MA119-A Applied Calculus for Business Fall Homework 10 Solutions Due 11/8/ :30AM

Size: px
Start display at page:

Download "MA119-A Applied Calculus for Business Fall Homework 10 Solutions Due 11/8/ :30AM"

Transcription

1 MA9-A Applie Calculus for Business 006 Fall Homework 0 Solutions Due /8/006 0:30AM 53 #8 How long will it take $,000 to grow to $5,000 if the investment earns interest at the rate 8%/year compoune monthly? By the compoun interest formula, we have 5000 = :08 t We use log 0 to solve t The equation becomes + 0:08 t = = 5 4 By applying log 0 on both sies, we have 5 log 0 4 = log 0 + 0:08 Therefore, t = log t = t log 0 + 0:08 = :7986 log 0 + 0:08 So, it takes about years an 0:7986 = 9:583 0 months 53 #8 Saving Accounts Bernie investe a sum of money 5 yr ago in a savings account, which has since pai interest at the rate of 8%/yr compoune quarterly His investment is now worth $,89 How much i he originally invest? From the problem, we know that the eposit in the beginning P is unknown The annual rate r = 8% = 0:08 Since it is compoune quarterly, m = 4 Since we are talking about 5 years, we have t = 5 Also, the total amount is A = 89: Thus, we have 89: = A = P + r mt = P + 0:08 45 = P (:0) 0 m 4 Solve for P = 89: 0 = 5000 (:0) So, he originally invest $5,000 ollars

2 53 #40 E ect of In ation on Salaries Omar s current annual salary is $35,000 How much will he nee to earn 0 yr from now in orer to retain his present purchasing power if the rate of in ation over that perio is 6%/year? Assume that in ation is continuously compoune From the problem, we know that the amount in the beginning P = The annual rate r = 6% = 0:06 Since we are talking about 5 years, we have t = 0 Since it is compoune continuously, we have A = P e rt = 35000e 0: So, he nees to earn $63,774 ollars in orer to retain his present purchasing power 54 #4 Fin the erivative of the function The erivative is f (x) = e x x 54 # Fin the erivative of the function The erivative is f (x) = e x x ( x) = e x ( ) = e x f (x) = ex + e x x f (x) = x ex + e x x 54 #6 Fin the erivative of the function The erivative is s f (s) = f (s) = s + e s = ex e x s s + e s + s + e s s = (s) e s + s + e s s s = se s + s + e s ( s) = s 3 e s

3 54 #30 Fin the secon erivative of the function f (t) = 3e t 5e t The rst erivative is t f (t) = 3e t ( ) 5e t ( ) = 6e t + 5e t The secon erivative is t f (t) = 6e t ( ) + 5e t ( ) = e t 5e t 54 #44 Fin the absolute extrema of the function h (x) = e x 4 on [ ; ] First, we n where h 0 (x) = 0 We have h 0 (x) = e x 4 (x) = xe x 4 Note that e x 4 > 0 for all x If h 0 (x) = 0, then we have x = 0 Therefore, we have only one critical point x = 0 To get the absolute maximum an minimum, critical points an bounary points are all the caniates Thus, we have three caniates x = ; 0; now We have Caniates 0 Value of h (x) e 4 Maximum or Minimum Abs Max Abs Min Abs Max The graph looks like 3 y x 54 #66 Maximum Oil Prouction It has been estimate that the total prouction of oil from a certain oil well is given by T (t) = 000 (t + 0) e 0:t + 0; 000

4 4 thousan barrels t yr after prouction has begun Determine the year when the oil well will be proucing at maximum capacity First, we n where T 0 (t) = 0 We have T 0 (t) = 000 () e 0:t + (t + 0) e 0:t ( 0:) = 00te 0:t Note that T 0 means that the rate of change of the total prouction after t yr When T 0 is increasing, the oil well can still prouce more Thus, it is not proucing at maximum capacity yet When T 0 is ecreasing, the oil well can only prouce less the the previous moment It means that it passes the maximum capacity alreay So, we are looking for a time t that T 0 changes from increasing to ecreasing Thus, we nee to n where T 00 (t) = 0 We have T 00 (t) = 00 () e 0:t + te 0:t ( 0:) = 00 e 0:t + 0:te 0:t = 00e 0:t ( 0:t) Note that e 0:t > 0 for all t If T 00 (t) = 0, then we have 0:t = 0, or, t = 0 Therefore, we have only one critical point of T 00 at t = 0 Therefore, the 0th year is the turning point of the oil well from proucing more every year to proucing less every year Hence, 0th year is the year when the oil well is proucing at maximum capacity 55 #6 Fin the erivative of the function h (t) = ln t 5 The erivative is t h (t) = ln t5 = t t 5 55 #4 Fin the erivative of the function f (x) = ln x + x Note that The erivative is x f (x) = x ln x + x 55 #0 Fin the erivative of the function Note that = = ln (x + ) ln (x ) 5t 4 = 0 t (ln (x + ) ln (x )) = ln (x + ) x x + () x () = x + x f (x) = ln x ln x = 4 ln x 3 3 ln (x ) x

5 5 The erivative is x f (x) = x = 4 55 #6 Fin the erivative of the function Note that x 3 4 ln x3 3 = 4 ln x3 3 x 3 3x = x x 3 3 f (x) = ln p x 4 ln p x 4 = ln x 4 = ln x 4 The erivative is x f (x) = x ln x 4 = ln x 4 x = x 4 (x) = x x 4 55 #38 Use logarithmic i erentiation to n the erivative of the function y = (3x + ) 4 (5x ) By applying ln on both sies, we have ln y = ln (3x + ) 4 (5x ) = ln (3x + ) 4 + ln (5x ) = 4 ln (3x + ) + ln (5x ) By i erentiating both sies, we have y y0 = 4 3x + (3) + 5x Thus, the erivative is y 0 = y 3x x (5) = 3x x = (3x + ) 4 (5x ) 3x x 55 #4 Use logarithmic i erentiation to n the erivative of the function p 4 + 3x y = 3p x + By applying ln on both sies, we have p 4 + 3x ln y = ln 3p x + = ln p 4 + 3x ln 3p x + = ln 4 + 3x ln x + 3 = ln 4 + 3x 3 ln x +

6 6 By i erentiating both sies, we have y y0 = 4 + 3x (6x) 3 x + (x) = Thus, the erivative is p 3x y x = y = 4 + 3x 3x + 3 3p x + 3x 4 + 3x 3x + 3! 3x 4 + 3x 3x #58 Fin the extrema of the function g (x) = x on [; 5] ln x First, we n where g 0 (x) = 0 We have g 0 (x) = ()(ln x) (x)( x) = ln x Note that on (ln x) (ln x) the interval [; 5], ln x > 0 If g 0 (x) = 0, then we have ln x = 0 The root of this equation is x = e :788 Therefore, we have only one critical point x = e To get the absolute maximum an minimum, critical points an bounary points are all the caniates Thus, we have three caniates x = ; e; 5 now We have Caniates e 5 Value of g (x) :8854 e : :067 ln ln 5 Maximum or Minimum Abs Min Abs Max The graph looks like y x

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information

20. Product rule, Quotient rule

20. Product rule, Quotient rule 20. Prouct rule, 20.1. Prouct rule Prouct rule, Prouct rule We have seen that the erivative of a sum is the sum of the erivatives: [f(x) + g(x)] = x x [f(x)] + x [(g(x)]. One might expect from this that

More information

To differentiate logarithmic functions with bases other than e, use

To differentiate logarithmic functions with bases other than e, use To ifferentiate logarithmic functions with bases other than e, use 1 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b 1 To ifferentiate logarithmic functions with

More information

Answers to the Practice Problems for Test 2

Answers to the Practice Problems for Test 2 Answers to the Practice Problems for Test 2 Davi Murphy. Fin f (x) if it is known that x [f(2x)] = x2. By the chain rule, x [f(2x)] = f (2x) 2, so 2f (2x) = x 2. Hence f (2x) = x 2 /2, but the lefthan

More information

f(x) = a x, h(5) = ( 1) 5 1 = 2 2 1

f(x) = a x, h(5) = ( 1) 5 1 = 2 2 1 Exponential Functions an their Derivatives Exponential functions are functions of the form f(x) = a x, where a is a positive constant referre to as the base. The functions f(x) = x, g(x) = e x, an h(x)

More information

( ) = ( ) = {,,, } β ( ), < 1 ( ) + ( ) = ( ) + ( )

( ) = ( ) = {,,, } β ( ), < 1 ( ) + ( ) = ( ) + ( ) { } ( ) = ( ) = {,,, } ( ) β ( ), < 1 ( ) + ( ) = ( ) + ( ) max, ( ) [ ( )] + ( ) [ ( )], [ ( )] [ ( )] = =, ( ) = ( ) = 0 ( ) = ( ) ( ) ( ) =, ( ), ( ) =, ( ), ( ). ln ( ) = ln ( ). + 1 ( ) = ( ) Ω[ (

More information

With compound interest you earn an additional $128.89 ($1628.89 - $1500).

With compound interest you earn an additional $128.89 ($1628.89 - $1500). Compound Interest Interest is the amount you receive for lending money (making an investment) or the fee you pay for borrowing money. Compound interest is interest that is calculated using both the principle

More information

APPLICATION OF CALCULUS IN COMMERCE AND ECONOMICS

APPLICATION OF CALCULUS IN COMMERCE AND ECONOMICS Application of Calculus in Commerce an Economics 41 APPLICATION OF CALCULUS IN COMMERCE AND ECONOMICS æ We have learnt in calculus that when 'y' is a function of '', the erivative of y w.r.to i.e. y ö

More information

Section 4.5 Exponential and Logarithmic Equations

Section 4.5 Exponential and Logarithmic Equations Section 4.5 Exponential and Logarithmic Equations Exponential Equations An exponential equation is one in which the variable occurs in the exponent. EXAMPLE: Solve the equation x = 7. Solution 1: We have

More information

Continuous Compounding and Discounting

Continuous Compounding and Discounting Continuous Compounding and Discounting Philip A. Viton October 5, 2011 Continuous October 5, 2011 1 / 19 Introduction Most real-world project analysis is carried out as we ve been doing it, with the present

More information

36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous?

36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous? 36 CHAPTER 1. LIMITS AND CONTINUITY 1.3 Continuity Before Calculus became clearly de ned, continuity meant that one could draw the graph of a function without having to lift the pen and pencil. While this

More information

Representation of functions as power series

Representation of functions as power series Representation of functions as power series Dr. Philippe B. Laval Kennesaw State University November 9, 008 Abstract This document is a summary of the theory and techniques used to represent functions

More information

Future Value of an Annuity Sinking Fund. MATH 1003 Calculus and Linear Algebra (Lecture 3)

Future Value of an Annuity Sinking Fund. MATH 1003 Calculus and Linear Algebra (Lecture 3) MATH 1003 Calculus and Linear Algebra (Lecture 3) Future Value of an Annuity Definition An annuity is a sequence of equal periodic payments. We call it an ordinary annuity if the payments are made at the

More information

Homework # 3 Solutions

Homework # 3 Solutions Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8

More information

EXPONENTIAL FUNCTIONS 8.1.1 8.1.6

EXPONENTIAL FUNCTIONS 8.1.1 8.1.6 EXPONENTIAL FUNCTIONS 8.1.1 8.1.6 In these sections, students generalize what they have learned about geometric sequences to investigate exponential functions. Students study exponential functions of the

More information

For additional information, see the Math Notes boxes in Lesson B.1.3 and B.2.3.

For additional information, see the Math Notes boxes in Lesson B.1.3 and B.2.3. EXPONENTIAL FUNCTIONS B.1.1 B.1.6 In these sections, students generalize what they have learned about geometric sequences to investigate exponential functions. Students study exponential functions of the

More information

FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA

FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA 1.1 Solve linear equations and equations that lead to linear equations. a) Solve the equation: 1 (x + 5) 4 = 1 (2x 1) 2 3 b) Solve the equation: 3x

More information

Math 230.01, Fall 2012: HW 1 Solutions

Math 230.01, Fall 2012: HW 1 Solutions Math 3., Fall : HW Solutions Problem (p.9 #). Suppose a wor is picke at ranom from this sentence. Fin: a) the chance the wor has at least letters; SOLUTION: All wors are equally likely to be chosen. The

More information

Chapter 4: Elasticity

Chapter 4: Elasticity Chapter : Elasticity Elasticity of eman: It measures the responsiveness of quantity emane (or eman) with respect to changes in its own price (or income or the price of some other commoity). Why is Elasticity

More information

1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some

1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some Section 3.1: First Derivative Test Definition. Let f be a function with domain D. 1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some open interval containing c. The number

More information

SOLVING EQUATIONS WITH EXCEL

SOLVING EQUATIONS WITH EXCEL SOLVING EQUATIONS WITH EXCEL Excel and Lotus software are equipped with functions that allow the user to identify the root of an equation. By root, we mean the values of x such that a given equation cancels

More information

Logarithmic and Exponential Equations

Logarithmic and Exponential Equations 11.5 Logarithmic and Exponential Equations 11.5 OBJECTIVES 1. Solve a logarithmic equation 2. Solve an exponential equation 3. Solve an application involving an exponential equation Much of the importance

More information

Ch 10. Arithmetic Average Options and Asian Opitons

Ch 10. Arithmetic Average Options and Asian Opitons Ch 10. Arithmetic Average Options an Asian Opitons I. Asian Option an the Analytic Pricing Formula II. Binomial Tree Moel to Price Average Options III. Combination of Arithmetic Average an Reset Options

More information

About the Gamma Function

About the Gamma Function About the Gamma Function Notes for Honors Calculus II, Originally Prepared in Spring 995 Basic Facts about the Gamma Function The Gamma function is defined by the improper integral Γ) = The integral is

More information

$496. 80. Example If you can earn 6% interest, what lump sum must be deposited now so that its value will be $3500 after 9 months?

$496. 80. Example If you can earn 6% interest, what lump sum must be deposited now so that its value will be $3500 after 9 months? Simple Interest, Compound Interest, and Effective Yield Simple Interest The formula that gives the amount of simple interest (also known as add-on interest) owed on a Principal P (also known as present

More information

Vilnius University. Faculty of Mathematics and Informatics. Gintautas Bareikis

Vilnius University. Faculty of Mathematics and Informatics. Gintautas Bareikis Vilnius University Faculty of Mathematics and Informatics Gintautas Bareikis CONTENT Chapter 1. SIMPLE AND COMPOUND INTEREST 1.1 Simple interest......................................................................

More information

CHAPTER 8: DIFFERENTIAL CALCULUS

CHAPTER 8: DIFFERENTIAL CALCULUS CHAPTER 8: DIFFERENTIAL CALCULUS 1. Rules of Differentiation As we ave seen, calculating erivatives from first principles can be laborious an ifficult even for some relatively simple functions. It is clearly

More information

5.1 Derivatives and Graphs

5.1 Derivatives and Graphs 5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has

More information

Chapter 4: Nominal and Effective Interest Rates

Chapter 4: Nominal and Effective Interest Rates Chapter 4: Nominal and Effective Interest Rates Session 9-10-11 Dr Abdelaziz Berrado 1 Topics to Be Covered in Today s Lecture Section 4.1: Nominal and Effective Interest Rates statements Section 4.2:

More information

3. Time value of money. We will review some tools for discounting cash flows.

3. Time value of money. We will review some tools for discounting cash flows. 1 3. Time value of money We will review some tools for discounting cash flows. Simple interest 2 With simple interest, the amount earned each period is always the same: i = rp o where i = interest earned

More information

Solving DEs by Separation of Variables.

Solving DEs by Separation of Variables. Solving DEs by Separation of Variables. Introduction and procedure Separation of variables allows us to solve differential equations of the form The steps to solving such DEs are as follows: dx = gx).

More information

Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation

Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation Sections 3.1/3.2: Introucing te Derivative/Rules of Differentiation 1 Tangent Line Before looking at te erivative, refer back to Section 2.1, looking at average velocity an instantaneous velocity. Here

More information

Example Optimization Problems selected from Section 4.7

Example Optimization Problems selected from Section 4.7 Example Optimization Problems selecte from Section 4.7 19) We are aske to fin the points ( X, Y ) on the ellipse 4x 2 + y 2 = 4 that are farthest away from the point ( 1, 0 ) ; as it happens, this point

More information

Compound Interest. Invest 500 that earns 10% interest each year for 3 years, where each interest payment is reinvested at the same rate:

Compound Interest. Invest 500 that earns 10% interest each year for 3 years, where each interest payment is reinvested at the same rate: Compound Interest Invest 500 that earns 10% interest each year for 3 years, where each interest payment is reinvested at the same rate: Table 1 Development of Nominal Payments and the Terminal Value, S.

More information

CURRENCY OPTION PRICING II

CURRENCY OPTION PRICING II Jones Grauate School Rice University Masa Watanabe INTERNATIONAL FINANCE MGMT 657 Calibrating the Binomial Tree to Volatility Black-Scholes Moel for Currency Options Properties of the BS Moel Option Sensitivity

More information

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123 Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from

More information

1 Calculus of Several Variables

1 Calculus of Several Variables 1 Calculus of Several Variables Reading: [Simon], Chapter 14, p. 300-31. 1.1 Partial Derivatives Let f : R n R. Then for each x i at each point x 0 = (x 0 1,..., x 0 n) the ith partial derivative is defined

More information

Solutions to Midterm #1 Practice Problems

Solutions to Midterm #1 Practice Problems MAT Fall 0 Solutions to Midterm # Practice Problems. Below is the graph of a function y = r(). y = r() Sketch graphs of the following functions: (a) y = r( 3) (b) y = r( ) 3 (c) y = r() + (d) y = r( +

More information

Mathematics Review for Economists

Mathematics Review for Economists Mathematics Review for Economists by John E. Floy University of Toronto May 9, 2013 This ocument presents a review of very basic mathematics for use by stuents who plan to stuy economics in grauate school

More information

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

More information

Hull, Chapter 11 + Sections 17.1 and 17.2 Additional reference: John Cox and Mark Rubinstein, Options Markets, Chapter 5

Hull, Chapter 11 + Sections 17.1 and 17.2 Additional reference: John Cox and Mark Rubinstein, Options Markets, Chapter 5 Binomial Moel Hull, Chapter 11 + ections 17.1 an 17.2 Aitional reference: John Cox an Mark Rubinstein, Options Markets, Chapter 5 1. One-Perio Binomial Moel Creating synthetic options (replicating options)

More information

Homework #10 Solutions

Homework #10 Solutions MAT Fall Homework # Solutions Problems Bolded problems are worth points. Section 5.:, 6, 8,, Section 5.:, 6,, 8,, Notes: On 5.., evaluate the integral using the fnint function (available through MATH 9

More information

4.6 Exponential and Logarithmic Equations (Part I)

4.6 Exponential and Logarithmic Equations (Part I) 4.6 Eponential and Logarithmic Equations (Part I) In this section you will learn to: solve eponential equations using like ases solve eponential equations using logarithms solve logarithmic equations using

More information

Inverse Trig Functions

Inverse Trig Functions Inverse Trig Functions c A Math Support Center Capsule February, 009 Introuction Just as trig functions arise in many applications, so o the inverse trig functions. What may be most surprising is that

More information

15.2. First-Order Linear Differential Equations. First-Order Linear Differential Equations Bernoulli Equations Applications

15.2. First-Order Linear Differential Equations. First-Order Linear Differential Equations Bernoulli Equations Applications 00 CHAPTER 5 Differential Equations SECTION 5. First-Orer Linear Differential Equations First-Orer Linear Differential Equations Bernoulli Equations Applications First-Orer Linear Differential Equations

More information

ICASL - Business School Programme

ICASL - Business School Programme ICASL - Business School Programme Quantitative Techniques for Business (Module 3) Financial Mathematics TUTORIAL 2A This chapter deals with problems related to investing money or capital in a business

More information

FinQuiz Notes 2 0 1 5

FinQuiz Notes 2 0 1 5 Reading 5 The Time Value of Money Money has a time value because a unit of money received today is worth more than a unit of money to be received tomorrow. Interest rates can be interpreted in three ways.

More information

Chapter 2 Time value of money

Chapter 2 Time value of money Chapter 2 Time value of money Interest: the cost of money Economic equivalence Interest formulas single cash flows Equal-payment series Dealing with gradient series Composite cash flows. Power-Ball Lottery

More information

AP CALCULUS AB 2007 SCORING GUIDELINES (Form B)

AP CALCULUS AB 2007 SCORING GUIDELINES (Form B) AP CALCULUS AB 2007 SCORING GUIDELINES (Form B) Question 4 Let f be a function defined on the closed interval 5 x 5 with f ( 1) = 3. The graph of f, the derivative of f, consists of two semicircles and

More information

1 Present and Future Value

1 Present and Future Value Lecture 8: Asset Markets c 2009 Je rey A. Miron Outline:. Present and Future Value 2. Bonds 3. Taxes 4. Applications Present and Future Value In the discussion of the two-period model with borrowing and

More information

PART A: For each worker, determine that worker's marginal product of labor.

PART A: For each worker, determine that worker's marginal product of labor. ECON 3310 Homework #4 - Solutions 1: Suppose the following indicates how many units of output y you can produce per hour with different levels of labor input (given your current factory capacity): PART

More information

4.1 INTRODUCTION TO THE FAMILY OF EXPONENTIAL FUNCTIONS

4.1 INTRODUCTION TO THE FAMILY OF EXPONENTIAL FUNCTIONS Functions Modeling Change: A Preparation for Calculus, 4th Edition, 2011, Connally 4.1 INTRODUCTION TO THE FAMILY OF EXPONENTIAL FUNCTIONS Functions Modeling Change: A Preparation for Calculus, 4th Edition,

More information

Microeconomics Sept. 16, 2010 NOTES ON CALCULUS AND UTILITY FUNCTIONS

Microeconomics Sept. 16, 2010 NOTES ON CALCULUS AND UTILITY FUNCTIONS DUSP 11.203 Frank Levy Microeconomics Sept. 16, 2010 NOTES ON CALCULUS AND UTILITY FUNCTIONS These notes have three purposes: 1) To explain why some simple calculus formulae are useful in understanding

More information

100. In general, we can define this as if b x = a then x = log b

100. In general, we can define this as if b x = a then x = log b Exponents and Logarithms Review 1. Solving exponential equations: Solve : a)8 x = 4! x! 3 b)3 x+1 + 9 x = 18 c)3x 3 = 1 3. Recall: Terminology of Logarithms If 10 x = 100 then of course, x =. However,

More information

8.7 Exponential Growth and Decay

8.7 Exponential Growth and Decay Section 8.7 Exponential Growth and Decay 847 8.7 Exponential Growth and Decay Exponential Growth Models Recalling the investigations in Section 8.3, we started by developing a formula for discrete compound

More information

Time Value of Money. 2014 Level I Quantitative Methods. IFT Notes for the CFA exam

Time Value of Money. 2014 Level I Quantitative Methods. IFT Notes for the CFA exam Time Value of Money 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction...2 2. Interest Rates: Interpretation...2 3. The Future Value of a Single Cash Flow...4 4. The

More information

Pre-Session Review. Part 2: Mathematics of Finance

Pre-Session Review. Part 2: Mathematics of Finance Pre-Session Review Part 2: Mathematics of Finance For this section you will need a calculator with logarithmic and exponential function keys (such as log, ln, and x y ) D. Exponential and Logarithmic Functions

More information

1 Interest rates, and risk-free investments

1 Interest rates, and risk-free investments Interest rates, and risk-free investments Copyright c 2005 by Karl Sigman. Interest and compounded interest Suppose that you place x 0 ($) in an account that offers a fixed (never to change over time)

More information

Web Appendices of Selling to Overcon dent Consumers

Web Appendices of Selling to Overcon dent Consumers Web Appenices of Selling to Overcon ent Consumers Michael D. Grubb A Option Pricing Intuition This appenix provies aitional intuition base on option pricing for the result in Proposition 2. Consier the

More information

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were: Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

More information

Section 4-7 Exponential and Logarithmic Equations. Solving an Exponential Equation. log 2. 3 2 log 5. log 2 1.4406

Section 4-7 Exponential and Logarithmic Equations. Solving an Exponential Equation. log 2. 3 2 log 5. log 2 1.4406 314 4 INVERSE FUNCTIONS; EXPONENTIAL AND LOGARITHMIC FUNCTIONS Section 4-7 Exponential and Logarithmic Equations Exponential Equations Logarithmic Equations Change of Base Equations involving exponential

More information

Willingness to Pay for a Risk Reduction

Willingness to Pay for a Risk Reduction The Economics of Climate Change C 75 Willingness to Pay for a Risk Reuction Sring 0 C Berkeley Traeger 5 Risk an ncertainty The Economics of Climate Change C 75 Back to Risk We will mostly treat the category

More information

Manual for SOA Exam FM/CAS Exam 2.

Manual for SOA Exam FM/CAS Exam 2. Manual for SOA Exam FM/CAS Exam 2. Chapter 3. Annuities. c 2009. Miguel A. Arcones. All rights reserved. Extract from: Arcones Manual for the SOA Exam FM/CAS Exam 2, Financial Mathematics. Fall 2009 Edition,

More information

Calculating Viscous Flow: Velocity Profiles in Rivers and Pipes

Calculating Viscous Flow: Velocity Profiles in Rivers and Pipes previous inex next Calculating Viscous Flow: Velocity Profiles in Rivers an Pipes Michael Fowler, UVa 9/8/1 Introuction In this lecture, we ll erive the velocity istribution for two examples of laminar

More information

CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises

CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises CHAPTER FIVE 5.1 SOLUTIONS 265 Solutions for Section 5.1 Skill Refresher S1. Since 1,000,000 = 10 6, we have x = 6. S2. Since 0.01 = 10 2, we have t = 2. S3. Since e 3 = ( e 3) 1/2 = e 3/2, we have z =

More information

Practice problems for Homework 11 - Point Estimation

Practice problems for Homework 11 - Point Estimation Practice problems for Homework 11 - Point Estimation 1. (10 marks) Suppose we want to select a random sample of size 5 from the current CS 3341 students. Which of the following strategies is the best:

More information

Chapter Two. THE TIME VALUE OF MONEY Conventions & Definitions

Chapter Two. THE TIME VALUE OF MONEY Conventions & Definitions Chapter Two THE TIME VALUE OF MONEY Conventions & Definitions Introduction Now, we are going to learn one of the most important topics in finance, that is, the time value of money. Note that almost every

More information

MAT12X Intermediate Algebra

MAT12X Intermediate Algebra MAT12X Intermediate Algebra Workshop I - Exponential Functions LEARNING CENTER Overview Workshop I Exponential Functions of the form y = ab x Properties of the increasing and decreasing exponential functions

More information

Differentiability of Exponential Functions

Differentiability of Exponential Functions Differentiability of Exponential Functions Philip M. Anselone an John W. Lee Philip Anselone (panselone@actionnet.net) receive his Ph.D. from Oregon State in 1957. After a few years at Johns Hopkins an

More information

The Mean Value Theorem

The Mean Value Theorem The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers

More information

Simple linear regression

Simple linear regression Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between

More information

c 2008 Je rey A. Miron We have described the constraints that a consumer faces, i.e., discussed the budget constraint.

c 2008 Je rey A. Miron We have described the constraints that a consumer faces, i.e., discussed the budget constraint. Lecture 2b: Utility c 2008 Je rey A. Miron Outline: 1. Introduction 2. Utility: A De nition 3. Monotonic Transformations 4. Cardinal Utility 5. Constructing a Utility Function 6. Examples of Utility Functions

More information

12.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following:

12.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following: Section 1.6 Logarithmic and Exponential Equations 811 1.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following: Solve Quadratic Equations (Section

More information

Unit #14 - Integral Applications in Physics and Economics Section 8.6

Unit #14 - Integral Applications in Physics and Economics Section 8.6 Unit #14 - Integral Applications in Physics and Economics Section 8.6 Some material from Calculus, Single and MultiVariable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 25 by John Wiley & Sons,

More information

Chapter 4 -- Decimals

Chapter 4 -- Decimals Chapter 4 -- Decimals $34.99 decimal notation ex. The cost of an object. ex. The balance of your bank account ex The amount owed ex. The tax on a purchase. Just like Whole Numbers Place Value - 1.23456789

More information

Learning Objectives for Section 1.1 Linear Equations and Inequalities

Learning Objectives for Section 1.1 Linear Equations and Inequalities Learning Objectives for Section 1.1 Linear Equations and Inequalities After this lecture and the assigned homework, you should be able to solve linear equations. solve linear inequalities. use interval

More information

6.4 Logarithmic Equations and Inequalities

6.4 Logarithmic Equations and Inequalities 6.4 Logarithmic Equations and Inequalities 459 6.4 Logarithmic Equations and Inequalities In Section 6.3 we solved equations and inequalities involving exponential functions using one of two basic strategies.

More information

QUADRATIC, EXPONENTIAL AND LOGARITHMIC FUNCTIONS

QUADRATIC, EXPONENTIAL AND LOGARITHMIC FUNCTIONS QUADRATIC, EXPONENTIAL AND LOGARITHMIC FUNCTIONS Content 1. Parabolas... 1 1.1. Top of a parabola... 2 1.2. Orientation of a parabola... 2 1.3. Intercept of a parabola... 3 1.4. Roots (or zeros) of a parabola...

More information

Inverse Functions and Logarithms

Inverse Functions and Logarithms Section 3. Inverse Functions and Logarithms 1 Kiryl Tsishchanka Inverse Functions and Logarithms DEFINITION: A function f is called a one-to-one function if it never takes on the same value twice; that

More information

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1 Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse

More information

Homework 4 Solutions

Homework 4 Solutions Homework 4 Solutions Chapter 4B Does it make sense? Decide whether each of the following statements makes sense or is clearly true) or does not make sense or is clearly false). Explain your reasoning.

More information

Notes on tangents to parabolas

Notes on tangents to parabolas Notes on tangents to parabolas (These are notes for a talk I gave on 2007 March 30.) The point of this talk is not to publicize new results. The most recent material in it is the concept of Bézier curves,

More information

GCSE Business Studies. Ratios. For first teaching from September 2009 For first award in Summer 2011

GCSE Business Studies. Ratios. For first teaching from September 2009 For first award in Summer 2011 GCSE Business Studies Ratios For first teaching from September 2009 For first award in Summer 2011 Ratios At the end of this unit students should be able to: Interpret and analyse final accounts and balance

More information

Chapter 4. Time Value of Money

Chapter 4. Time Value of Money Chapter 4 Time Value of Money Learning Goals 1. Discuss the role of time value in finance, the use of computational aids, and the basic patterns of cash flow. 2. Understand the concept of future value

More information

Chapter 4: Exponential and Logarithmic Functions

Chapter 4: Exponential and Logarithmic Functions Chapter 4: Eponential and Logarithmic Functions Section 4.1 Eponential Functions... 15 Section 4. Graphs of Eponential Functions... 3 Section 4.3 Logarithmic Functions... 4 Section 4.4 Logarithmic Properties...

More information

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

More information

9 Exponential Models CHAPTER. Chapter Outline. www.ck12.org Chapter 9. Exponential Models

9 Exponential Models CHAPTER. Chapter Outline. www.ck12.org Chapter 9. Exponential Models www.ck12.org Chapter 9. Eponential Models CHAPTER 9 Eponential Models Chapter Outline 9.1 EXPONENTIAL GROWTH 9.2 EXPONENTIAL DECAY 9.3 REVISITING RATE OF CHANGE 9.4 A QUICK REVIEW OF LOGARITHMS 9.5 USING

More information

Time Value of Money 1

Time Value of Money 1 Time Value of Money 1 This topic introduces you to the analysis of trade-offs over time. Financial decisions involve costs and benefits that are spread over time. Financial decision makers in households

More information

Mathematics (Project Maths Phase 3)

Mathematics (Project Maths Phase 3) 2014. M329 Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination 2014 Mathematics (Project Maths Phase 3) Paper 1 Higher Level Friday 6 June Afternoon 2:00 4:30 300

More information

AP Calculus AB 2009 Free-Response Questions

AP Calculus AB 2009 Free-Response Questions AP Calculus AB 2009 Free-Response Questions The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded

More information

1.7. formulae and transposition. Introduction. Prerequisites. Learning Outcomes. Learning Style

1.7. formulae and transposition. Introduction. Prerequisites. Learning Outcomes. Learning Style formulae and transposition 1.7 Introduction formulae are used frequently in almost all aspects of engineering in order to relate a physical quantity to one or more others. Many well-known physical laws

More information

Homework 4 - KEY. Jeff Brenion. June 16, 2004. Note: Many problems can be solved in more than one way; we present only a single solution here.

Homework 4 - KEY. Jeff Brenion. June 16, 2004. Note: Many problems can be solved in more than one way; we present only a single solution here. Homework 4 - KEY Jeff Brenion June 16, 2004 Note: Many problems can be solved in more than one way; we present only a single solution here. 1 Problem 2-1 Since there can be anywhere from 0 to 4 aces, the

More information

a b c d e You have two hours to do this exam. Please write your name on this page, and at the top of page three. GOOD LUCK! 3. a b c d e 12.

a b c d e You have two hours to do this exam. Please write your name on this page, and at the top of page three. GOOD LUCK! 3. a b c d e 12. MA123 Elem. Calculus Fall 2015 Exam 2 2015-10-22 Name: Sec.: Do not remove this answer page you will turn in the entire exam. No books or notes may be used. You may use an ACT-approved calculator during

More information

AP Calculus AB 2011 Scoring Guidelines

AP Calculus AB 2011 Scoring Guidelines AP Calculus AB Scoring Guidelines The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in 9, the

More information

Integral Calculus - Exercises

Integral Calculus - Exercises Integral Calculus - Eercises 6. Antidifferentiation. The Indefinite Integral In problems through 7, find the indicated integral.. Solution. = = + C = + C.. e Solution. e =. ( 5 +) Solution. ( 5 +) = e

More information

Lagrangian and Hamiltonian Mechanics

Lagrangian and Hamiltonian Mechanics Lagrangian an Hamiltonian Mechanics D.G. Simpson, Ph.D. Department of Physical Sciences an Engineering Prince George s Community College December 5, 007 Introuction In this course we have been stuying

More information

Chapter 7 Outline Math 236 Spring 2001

Chapter 7 Outline Math 236 Spring 2001 Chapter 7 Outline Math 236 Spring 2001 Note 1: Be sure to read the Disclaimer on Chapter Outlines! I cannot be responsible for misfortunes that may happen to you if you do not. Note 2: Section 7.9 will

More information

Optimal Control Policy of a Production and Inventory System for multi-product in Segmented Market

Optimal Control Policy of a Production and Inventory System for multi-product in Segmented Market RATIO MATHEMATICA 25 (2013), 29 46 ISSN:1592-7415 Optimal Control Policy of a Prouction an Inventory System for multi-prouct in Segmente Market Kuleep Chauhary, Yogener Singh, P. C. Jha Department of Operational

More information

Precalculus Orientation and FAQ

Precalculus Orientation and FAQ Precalculus Orientation and FAQ MATH 1011 (Precalculus) is a four hour 3 credit course that prepares a student for Calculus. Topics covered include linear, quadratic, polynomial, rational, exponential,

More information

Sample Solutions for Assignment 2.

Sample Solutions for Assignment 2. AMath 383, Autumn 01 Sample Solutions for Assignment. Reading: Chs. -3. 1. Exercise 4 of Chapter. Please note that there is a typo in the formula in part c: An exponent of 1 is missing. It should say 4

More information