How To Calculate Wind Loading

Size: px
Start display at page:

Download "How To Calculate Wind Loading"

Transcription

1 Use of Computational Fluid Dynamics in Civil Engineering Prof. Dr.-Ing. Casimir Katz, SOFiSTiK AG, Oberschleißheim ir. Henk Krüs, Cyclone Fluid Dynamics BV, Waalre Zusammenfassung: Der Einsatz von CFD im Bauwesen stellt nach wie vor eine Nischenanwendung dar. Die Gründe dafür werden beleuchtet und aufgezeigt, warum sich das jetzt ändern wird. Summary: The use of CFD in the civil engineering community is still a rare event. The reasons for that will be discussed and it will be pointed out why that will change now. 1 INTRODUCTION 1.1 Fluid dynamics and their applications CFD is the acronym for Computational Fluid Dynamics. Fluids in civil engineering are mostly air and water and the questions to be answered are the forces induced by fluid motion and the transport of heat or particles within the fluid. Typical questions are Wind loading on bluff bodies Wind loading on moving bodies, especially bridges Wind comfort and nuisance to cyclists and pedestrians Wind energy Heating and Ventilation (HVAC) Fire safety engineering Wave loadings The difference to classical static or dynamic analysis is given by a different mathematical treatment and thus different mathematical tools [1]. While structural mechanics use the Lagrangian approach based on displacements, fluid mechanics prefer the Eulerian approach based on the velocity of the fluid. Structural mechanics use the Finite Element Method, most fluid mechanics use the Finite Volume Method. The basic principles of equilibrium and conservation of mass, energy and momentum are common to both methods. V13-1

2 1.2 Software for CFD Software for CFD has been developed for a long time now, the most well known products today are the big three FLUENT (now Ansys), STAR-CD/STAR-CCM (CD-Adapco) and CFX (now Ansys), but there are many more like the CFDDRC (now ESI-Group), CFDesign (FEM by Blue Ridge Numerics, now Autodesk) and FDS (by NIST). There are also different techniques available like vortex particle and Lattice-Boltzmann methods. The first impression for a structural engineer is, that everything is very complex, that there are hundreds of features and parameters and that it will cost a fortune to start into this field. Over the years the mantra of a technique much too complex for the common engineer and high licence costs has established significant barriers. The same happened to structural FE-Software in the late seventies. SOFiSTiK had success because we anticipated the wide spread of that technique on personal computers in But the CFD-market is changing now, cheaper versions of CFD-software enter the market, and the open source software OpenFOAM has gained wide acceptance especially in the academic world. However the structural beginner is still overwhelmed by a wide range of features. What is needed is a robust, easy to use entry point for this journey. SOFiSTiK has gained some experience with an academic multiphysics software PHYSICA and is now supporting DOLFYN, an open source CFD-Solver used in practice in many engineering fields, which has been fully integrated in the SOFiSTiK environment. 2 BASICS 2.1 Fluid dynamics and their solvers Two important metrics are the Mach number (v/c) defining the ratio of the fluid velocity v to the speed of the sound c and the Reynolds number derived from the fluid velocity u, the kinematic viscosity n, and a characteristic dimension of the structure (like the diameter of a cylinder or the height of a bridge deck): d u kinematic viscosity Re d characteristicdimension m Air ; Water sec m sec V13-2

3 Fluid dynamics cover a broad range of fields, some of them are: Potential Flow (Re = ) Creeping Flow (hardly any flow) Laminar incompressible viscous flow (Navier Stokes) Turbulent Flow (Re large) Compressible Flow (Ma > 0.3) Supersonic Flow (Ma > 1.0) Thermal Effects Combustion & chemical reaction Free Surfaces Non-Newtonian fluids Radiation In civil engineering applications the subsonic incompressible turbulent flow is the most common phenomenon. Compressible flow is needed for shocks and high temperature effects. The major remaining problem is that a direct solution of the Navier-Stokes-equations is only possible for Reynolds-numbers up to approximately , while practical examples are in the range of several millions. Thus turbulence has to be modelled by RANS (Reynolds-Average-Navier-Stokes) models allowing for very large Reynolds numbers but do not model all effects, that s why LES (Large Eddy Simulation) has gained some popularity, but requires still high computational effort. 2.2 Materialparameters The selection of fluid material parameters is straight forward: There is a density [kg/m³], a dynamic viscosity [Pa sec], a compressibility [Pa/m²] and some thermal properties. 2.3 Boundary Conditions Inflow and outflow boundary conditions are in general not complex, but there is a major problem with two aspects. There exists a boundary layer at every wall. At the wall itself there is no flow, then we have a tiny laminar viscous sublayer, followed by the turbulent boundary layer. The treatment of the wall boundary condition is quite difficult. Though there are possibilities for near wall models, the common model is a logarithmic wall law describing the complete wall boundary behaviour for a cell sufficiently far away from the boundary: V13-3

4 However the atmospheric boundary layer has a height larger than one kilometre, thus all civil engineering structures are completely encompassed by it. The design codes for wind loadings describe the layer with a logarithmic or an exponential law. It is not only the velocity but also the turbulence characteristics like the kinetic energy (turbulence intensity) and the dissipation rate (Integral length scale) which need to be described. The correct formulation requires not only to model the roughness of the ground with the correct value of z 0, the driving force at the top of the fluid domain, but also the treatment of the analytic solution of the turbulence equations as initial conditions, which are fully implemented in DOLFYN: * u ABL z z 0 uz ( ) ln z0 u kz ( ) C * 2 ABL * 3 uabl ( z) z z 0 V13-4

5 3 MODELLING 3.1 Windtunnel or CFD? A wind tunnel is just a model of the reality, so is any CFD model. The wind tunnel needs scaling, Reynolds number is not the same and there are cases where this does matter. There is a guideline from the WTG (Windtechnologische Gesellschaft) describing in detail how to perform reliable tests. But for flexible structures, the measurement equipment may change the effects considerably. On the other side there are known deficiencies of numerical analysis, which do not allow taking all results for granted. The purpose of computing is insight, not numbers. said R. Hamming in So the question is not which technique to be used but how to combine both methods to their best use. 3.2 Reality or design case? Is the requested result the mean values of the wind loading for a static analysis or the variation of forces in time either to account for dynamic effects or to get reasonable loads at all. For example a flat horizontal roof on columns will have a zero pressure as mean value, but the wind load is of course not zero! What is appropriate for the design of a building for wind loading, a solitaire in an empty environment: V13-5

6 Or the within the true environment: Most design codes describe wind profiles based on the roughness of the terrain, for urban environment the value of z 0 may be over 2.0 m, which is not suitable as roughness for a CFD wall boundary condition in general, although it is possible for an inlet wind profile. The main purpose is to define loads just based on the velocity distribution, not to perform a fluid analysis. This can be clearly seen by the fact that the velocity does not vanish at the ground. For a wind tunnel test normally the whole environment is modelled. So to compare CFD and wind tunnel, the model size of the wind tunnel (including the true geometry of the equipment) may be analyzed but the analysis of the true scale of the natural model including the environment should be more adequate. And is our interest in a model matching reality as close as possible or can we agree on a model on the safe side? V13-6

7 4 EXAMPLE BUILDING Gerhardt [3] has reported considerable deviations between a CFD-Analysis and measurements for a hull of a building (Re = ), given with a picture as follows: As all other data was missing, personal enquiries yielded a profile exponent of 0.25 (wind tunnel) and 0.27 (analysis), a rather sufficiently large air volume of 2000 x 2000 x 500 m and some inhomogenities along the building and other neighboured buildings in the wind tunnel test. Some tests showed however that the effect of those buildings should be neglectable allowing to concentrate on a 2D section. Thus the section was digitized from the picture, scaled to the real dimensions of 55 m width and 25 m height and an air volume with 500 m distance to the boundaries was used. The mesh density on the hull was selected with 0.25 cm (approx. 30 y+) yielding a total of cells. V13-7

8 The first outcome of the analysis showed, that the selection of the turbulence model had a significant effect on the pressure distribution, the standard k- model created the distribution with the large peaks (left picture) while the RNG-model showed better results (right picture): A deeper look at the inflow parameters however showed some deficiencies. Input velocity and turbulence intensities are well known, but the Eurocode specifies a value for the integral length scale of more than 200 m in a height of 25 m, which is considerably larger than the common CFD value of 0.4*H = 10 m. This contradiction can be overcome if the anisotropic structure of the natural wind is considered. Further the used mesh does not allow for large roughness values. After correcting those parameters, the following pressures have been obtained: However the wind tunnel test was based on a very dense environment consisting not only of other buildings but also of the roughness elements. So any further comparison of the CFD analysis and the wind tunnel becomes useless. V13-8

9 Let s use complex environments for the CFD as well: V13-9

10 V13-10

11 5 EXAMPLE BRIDGE SECTIONS 5.1 Millau Bridge A section of the Millau Bridge has been analyzed with CFD and compared to measurements in a wind tunnel. Despite the good agreement of the measurements with the analysis, some questions remain also in this case. The turbulence parameters in the wind tunnel have not been fully specified. And nobody really knew the wind conditions at the site of the bridge. There is a deep valley and fundamental CFD analysis had been undertaken to get the wind conditions in the nature. But to perform a dynamic analysis of a moving bridge in the wind field, the drag coefficients may be used. V13-11

12 5.2 Bridge in the wind tunnel The second example is the analysis of a bridge section in a wind tunnel [4]. Here the CFD model matches exactly the geometry of the wind tunnel. The inflow parameters are well known (I=3 %, L=0.03 m) The lift and moment coefficients are quite closely matched, but for the horizontal drag, the measurements deviate and the simulation is closer to the pressure measurements. V13-12

13 When analyzing this deck the results deviate to a certain extend. First the flow field is considerably different for the standard k- and the RNG variant: The pressure distribution is very sensitive to the mesh definition, but the principal distribution is: Location / Value Experiment Simulation DOLFYN DOLFYN openfoam k- RNG top spt 01 (tap 31) 0,494 0,650 0,723 0,689 top spt 05 (tap 35) -0,413-1,090-0,676-0,662 top spt 06 (tap 36) -0,902-1,230-1,307-1,181 top spt 18 (tap 8) -0,202-0,270-0,216-0,149 top spt 19 (tap 9) -0,264-0,260-0,199-0,135 top spt 21 (tap 11) -0,270-0,250-0,133-0,096 dwn spt 40 (tap 30) 0,496 0,670 0,779 0,799 dwn spt 34 (tap 24) -0,708-1,110-0,730-0,677 dwn spt 33 (tap 23) -1,083-1,250-1,180-1,065 dwn spt 26 (tap 16) -0,295-0,340-0,335-0,261 dwn spt 25 (tap 15) -0,305-0,300-0,297-0,218 dwn spt 22 (tap 12) -0,303-0,250-0,133-0,109 Drag coefficient (range of values) 0,088 0,075 0,073 0,093 0,081 0,082 0,069 V13-13

14 6 CONCLUSION The critical definitions for a CFD analysis are the selection of the mesh and the inflow conditions. Handled with greater success are bluff bodies with sharp edges, slender structures (e.g. airfoils) need more attention. So there is no free lunch by just buying a CFD software, which is also valid for any other type of complex simulation software (like structural analysis Finite Element). Each journey starts with the first step. It s time to take that first step. 7 DOLFYN DOLFYN [1] is an open source collocated face based Finite Volume software to solve incompressible fluid dynamic problems in 3D. The key features are: Standard k- and RNG turbulence models Stable numerical procedures Temperature / scalars / particles included Postprocessing with ParaView / VisIt (VTK-files) The implementation in the SOFiSTiK environment gives additional Mesh generation with SOFIMSHA / SOFIMSHC Postprocessing with WINGRAF Full CADINP support including formulas for boundary and initial conditions Easy wind definition (atmospheric boundary layer) directly or via SOFiLOAD Direct generation of resulting wind loading in the data base Possible (planned) extensions are: Compressible subsonic flow Free surfaces (VOF) Conjugate heat transfer (heat transfer with different materials) 8 LITERATURE [1] [2] J.H.Ferziger, M.Peric, Numerische Strömungsmechanik, Springer, 2008 [3] H.J. Gerhardt, Experimentelle und numerische Verfahren bei der Bauwerks-Bemessung, Der Prüfingenieur Vol. 24, April 2004 [4] A. Sarkic, C. Neuhaus, R. Höffer, Numerical and experimental determination of aerodynamic forces at a long span bridge girder, Eurodyn 2011, Leuven V13-14

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

More information

THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA

THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA Adam Kosík Evektor s.r.o., Czech Republic KEYWORDS CFD simulation, mesh generation, OpenFOAM, ANSA ABSTRACT In this paper we describe

More information

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012 O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749

More information

ME6130 An introduction to CFD 1-1

ME6130 An introduction to CFD 1-1 ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

More information

Aerodynamic Department Institute of Aviation. Adam Dziubiński CFD group FLUENT

Aerodynamic Department Institute of Aviation. Adam Dziubiński CFD group FLUENT Adam Dziubiński CFD group IoA FLUENT Content Fluent CFD software 1. Short description of main features of Fluent 2. Examples of usage in CESAR Analysis of flow around an airfoil with a flap: VZLU + ILL4xx

More information

Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine

Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine Dr MK

More information

CFD modelling of floating body response to regular waves

CFD modelling of floating body response to regular waves CFD modelling of floating body response to regular waves Dr Yann Delauré School of Mechanical and Manufacturing Engineering Dublin City University Ocean Energy Workshop NUI Maynooth, October 21, 2010 Table

More information

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.

More information

Graduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering

Graduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering Graduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering Intended Audience: Main Campus Students Distance (online students) Both Purpose:

More information

AUTOMOTIVE COMPUTATIONAL FLUID DYNAMICS SIMULATION OF A CAR USING ANSYS

AUTOMOTIVE COMPUTATIONAL FLUID DYNAMICS SIMULATION OF A CAR USING ANSYS International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 2, March-April 2016, pp. 91 104, Article ID: IJMET_07_02_013 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=2

More information

CFD Grows Up! Martin W. Liddament Ventilation, Energy and Environmental Technology (VEETECH Ltd) What is Computational Fluid Dynamics?

CFD Grows Up! Martin W. Liddament Ventilation, Energy and Environmental Technology (VEETECH Ltd) What is Computational Fluid Dynamics? CIBSE/ASHRAE Meeting CFD Grows Up! Martin W. Liddament Ventilation, Energy and Environmental Technology (VEETECH Ltd) 10 th December 2003 What is Computational Fluid Dynamics? CFD is a numerical means

More information

Numerical Simulation of the External Flow Field. Around a Bluff Car*

Numerical Simulation of the External Flow Field. Around a Bluff Car* Numerical Simulation of the External Flow Field Around a Bluff Car* Sun Yongling, Wu Guangqiang, Xieshuo Automotive Engineering Department Shanghai Tongji University Shanghai, China E-mail: wuqjuhyk@online.sh.cn

More information

CFD Based Air Flow and Contamination Modeling of Subway Stations

CFD Based Air Flow and Contamination Modeling of Subway Stations CFD Based Air Flow and Contamination Modeling of Subway Stations Greg Byrne Center for Nonlinear Science, Georgia Institute of Technology Fernando Camelli Center for Computational Fluid Dynamics, George

More information

FLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS - CB0235 2014_1

FLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS - CB0235 2014_1 COURSE CODE INTENSITY PRE-REQUISITE CO-REQUISITE CREDITS ACTUALIZATION DATE FLUID MECHANICS IM0235 3 LECTURE HOURS PER WEEK 48 HOURS CLASSROOM ON 16 WEEKS, 32 HOURS LABORATORY, 112 HOURS OF INDEPENDENT

More information

Keywords: CFD, heat turbomachinery, Compound Lean Nozzle, Controlled Flow Nozzle, efficiency.

Keywords: CFD, heat turbomachinery, Compound Lean Nozzle, Controlled Flow Nozzle, efficiency. CALCULATION OF FLOW CHARACTERISTICS IN HEAT TURBOMACHINERY TURBINE STAGE WITH DIFFERENT THREE DIMENSIONAL SHAPE OF THE STATOR BLADE WITH ANSYS CFX SOFTWARE A. Yangyozov *, R. Willinger ** * Department

More information

TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW

TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW Rajesh Khatri 1, 1 M.Tech Scholar, Department of Mechanical Engineering, S.A.T.I., vidisha

More information

Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.

Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena. Dimensional Analysis and Similarity Dimensional analysis is very useful for planning, presentation, and interpretation of experimental data. As discussed previously, most practical fluid mechanics problems

More information

Dimensional Analysis

Dimensional Analysis Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous

More information

INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

More information

Modeling of Earth Surface Dynamics and Related Problems Using OpenFOAM

Modeling of Earth Surface Dynamics and Related Problems Using OpenFOAM CSDMS 2013 Meeting Modeling of Earth Surface Dynamics and Related Problems Using OpenFOAM Xiaofeng Liu, Ph.D., P.E. Assistant Professor Department of Civil and Environmental Engineering University of Texas

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry

More information

How To Run A Cdef Simulation

How To Run A Cdef Simulation Simple CFD Simulations and Visualisation using OpenFOAM and ParaView Sachiko Arvelius, PhD Purpose of this presentation To show my competence in CFD (Computational Fluid Dynamics) simulation and visualisation

More information

Benchmarking COMSOL Multiphysics 3.5a CFD problems

Benchmarking COMSOL Multiphysics 3.5a CFD problems Presented at the COMSOL Conference 2009 Boston Benchmarking COMSOL Multiphysics 3.5a CFD problems Darrell W. Pepper Xiuling Wang* Nevada Center for Advanced Computational Methods University of Nevada Las

More information

ADVANCED TOOL FOR FLUID DYNAMICS- CFD AND ITS APPLICATIONS IN AUTOMOTIVE, AERODYNAMICS AND MACHINE INDUSTRY

ADVANCED TOOL FOR FLUID DYNAMICS- CFD AND ITS APPLICATIONS IN AUTOMOTIVE, AERODYNAMICS AND MACHINE INDUSTRY International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 2, March-April 2016, pp. 177 186, Article ID: IJMET_07_02_019 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=2

More information

Model of a flow in intersecting microchannels. Denis Semyonov

Model of a flow in intersecting microchannels. Denis Semyonov Model of a flow in intersecting microchannels Denis Semyonov LUT 2012 Content Objectives Motivation Model implementation Simulation Results Conclusion Objectives A flow and a reaction model is required

More information

AERODYNAMIC ANALYSIS OF BLADE 1.5 KW OF DUAL ROTOR HORIZONTAL AXIS WIND TURBINE

AERODYNAMIC ANALYSIS OF BLADE 1.5 KW OF DUAL ROTOR HORIZONTAL AXIS WIND TURBINE AERODYNAMIC ANALYSIS OF BLADE 1.5 KW OF DUAL ROTOR HORIZONTAL AXIS WIND TURBINE HITENDRA KURMI Research scholar, School of Energy and Environmental Managment,UTD, RGPV Bhopal,MP,INDIA htr.ptl@gmail.com

More information

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)

More information

Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved.

Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved. Lecture 2 Introduction to CFD Methodology Introduction to ANSYS FLUENT L2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions,

More information

OpenFOAM Opensource and CFD

OpenFOAM Opensource and CFD OpenFOAM Opensource and CFD Andrew King Department of Mechanical Engineering Curtin University Outline What is Opensource Software OpenFOAM Overview Utilities, Libraries and Solvers Data Formats The CFD

More information

Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands

Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Use of OpenFoam in a CFD analysis of a finger type slug catcher Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Agenda Project background Analytical analysis of two-phase flow regimes

More information

Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling. Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S.

Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling. Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S. Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S. Kumara (PhD Student), PO. Box 203, N-3901, N Porsgrunn, Norway What is CFD?

More information

How To Model With Cfd Using Phoenics

How To Model With Cfd Using Phoenics The Use and Application of CFD in the Air Conditioning and Fire Protection Industry AIRAH NSW February 2008 The Use and Application of CFD in the Air Conditioning and Fire Protection Industry An Introduction

More information

(1) 2 TEST SETUP. Table 1 Summary of models used for calculating roughness parameters Model Published z 0 / H d/h

(1) 2 TEST SETUP. Table 1 Summary of models used for calculating roughness parameters Model Published z 0 / H d/h Estimation of Surface Roughness using CFD Simulation Daniel Abdi a, Girma T. Bitsuamlak b a Research Assistant, Department of Civil and Environmental Engineering, FIU, Miami, FL, USA, dabdi001@fiu.edu

More information

Computational Fluid Dynamics or Wind Tunnel Modeling?

Computational Fluid Dynamics or Wind Tunnel Modeling? Computational Fluid Dynamics or Wind Tunnel Modeling? J.D. McAlpine, Envirometrics, Inc. CFD holds great promise for replacing the wind tunnel in coming years as the science behind CFD improves and computers

More information

CFD and EXPERIMENTAL ANALYSIS of VORTEX SHEDDING BEHIND D-SHAPED CYLINDER

CFD and EXPERIMENTAL ANALYSIS of VORTEX SHEDDING BEHIND D-SHAPED CYLINDER CFD and EXPERIMENTAL ANALYSIS of VORTEX SHEDDING BEHIND D-SHAPED CYLINDER Chandrakant D. Mhalungekar Department of Mechanical Engineering, MIT College of Engineering, Pune 411038, Pune University, India.

More information

Abaqus/CFD Sample Problems. Abaqus 6.10

Abaqus/CFD Sample Problems. Abaqus 6.10 Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel

More information

A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic

A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic AiMT Advances in Military Technology Vol. 8, No. 1, June 2013 Aerodynamic Characteristics of Multi-Element Iced Airfoil CFD Simulation A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty

More information

CFD Analysis of a butterfly valve in a compressible fluid

CFD Analysis of a butterfly valve in a compressible fluid CFD Analysis of a butterfly valve in a compressible fluid 1 G.TAMIZHARASI, 2 S.KATHIRESAN 1 Assistant Professor,Professor,Departmentment of Electronics and Instrumentation,Bharath university, chennai.

More information

Ravi Kumar Singh*, K. B. Sahu**, Thakur Debasis Mishra***

Ravi Kumar Singh*, K. B. Sahu**, Thakur Debasis Mishra*** Ravi Kumar Singh, K. B. Sahu, Thakur Debasis Mishra / International Journal of Engineering Research and Applications (IJERA) ISSN: 48-96 www.ijera.com Vol. 3, Issue 3, May-Jun 3, pp.766-77 Analysis of

More information

Distinguished Professor George Washington University. Graw Hill

Distinguished Professor George Washington University. Graw Hill Mechanics of Fluids Fourth Edition Irving H. Shames Distinguished Professor George Washington University Graw Hill Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok

More information

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)

More information

Introduction to COMSOL. The Navier-Stokes Equations

Introduction to COMSOL. The Navier-Stokes Equations Flow Between Parallel Plates Modified from the COMSOL ChE Library module rev 10/13/08 Modified by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2008 Introduction to COMSOL The following

More information

Contents. Microfluidics - Jens Ducrée Physics: Fluid Dynamics 1

Contents. Microfluidics - Jens Ducrée Physics: Fluid Dynamics 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics

Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics Lecture 16 - Free Surface Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Example: spinning bowl Example: flow in

More information

CFD ANALYSIS OF RAE 2822 SUPERCRITICAL AIRFOIL AT TRANSONIC MACH SPEEDS

CFD ANALYSIS OF RAE 2822 SUPERCRITICAL AIRFOIL AT TRANSONIC MACH SPEEDS CFD ANALYSIS OF RAE 2822 SUPERCRITICAL AIRFOIL AT TRANSONIC MACH SPEEDS K.Harish Kumar 1, CH.Kiran Kumar 2, T.Naveen Kumar 3 1 M.Tech Thermal Engineering, Sanketika Institute of Technology & Management,

More information

Computational Modeling of Wind Turbines in OpenFOAM

Computational Modeling of Wind Turbines in OpenFOAM Computational Modeling of Wind Turbines in OpenFOAM Hamid Rahimi hamid.rahimi@uni-oldenburg.de ForWind - Center for Wind Energy Research Institute of Physics, University of Oldenburg, Germany Outline Computational

More information

The influence of mesh characteristics on OpenFOAM simulations of the DrivAer model

The influence of mesh characteristics on OpenFOAM simulations of the DrivAer model The influence of mesh characteristics on OpenFOAM simulations of the DrivAer model Vangelis Skaperdas, Aristotelis Iordanidis, Grigoris Fotiadis BETA CAE Systems S.A. 2 nd Northern Germany OpenFOAM User

More information

NUMERICAL SIMULATION OF FLOW FIELDS IN CASE OF FIRE AND FORCED VENTILATION IN A CLOSED CAR PARK

NUMERICAL SIMULATION OF FLOW FIELDS IN CASE OF FIRE AND FORCED VENTILATION IN A CLOSED CAR PARK FACULTY OF ENGINEERING NUMERICAL SIMULATION OF FLOW FIELDS IN CASE OF FIRE AND FORCED VENTILATION IN A CLOSED CAR PARK Xavier Deckers, Mehdi Jangi, Siri Haga and Bart Merci Department of Flow, Heat and

More information

Simulation of Fluid-Structure Interactions in Aeronautical Applications

Simulation of Fluid-Structure Interactions in Aeronautical Applications Simulation of Fluid-Structure Interactions in Aeronautical Applications Martin Kuntz Jorge Carregal Ferreira ANSYS Germany D-83624 Otterfing Martin.Kuntz@ansys.com December 2003 3 rd FENET Annual Industry

More information

Adaptation of General Purpose CFD Code for Fusion MHD Applications*

Adaptation of General Purpose CFD Code for Fusion MHD Applications* Adaptation of General Purpose CFD Code for Fusion MHD Applications* Andrei Khodak Princeton Plasma Physics Laboratory P.O. Box 451 Princeton, NJ, 08540 USA akhodak@pppl.gov Abstract Analysis of many fusion

More information

Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics

Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics Lecture 11 Boundary Layers and Separation Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Overview Drag. The boundary-layer

More information

A COMPUTATIONAL FLUID DYNAMICS STUDY ON THE ACCURACY OF HEAT TRANSFER FROM A HORIZONTAL CYLINDER INTO QUIESCENT WATER

A COMPUTATIONAL FLUID DYNAMICS STUDY ON THE ACCURACY OF HEAT TRANSFER FROM A HORIZONTAL CYLINDER INTO QUIESCENT WATER A COMPUTATIONAL FLUID DYNAMICS STUDY ON THE ACCURACY OF HEAT TRANSFER FROM A HORIZONTAL CYLINDER INTO QUIESCENT WATER William Logie and Elimar Frank Institut für Solartechnik SPF, 8640 Rapperswil (Switzerland)

More information

Basics of vehicle aerodynamics

Basics of vehicle aerodynamics Basics of vehicle aerodynamics Prof. Tamás Lajos Budapest University of Technology and Economics Department of Fluid Mechanics University of Rome La Sapienza 2002 Influence of flow characteristics on the

More information

Computational Aerodynamic Analysis on Store Separation from Aircraft using Pylon

Computational Aerodynamic Analysis on Store Separation from Aircraft using Pylon International Journal of Engineering Science Invention (IJESI) ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 www.ijesi.org ǁ PP.27-31 Computational Aerodynamic Analysis on Store Separation from Aircraft

More information

CFD Analysis of Civil Transport Aircraft

CFD Analysis of Civil Transport Aircraft IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 06, 2015 ISSN (online): 2321-0613 CFD Analysis of Civil Transport Aircraft Parthsarthi A Kulkarni 1 Dr. Pravin V Honguntikar

More information

CFD: What is it good for?

CFD: What is it good for? CFD: What is it good for? Tom O Mahoney TNO Fluid Dynamics Introduction to CFD CFD - Computational Fluid Dynamics Computational the using of computers to simulate the physics of fluids Fluid Either gas

More information

Self Financed One Week Training

Self Financed One Week Training Self Financed One Week Training On Computational Fluid Dynamics (CFD) with OpenFOAM December 14 20, 2015 (Basic Training: 3days, Advanced Training: 5days and Programmer Training: 7days) Organized by Department

More information

CFD STUDY OF TEMPERATURE AND SMOKE DISTRIBUTION IN A RAILWAY TUNNEL WITH NATURAL VENTILATION SYSTEM

CFD STUDY OF TEMPERATURE AND SMOKE DISTRIBUTION IN A RAILWAY TUNNEL WITH NATURAL VENTILATION SYSTEM CFD STUDY OF TEMPERATURE AND SMOKE DISTRIBUTION IN A RAILWAY TUNNEL WITH NATURAL VENTILATION SYSTEM J. Schabacker, M. Bettelini, Ch. Rudin HBI Haerter AG Thunstrasse 9, P.O. Box, 3000 Bern, Switzerland

More information

Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to:

Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to: I. OBJECTIVE OF THE EXPERIMENT. Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to: 1) Viscosity of gas (cf. "Viscosity of gas" experiment)

More information

OpenFOAM simulations of the Turbulent Flow in a Rod Bundle with Mixing Vanes

OpenFOAM simulations of the Turbulent Flow in a Rod Bundle with Mixing Vanes OpenFOAM simulations of the Turbulent Flow in a Rod Bundle with Mixing Vanes ABSTRACT Blaž Mikuž Reactor Engineering Division, Jozef Stefan Institute, Jamova cesta 39 SI-1000 Ljubljana, Slovenia blaz.mikuz@ijs.si

More information

Adaptation and validation of OpenFOAM CFD-solvers for nuclear safety related flow simulations

Adaptation and validation of OpenFOAM CFD-solvers for nuclear safety related flow simulations Adaptation and validation of OpenFOAM CFD-solvers for nuclear safety related flow simulations SAFIR2010 Seminar, 10.-11.3.2011, Espoo Juho Peltola, Timo Pättikangas (VTT) Tomas Brockmann, Timo Siikonen

More information

SMOKE HAZARD ASSESSMENT USING COMPUTATIONAL FLUID DYNAMICS (CFD) MODELLING

SMOKE HAZARD ASSESSMENT USING COMPUTATIONAL FLUID DYNAMICS (CFD) MODELLING SMOKE HAZARD ASSESSMENT USING COMPUTATIONAL FLUID DYNAMICS (CFD) MODELLING Baldev S Kandola and Mark Morris AEA Consultancy Services (SRD), Thomson House, Risley, Warrington, Cheshire WA3 6AT Fire is a

More information

Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412

Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412 , July 2-4, 2014, London, U.K. Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412 Arvind Prabhakar, Ayush Ohri Abstract Winglets are angled extensions or vertical projections

More information

Basic Principles in Microfluidics

Basic Principles in Microfluidics Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

More information

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22 BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

More information

OpenFOAM Optimization Tools

OpenFOAM Optimization Tools OpenFOAM Optimization Tools Henrik Rusche and Aleks Jemcov h.rusche@wikki-gmbh.de and a.jemcov@wikki.co.uk Wikki, Germany and United Kingdom OpenFOAM Optimization Tools p. 1 Agenda Objective Review optimisation

More information

SBi 2013:12. Use of perforated acoustic panels as supply air diffusers in diffuse ceiling ventilation systems

SBi 2013:12. Use of perforated acoustic panels as supply air diffusers in diffuse ceiling ventilation systems SBi 2013:12 Use of perforated acoustic panels as supply air diffusers in diffuse ceiling ventilation systems Use of perforated acoustic panels as supply air diffusers in diffuse ceiling ventilation systems

More information

STCE. Outline. Introduction. Applications. Ongoing work. Summary. STCE RWTH-Aachen, Industrial Applications of discrete adjoint OpenFOAM, EuroAD 2014

STCE. Outline. Introduction. Applications. Ongoing work. Summary. STCE RWTH-Aachen, Industrial Applications of discrete adjoint OpenFOAM, EuroAD 2014 Industrial Applications of discrete adjoint OpenFOAM Arindam Sen Software and Tools for Computational Engineering Science RWTH Aachen University EuroAD 2014, Nice, 16-17. June 2014 Outline Introduction

More information

Lecture 4 Classification of Flows. Applied Computational Fluid Dynamics

Lecture 4 Classification of Flows. Applied Computational Fluid Dynamics Lecture 4 Classification of Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (00-006) Fluent Inc. (00) 1 Classification: fluid flow vs. granular flow

More information

A moving piston boundary condition including gap flow in OpenFOAM

A moving piston boundary condition including gap flow in OpenFOAM A piston boundary condition including gap flow in OpenFOAM CLEMENS FRIES Johannes Kepler University IMH Altenbergerstrasse 69, 44 Linz AUSTRIA clemens.fries@jku.at BERNHARD MANHARTSGRUBER Johannes Kepler

More information

Including thermal effects in CFD simulations

Including thermal effects in CFD simulations Including thermal effects in CFD simulations Catherine Meissner, Arne Reidar Gravdahl, Birthe Steensen catherine@windsim.com, arne@windsim.com Fjordgaten 15, N-125 Tonsberg hone: +47 8 1800 Norway Fax:

More information

2013 Code_Saturne User Group Meeting. EDF R&D Chatou, France. 9 th April 2013

2013 Code_Saturne User Group Meeting. EDF R&D Chatou, France. 9 th April 2013 2013 Code_Saturne User Group Meeting EDF R&D Chatou, France 9 th April 2013 Thermal Comfort in Train Passenger Cars Contact For further information please contact: Brian ANGEL Director RENUDA France brian.angel@renuda.com

More information

High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur

High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 06 One-dimensional Gas Dynamics (Contd.) We

More information

XFlow CFD results for the 1st AIAA High Lift Prediction Workshop

XFlow CFD results for the 1st AIAA High Lift Prediction Workshop XFlow CFD results for the 1st AIAA High Lift Prediction Workshop David M. Holman, Dr. Monica Mier-Torrecilla, Ruddy Brionnaud Next Limit Technologies, Spain THEME Computational Fluid Dynamics KEYWORDS

More information

Part IV. Conclusions

Part IV. Conclusions Part IV Conclusions 189 Chapter 9 Conclusions and Future Work CFD studies of premixed laminar and turbulent combustion dynamics have been conducted. These studies were aimed at explaining physical phenomena

More information

Action 9.2/Part II. Stijn Vranckx, Peter Vos VITO

Action 9.2/Part II. Stijn Vranckx, Peter Vos VITO Final report OpenFOAM CFD simulation of pollutant dispersion in street canyons: Validation and annual impact of trees Action 9.2/Part II Stijn Vranckx, Peter Vos VITO www.vmm.be www.vito.be Lisa Blyth

More information

Problem Statement In order to satisfy production and storage requirements, small and medium-scale industrial

Problem Statement In order to satisfy production and storage requirements, small and medium-scale industrial Problem Statement In order to satisfy production and storage requirements, small and medium-scale industrial facilities commonly occupy spaces with ceilings ranging between twenty and thirty feet in height.

More information

CFD Analysis of Swept and Leaned Transonic Compressor Rotor

CFD Analysis of Swept and Leaned Transonic Compressor Rotor CFD Analysis of Swept and Leaned Transonic Compressor Nivin Francis #1, J. Bruce Ralphin Rose *2 #1 Student, Department of Aeronautical Engineering& Regional Centre of Anna University Tirunelveli India

More information

A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions

A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions by Laura Noelle Race An Engineering Project Submitted to the Graduate Faculty of Rensselaer

More information

NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION

NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION Engineering Review Vol. 32, Issue 3, 141-146, 2012. 141 NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION Z. 1* L. 1 V. 2 M. 1 1 Department of Fluid Mechanics and Computational Engineering,

More information

CFD Lab Department of Engineering The University of Liverpool

CFD Lab Department of Engineering The University of Liverpool Development of a CFD Method for Aerodynamic Analysis of Large Diameter Horizontal Axis wind turbines S. Gomez-Iradi, G.N. Barakos and X. Munduate 2007 joint meeting of IEA Annex 11 and Annex 20 Risø National

More information

INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING

INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING ISSN (ONLINE): 2321-3051 INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING Study of forced convection heat transfer With DAQ & ANSYS First Authors Moopanar karthikeyan 1, Raote

More information

NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM

NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM Parviz Ghadimi 1*, Mohammad Ghandali 2, Mohammad Reza Ahmadi Balootaki 3 1*, 2, 3 Department of Marine Technology, Amirkabir

More information

Keywords: Heat transfer enhancement; staggered arrangement; Triangular Prism, Reynolds Number. 1. Introduction

Keywords: Heat transfer enhancement; staggered arrangement; Triangular Prism, Reynolds Number. 1. Introduction Heat transfer augmentation in rectangular channel using four triangular prisms arrange in staggered manner Manoj Kumar 1, Sunil Dhingra 2, Gurjeet Singh 3 1 Student, 2,3 Assistant Professor 1.2 Department

More information

NUMERICAL INVESTIGATIONS ON HEAT TRANSFER IN FALLING FILMS AROUND TURBULENCE WIRES

NUMERICAL INVESTIGATIONS ON HEAT TRANSFER IN FALLING FILMS AROUND TURBULENCE WIRES NUMERICAL INVESTIGATIONS ON HEAT TRANSFER IN FALLING FILMS AROUND TURBULENCE WIRES Abstract H. Raach and S. Somasundaram Thermal Process Engineering, University of Paderborn, Paderborn, Germany Turbulence

More information

QUT Digital Repository: http://eprints.qut.edu.au/

QUT Digital Repository: http://eprints.qut.edu.au/ QUT Digital Repository: http://eprints.qut.edu.au/ El-Atm, Billy and Kelson, Neil A. and Gudimetla, Prasad V. (2008) A finite element analysis of the hydrodynamic performance of 3- and 4-Fin surfboard

More information

Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids

Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction In this lab the characteristics of airfoil lift, drag,

More information

THE EFFECTS OF UNIFORM TRANSVERSE MAGNETIC FIELD ON LOCAL FLOW AND VELOCITY PROFILE

THE EFFECTS OF UNIFORM TRANSVERSE MAGNETIC FIELD ON LOCAL FLOW AND VELOCITY PROFILE International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 140 151, Article ID: IJCIET_07_02_011 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

OPEN-SOURCE CFD ANALYSIS OF MULTI-DOMAIN UNSTEADY HEATING WITH NATURAL CONVECTION

OPEN-SOURCE CFD ANALYSIS OF MULTI-DOMAIN UNSTEADY HEATING WITH NATURAL CONVECTION TASK QUARTERLY 13 No 4, 403 414 OPEN-SOURCE CFD ANALYSIS OF MULTI-DOMAIN UNSTEADY HEATING WITH NATURAL CONVECTION PAWEŁ SOSNOWSKI AND JACEK POZORSKI Institute of Fluid-Flow Machinery, Polish Academy of

More information

Coupling micro-scale CFD simulations to meso-scale models

Coupling micro-scale CFD simulations to meso-scale models Coupling micro-scale CFD simulations to meso-scale models IB Fischer CFD+engineering GmbH Fabien Farella Michael Ehlen Achim Fischer Vortex Factoria de Càlculs SL Gil Lizcano Outline Introduction O.F.Wind

More information

CFD Application on Food Industry; Energy Saving on the Bread Oven

CFD Application on Food Industry; Energy Saving on the Bread Oven Middle-East Journal of Scientific Research 13 (8): 1095-1100, 2013 ISSN 1990-9233 IDOSI Publications, 2013 DOI: 10.5829/idosi.mejsr.2013.13.8.548 CFD Application on Food Industry; Energy Saving on the

More information

Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity

Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity 1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood

More information

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

More information

Basic Equations, Boundary Conditions and Dimensionless Parameters

Basic Equations, Boundary Conditions and Dimensionless Parameters Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

More information

How To Model A Horseshoe Vortex

How To Model A Horseshoe Vortex Comparison of CFD models for multiphase flow evolution in bridge scour processes A. Bayón-Barrachina, D. Valero, F.J. Vallès Morán, P. A. López-Jiménez Dept. of Hydraulic and Environmental Engineering

More information

HPC Deployment of OpenFOAM in an Industrial Setting

HPC Deployment of OpenFOAM in an Industrial Setting HPC Deployment of OpenFOAM in an Industrial Setting Hrvoje Jasak h.jasak@wikki.co.uk Wikki Ltd, United Kingdom PRACE Seminar: Industrial Usage of HPC Stockholm, Sweden, 28-29 March 2011 HPC Deployment

More information

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids 1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

More information

CFD SUPPORTED EXAMINATION OF BUOY DESIGN FOR WAVE ENERGY CONVERSION

CFD SUPPORTED EXAMINATION OF BUOY DESIGN FOR WAVE ENERGY CONVERSION CFD SUPPORTED EXAMINATION OF BUOY DESIGN FOR WAVE ENERGY CONVERSION Nadir Yilmaz, Geoffrey E. Trapp, Scott M. Gagan, Timothy R. Emmerich Department of Mechanical Engineering, New Mexico Institute of Mining

More information