate a mixture of compounds by moving a component from one solution or mixture to another. The process most often

More information

The Properties of Water (Instruction Sheet)

The Properties of Water (Instruction Sheet) The Properties of Water (Instruction Sheet) Property : High Polarity Activity #1 Surface Tension: PILE IT ON. Materials: 1 DRY penny, 1 eye dropper, water. 1. Make sure the penny is dry. 2. Begin by estimating

More information

Enzyme Pre-Lab. Using the Enzyme worksheet and Enzyme lab handout answer the Pre-Lab questions the pre-lab must be complete before beginning the lab.

Enzyme Pre-Lab. Using the Enzyme worksheet and Enzyme lab handout answer the Pre-Lab questions the pre-lab must be complete before beginning the lab. Enzyme Pre-Lab Using the Enzyme worksheet and Enzyme lab handout answer the Pre-Lab questions the pre-lab must be complete before beginning the lab. Background: In this investigation, you will study several

More information

Physical and Chemical Properties and Changes

Physical and Chemical Properties and Changes Physical and Chemical Properties and Changes An understanding of material things requires an understanding of the physical and chemical characteristics of matter. A few planned experiments can help you

More information

Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap

Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap Introduction A soap is the sodium or potassium salt of a long-chain fatty acid. The fatty acid usually contains 12 to 18 carbon atoms.

More information

Experiment #8 properties of Alcohols and Phenols

Experiment #8 properties of Alcohols and Phenols Introduction Experiment #8 properties of Alcohols and Phenols As has been mentioned before, over 20 million organic compounds have been identified. If each substance had to be studied as an entity completely

More information

Luminol Test PROCESS SKILLS SCIENCE TOPICS VOCABULARY

Luminol Test PROCESS SKILLS SCIENCE TOPICS VOCABULARY EXPERIMENT: LUMINOL TEST Luminol Test Visitors mix a solution of luminol with fake blood (hydrogen peroxide) to produce a reaction that gives off blue light. OBJECTIVES: Visitors learn that some chemical

More information

Fiber Analysis 2005, 2004, 2003, 2001, 1999 by David A. Katz. All rights reserved.

Fiber Analysis 2005, 2004, 2003, 2001, 1999 by David A. Katz. All rights reserved. Fiber Analysis 2005, 2004, 2003, 2001, 1999 by David A. Katz. All rights reserved. Fiber evidence can be found at crime scenes in a number of different ways. In personal contact between the clothing of

More information

Chemical reaction (slow): Enzyme-catalyzed reaction (much faster):

Chemical reaction (slow): Enzyme-catalyzed reaction (much faster): 1 Enzymes Introduction Enzymes are Biological Catalysts Recall that a catalyst is an agent which speeds up a chemical reaction without actually being consumed or changed by the reaction. Enzymes are proteins

More information

Chemical versus Physical Changes

Chemical versus Physical Changes Chemical versus Physical Changes Permission to Copy - This document may be reproduced for non-commercial educational purposes Copyright 2009 General Electric Company What are physical and chemical changes?

More information

Synthesis of tetraamminecopper(ii) sulfate, [Cu(NH 3 ) 4 ]SO 4 The reaction for making tetraamminecopper(ii) sulfate and some molar masses are:

Synthesis of tetraamminecopper(ii) sulfate, [Cu(NH 3 ) 4 ]SO 4 The reaction for making tetraamminecopper(ii) sulfate and some molar masses are: Experiment 9 Synthesis of a opper oordination omplex and Aspirin with Demonstrations of the Synthesis of Nylon, Bakelite, and Polyvinyl Alcohol Slime Synthesis of tetraamminecopper(ii) sulfate, [u(n 3

More information

Chemical Bonding: Polarity of Slime and Silly Putty

Chemical Bonding: Polarity of Slime and Silly Putty Lab 12 Chemical Bonding: Polarity of Slime and Silly Putty TN Standard 3.1: Investigate chemical bonding. Students will distinguish between polar and non-polar molecules. Have you ever read the newspaper

More information

Properties of Alcohols and Phenols Experiment #3

Properties of Alcohols and Phenols Experiment #3 Properties of Alcohols and Phenols Experiment #3 Objectives: To observe the solubility of alcohols relative to their chemical structure, to perform chemical tests to distinguish primary, secondary and

More information

H H H O. Pre-Lab Exercises Lab 6: Organic Chemistry. Lab 6: Organic Chemistry Chemistry 100. 1. Define the following: a.

H H H O. Pre-Lab Exercises Lab 6: Organic Chemistry. Lab 6: Organic Chemistry Chemistry 100. 1. Define the following: a. Lab 6: Organic hemistry hemistry 100 1. Define the following: a. ydrocarbon Pre-Lab Exercises Lab 6: Organic hemistry Name Date Section b. Saturated hydrocarbon c. Unsaturated hydrocarbon 2. The formula

More information

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield EXPERIMENT 7 Reaction Stoichiometry and Percent Yield INTRODUCTION Stoichiometry calculations are about calculating the amounts of substances that react and form in a chemical reaction. The word stoichiometry

More information

Experiment 8 Preparation of Cyclohexanone by Hypochlorite Oxidation

Experiment 8 Preparation of Cyclohexanone by Hypochlorite Oxidation Experiment 8 Preparation of Cyclohexanone by ypochlorite xidation In this experiment we will prepare cyclohexanone from cyclohexanol using hypochlorite oxidation. We will use common household bleach that

More information

The Empirical Formula of a Compound

The Empirical Formula of a Compound The Empirical Formula of a Compound Lab #5 Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant,

More information

Physical and Chemical Changes

Physical and Chemical Changes Physical and Chemical Changes Jana Barrow West Point Jr. High 2775 W 550 N 801-402-8100 West Point, UT 84015 jbarrow@dsdmail.net Eighth Grade Integrated Science Standard I: Students will understand the

More information

Solubility Curve of Sugar in Water

Solubility Curve of Sugar in Water Solubility Curve of Sugar in Water INTRODUCTION Solutions are homogeneous mixtures of solvents (the larger volume of the mixture) and solutes (the smaller volume of the mixture). For example, a hot chocolate

More information

POLYVINYL ALCOHOL SLIME

POLYVINYL ALCOHOL SLIME POLYVINYL ALCOHOL SLIME 2005, 1988, 1984 by David A. Katz. All rights reserved. Permission for classroom use and education related activities. David A. Katz Chemist, Educator, Science Communicator, and

More information

THE ACTIVITY OF LACTASE

THE ACTIVITY OF LACTASE THE ACTIVITY OF LACTASE Lab VIS-8 From Juniata College Science in Motion Enzymes are protein molecules which act to catalyze the chemical reactions in living things. These chemical reactions make up the

More information

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid Purpose: a) To purify samples of organic compounds that are solids at room temperature b) To dissociate the impure sample in the minimum

More information

Prussian blue and cyanotype printing

Prussian blue and cyanotype printing CHEM 101lab, fall 2008, J. Peters and cyanotype printing Ferric ferrocyanide, commonly known as, was first synthesized in 1704 in Berlin. has a very intense dark blue color and has been used extensively

More information

DNA SPOOLING 1 ISOLATION OF DNA FROM ONION

DNA SPOOLING 1 ISOLATION OF DNA FROM ONION DNA SPOOLING 1 ISOLATION OF DNA FROM ONION INTRODUCTION This laboratory protocol will demonstrate several basic steps required for isolation of chromosomal DNA from cells. To extract the chromosomal DNA,

More information

Properties of Acids and Bases

Properties of Acids and Bases Lab 22 Properties of Acids and Bases TN Standard 4.2: The student will investigate the characteristics of acids and bases. Have you ever brushed your teeth and then drank a glass of orange juice? What

More information

Chem 100 Lab Experiment #9 - ACID/BASE INDICATORS

Chem 100 Lab Experiment #9 - ACID/BASE INDICATORS Lab #9 Chem 100 Lab Experiment #9 - ACID/BASE INDICATORS Name: Purpose: In this laboratory we will investigate how indicators can be used to test for the presence of acids or bases in a number of common

More information

Experiment 5 Preparation of Cyclohexene

Experiment 5 Preparation of Cyclohexene Experiment 5 Preparation of yclohexene In this experiment we will prepare cyclohexene from cyclohexanol using an acid catalyzed dehydration reaction. We will use the cyclohexanol that we purified in our

More information

Experiment 8 - Double Displacement Reactions

Experiment 8 - Double Displacement Reactions Experiment 8 - Double Displacement Reactions A double displacement reaction involves two ionic compounds that are dissolved in water. In a double displacement reaction, it appears as though the ions are

More information

Separation of Dyes by Paper Chromatography

Separation of Dyes by Paper Chromatography Cautions: The FD&C food dyes used are concentrated and may stain clothing and skin. Do not ingest any of the food dyes or food samples used in this lab. Purpose: The purpose of this experiment is to determine

More information

EXPERIMENT 12: Empirical Formula of a Compound

EXPERIMENT 12: Empirical Formula of a Compound EXPERIMENT 12: Empirical Formula of a Compound INTRODUCTION Chemical formulas indicate the composition of compounds. A formula that gives only the simplest ratio of the relative number of atoms in a compound

More information

Table 1. Common esters used for flavors and fragrances

Table 1. Common esters used for flavors and fragrances ESTERS An Introduction to rganic hemistry Reactions 2012, 2006, 1990, 1982 by David A. Katz. All rights reserved. Reproduction permitted for educationa use provided original copyright is included. In contrast

More information

Experiment 12- Classification of Matter Experiment

Experiment 12- Classification of Matter Experiment Experiment 12- Classification of Matter Experiment Matter can be classified into two groups: mixtures and pure substances. Mixtures are the most common form of matter and consist of mixtures of pure substances.

More information

Lab: Properties of Polar and Nonpolar Substances

Lab: Properties of Polar and Nonpolar Substances Lab: Properties of Polar and Nonpolar Substances Purpose: To explain the interactions of matter in relation to polarity. Stations 1 and 2 - il and water do not mix As a metaphor, oil and water are often

More information

Catalase Enzyme Lab. Background information

Catalase Enzyme Lab. Background information Catalase Enzyme Lab Background information Liver and other living tissues contain the enzyme catalase. This enzyme breaks down hydrogen peroxide, which is a harmful by-product of the process of cellular

More information

Catalytic Activity of Enzymes

Catalytic Activity of Enzymes Catalytic Activity of Enzymes Introduction Enzymes are biological molecules that catalyze (speed up) chemical reactions. You could call enzymes the Builders and Do-ers in the cell; without them, life could

More information

STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14

STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14 STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14 OBJECTIVE The objective of this experiment will be the standardization of sodium hydroxide using potassium hydrogen phthalate by the titration

More information

OSMOSIS AND DIALYSIS 2003 BY Wendy Weeks-Galindo with modifications by David A. Katz

OSMOSIS AND DIALYSIS 2003 BY Wendy Weeks-Galindo with modifications by David A. Katz OSMOSIS AND DIALYSIS 2003 BY Wendy Weeks-Galindo with modifications by David A. Katz OSMOSIS Osmosis is the reason that a fresh water fish placed in the ocean desiccates and dies. Osmosis is the reason

More information

Written By Kelly Lundstrom & Kennda Lynch January 31, 2012 Milk Dye ACTIVITY PLAN

Written By Kelly Lundstrom & Kennda Lynch January 31, 2012 Milk Dye ACTIVITY PLAN Milk Dye ACTIVITY PLAN Objective: Students will use the scientific method to test the difference between using whole milk and skim milk in this milk and food dye experiment. Students will explore ideas

More information

Pre-Lab Notebook Content: Your notebook should include the title, date, purpose, procedure; data tables.

Pre-Lab Notebook Content: Your notebook should include the title, date, purpose, procedure; data tables. Determination of Molar Mass by Freezing Point Depression M. Burkart & M. Kim Experimental Notes: Students work in pairs. Safety: Goggles and closed shoes must be worn. Dispose of all chemical in the plastic

More information

EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate

EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate Pahlavan/Cherif Purpose a) Study electrophilic aromatic substitution reaction (EAS) b) Study regioselectivity

More information

Standard Operating Procedure

Standard Operating Procedure Page 1 of 6 SCHLENK LINE Standard Operating Procedure Lab: Engineering Sciences Building 155 Department: Materials Science and Engineering PI: Paul V. Braun Written By: Christian Ocier Section 1: Overview

More information

Safety, Cleaning, and Chemical Disposal Procedures

Safety, Cleaning, and Chemical Disposal Procedures Safety, Cleaning, and Chemical Disposal Procedures 1. Using Acids At many points in the fabrication process strong acids are used as etchants. These cause severe burns if kept in contact with your skin

More information

Experiment 8 Synthesis of Aspirin

Experiment 8 Synthesis of Aspirin Experiment 8 Synthesis of Aspirin Aspirin is an effective analgesic (pain reliever), antipyretic (fever reducer) and anti-inflammatory agent and is one of the most widely used non-prescription drugs. The

More information

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD KEY

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD KEY CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD Objective To gain familiarity with basic laboratory procedures, some chemistry of a typical transition element, and the concept of percent yield. Apparatus

More information

CH204 Experiment 2. Experiment 1 Post-Game Show. Experiment 1 Post-Game Show continued... Dr. Brian Anderson Fall 2008

CH204 Experiment 2. Experiment 1 Post-Game Show. Experiment 1 Post-Game Show continued... Dr. Brian Anderson Fall 2008 CH204 Experiment 2 Dr. Brian Anderson Fall 2008 Experiment 1 Post-Game Show pipette and burette intensive and extensive properties interpolation determining random experimental error What about gross error

More information

First Grade Unit A: PHYSICAL SCIENCE Chapter 1: Observing Solids, Liquids and Gases Lessons 1 to 5

First Grade Unit A: PHYSICAL SCIENCE Chapter 1: Observing Solids, Liquids and Gases Lessons 1 to 5 First Grade Unit A: PHYSICAL SCIENCE Chapter 1: Observing Solids, Liquids and Gases Lessons 1 to 5 Physical Science Overview Materials (matter) come in different forms. Water can be rain falling (liquid)

More information

COMMON LABORATORY APPARATUS

COMMON LABORATORY APPARATUS COMMON LABORATORY APPARATUS Beakers are useful as a reaction container or to hold liquid or solid samples. They are also used to catch liquids from titrations and filtrates from filtering operations. Bunsen

More information

Taking Apart the Pieces

Taking Apart the Pieces Lab 4 Taking Apart the Pieces How does starting your morning out right relate to relief from a headache? I t is a lazy Saturday morning and you ve just awakened to your favorite cereal Morning Trails and

More information

Experiment #7: Esterification

Experiment #7: Esterification Experiment #7: Esterification Pre-lab: 1. Choose an ester to synthesize. Determine which alcohol and which carboxylic acid you will need to synthesize your ester. Write out the reaction for your specific

More information

Distillation Experiment

Distillation Experiment Distillation Experiment CHM226 Background The distillation process is a very important technique used to separate compounds based on their boiling points. A substance will boil only when the vapor pressure

More information

CHM 130LL: ph, Buffers, and Indicators

CHM 130LL: ph, Buffers, and Indicators CHM 130LL: ph, Buffers, and Indicators Many substances can be classified as acidic or basic. Acidic substances contain hydrogen ions, H +, while basic substances contain hydroxide ions, OH. The relative

More information

Separation by Solvent Extraction

Separation by Solvent Extraction Experiment 3 Separation by Solvent Extraction Objectives To separate a mixture consisting of a carboxylic acid and a neutral compound by using solvent extraction techniques. Introduction Frequently, organic

More information

Unit 1 - Pure Substances and Mixtures Chapter 2: Solutions

Unit 1 - Pure Substances and Mixtures Chapter 2: Solutions 2.1 Solutes & Solvents Vocabulary: Unit 1 - Pure Substances and Mixtures Chapter 2: Solutions solvent the larger part of a solution - the part of a solution into which the solutes dissolve solute the smaller

More information

ph Measurements of Common Substances

ph Measurements of Common Substances Chem 100 Section Experiment 10 Name Partner s Name Introduction ph Measurements of Common Substances The concentration of an acid or base is frequently expressed as ph. Historically, ph stands for the

More information

SEE HOW TO MAKE LIME PLASTER WHY USE LIME? PATTI STOUTER, BUILD SIMPLE INC. FEBRUARY 2013

SEE HOW TO MAKE LIME PLASTER WHY USE LIME? PATTI STOUTER, BUILD SIMPLE INC. FEBRUARY 2013 SEE HOW TO MAKE LIME PLASTER PATTI STOUTER, BUILD SIMPLE INC. FEBRUARY 2013 WHY USE LIME? Lime plaster forms a light, clean, and durable surface that is resistant to weather and mold. A thin layer attaches

More information

Activity: How Do We Clean Up an Oil Spill?

Activity: How Do We Clean Up an Oil Spill? Activity: How Do We Clean Up an Oil Spill? Summary In this activity, students simulate an oil spill and test different materials abilities to clean the oil spill. Resource Type Activity Grade Level High

More information

Synthesis of Aspirin and Oil of Wintergreen

Synthesis of Aspirin and Oil of Wintergreen Austin Peay State University Department of hemistry hem 1121 autions Purpose Introduction Acetic Anhydride corrosive and a lachrymator all transfers should be done in the vented fume hood Methanol, Ethanol

More information

Partner: Jack 17 November 2011. Determination of the Molar Mass of Volatile Liquids

Partner: Jack 17 November 2011. Determination of the Molar Mass of Volatile Liquids Partner: Jack 17 November 2011 Determination of the Molar Mass of Volatile Liquids Purpose: The purpose of this experiment is to determine the molar mass of three volatile liquids. The liquid is vaporized

More information

Household Acids and Bases

Household Acids and Bases Household Acids and Bases GRADE LEVEL INDICATORS Experiment Demonstrate that the ph scale (0-14) is used to measure acidity and classify substances or solutions as acidic, basic, or neutral. 21 Develop

More information

Mixtures and Pure Substances

Mixtures and Pure Substances Unit 2 Mixtures and Pure Substances Matter can be classified into two groups: mixtures and pure substances. Mixtures are the most common form of matter and consist of mixtures of pure substances. They

More information

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER Chemistry 111 Lab: Synthesis of a Copper Complex Page H-1 SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER In this experiment you will synthesize a compound by adding NH 3 to a concentrated

More information

Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid

Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid Introduction Many metals react with acids to form hydrogen gas. In this experiment, you will use the reactions

More information

Acid Base Titrations

Acid Base Titrations Acid Base Titrations Introduction A common question chemists have to answer is how much of something is present in a sample or a product. If the product contains an acid or base, this question is usually

More information

Household Acids and Bases

Household Acids and Bases Household Acids and Bases Computer 28 Many common household solutions contain acids and bases. Acid-base indicators, such as litmus and red cabbage juice, turn different colors in acidic and basic solutions.

More information

Chemistry of Biodiesel Production. Teacher Notes. DAY 1: Biodiesel synthesis (50 minutes)

Chemistry of Biodiesel Production. Teacher Notes. DAY 1: Biodiesel synthesis (50 minutes) Chemistry of Biodiesel Production Teacher Notes DAY 1: Biodiesel synthesis (50 minutes) NOTE: The lab preparation instructions / lab protocol assumes classes of 32 students, with 8 groups of 4 students

More information

SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF SECOND GRADE WATER WEEK 1. PRE: Exploring the properties of water. LAB: Experimenting with different soap mixtures. POST: Analyzing

More information

General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction

General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction General Chemistry I (FC, 09-10) Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant, does not

More information

Name: Date: Period: Presentation #4. Covalent compounds continued practice with drawing them. Modeling covalent compounds in 3D

Name: Date: Period: Presentation #4. Covalent compounds continued practice with drawing them. Modeling covalent compounds in 3D Homework Activities Name: Date: Period: This week we will practice creating covalent compounds through drawings and 3D models. We will also look at polar and non-polar molecules to see how their structures

More information

Maintaining an Oil Spill Disaster: Free Volume, Solubility and Crosslinking Explained

Maintaining an Oil Spill Disaster: Free Volume, Solubility and Crosslinking Explained Maintaining an Oil Spill Disaster: Free Volume, Solubility and Crosslinking Explained Created by Maliha Syed 2012-13 GK-12 Program, Connections in the Classroom: Molecules to Muscles, Award# 0947944 National

More information

ANALYSIS OF VITAMIN C

ANALYSIS OF VITAMIN C Purpose To learn how to analyze food for vitamin C content and to examine various sources for vitamin C content. Caution Handle the glassware with caution to prevent breakage. When using a burner in the

More information

Chapter 3 Student Reading

Chapter 3 Student Reading Chapter 3 Student Reading If you hold a solid piece of lead or iron in your hand, it feels heavy for its size. If you hold the same size piece of balsa wood or plastic, it feels light for its size. The

More information

Austin Peay State University Department of Chemistry CHEM 1111. Empirical Formula of a Compound

Austin Peay State University Department of Chemistry CHEM 1111. Empirical Formula of a Compound Cautions Magnesium ribbon is flammable. Nitric acid (HNO 3 ) is toxic, corrosive and contact with eyes or skin may cause severe burns. Ammonia gas (NH 3 ) is toxic and harmful. Hot ceramic crucibles and

More information

Experiment 3: Extraction: Separation of an Acidic, a Basic and a Neutral Substance

Experiment 3: Extraction: Separation of an Acidic, a Basic and a Neutral Substance 1 Experiment 3: Extraction: Separation of an Acidic, a Basic and a Neutral Substance Read pp 142-155, 161-162, Chapter 10 and pp 163-173, Chapter 11, in LTOC. View the videos: 4.2 Extraction (Macroscale);

More information

Chapter 6, Lesson 4: Temperature and the Rate of a Chemical Reaction

Chapter 6, Lesson 4: Temperature and the Rate of a Chemical Reaction Chapter 6, Lesson 4: Temperature and the Rate of a Chemical Reaction Key Concepts Reactants must be moving fast enough and hit each other hard enough for a chemical reaction to take place. Increasing the

More information

Vitamin C Content of Fruit Juice

Vitamin C Content of Fruit Juice 1 Vitamin C Content of Fruit Juice Introduction Vitamin C Vitamins are organic compounds that have important biological functions. For instance, in humans they enable a variety of enzymes in the body to

More information

Dissolving of sodium hydroxide generates heat. Take care in handling the dilution container.

Dissolving of sodium hydroxide generates heat. Take care in handling the dilution container. TITRATION: STANDARDIZATION OF A BASE AND ANALYSIS OF STOMACH ANTACID TABLETS 2009, 1996, 1973 by David A. Katz. All rights reserved. Reproduction permitted for education use provided original copyright

More information

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version Freezing point depression describes the process where the temperature at which a liquid freezes is lowered by adding another

More information

Chemquest: Physical Changes or Chemical Reactions

Chemquest: Physical Changes or Chemical Reactions Chemquest: Physical Changes or Chemical Reactions Erik Misner May 9, 2005 Background: This lesson is designed to be an interactive and fun way to learn the difference between physical changes and chemical

More information