Measurement of Radiation

Size: px
Start display at page:

Download "Measurement of Radiation"

Transcription

1 Measurement of Radiation AAPM Continuing Education Therapy Physics Review Course C-M Charlie Ma, Ph.. epartment of Radiation Oncology Fox Chase Cancer Center, Philadelphia, PA 19111

2 Outline efinition of Radiation Quantities Cavity Theory Kilovoltage X-Ray Calibration Megavoltage photon/electron Calibration Measurement of Absorbed ose

3 efinition Ionization - a process in which one or more electrons are liberated from a parent atom or molecule or other bound state Ionizing Radiation - Ionizing radiation consists of charged particles and/or uncharged particles capable of causing ionization by primary or secondary process irectly Ionizing Radiation - Charged particles deliver their energy to matter directly through many small coulomb-force interactions along the particle's track Indirectly Ionizing Radiation - Uncharged particles deliver their energy to matter indirectly by transferring their energy to charged particles in a relatively few large interactions. The resulting charged particles then in turn deliver the energy to the matter

4 Particle Fluence dn da Tracklengths in volume volume

5 Mass Energy Transfer Coefficient 1 tr EN de dl tr Mass Energy Absorption Coefficient en tr 1 g

6 Energy Transferred, E tr h T e h E tr (R in ) u - (R out ) nonr u Q hv - hv T

7 Kerma K d E dm tr K tr E tr

8 Net Energy Transferred, E tr n T T' e h h h h E n tr (R in ) u -(R out ) nonr u -R r u Q h -h -( h h )

9 Collision Kerma K c d E dm n tr K en E c en

10 Energy Imparted, E T T' e h h h h E (R ) - (R ) (R ) -(R ) in u out u in c out c Q h -h -( h h T)

11 Absorbed ose - the expectation value of the energy imparted to matter per unit mass at a point de dm To what materials???

12 Exposure, X X dq dm (C/kg) where dq is the absolute value of the total charge of the ions of one sign produced in (dry) air when all the electrons liberated by photons in air of mass dm are completely stopped in air

13 W e air J / C (W/e) air is the mean energy expended in air per ion pair formed. It gives the number of joules of energy deposited in the air per coulomb of charge released

14 Collision Air Kerma and Exposure ( K c ) air X W e air en air X W e air

15 Air Kerma and Exposure g is the fractional radiative energy loss w 1 g K X air e For kv x-rays: K air (Gy) = X (R) For Co-60: K air (Gy) = X (R)

16 Measurement of Exposure Free Air Chamber X Q A L

17 Cavity Chamber The basis of an air-wall chamber is that the air surrounding the active volume can be "condensed" into a "solid air" wall The definition of an air-wall chamber is a chamber whose walls interact with radiation in the same manner as air interacts For a non-air-wall chamber: Gas to wall conversion air J g W e S w g en air w ose to gas Wall to air conversion

18 Absorbed ose and Exposure med med en X ( cgy / R air ) The f factor med med en X ( Gy / C / kg air ) under the condition of CPE

19 Charged Particle Equilibrium Charged Particle Equilibrium (CPE) exists for a volume v if each charged particle of a given type and energy leaving v is replaced by an identical particle entering. (Rin) c = (Rout) c i.e., energy carried in and out by charged particles is equal

20 Charged Particle Equilibrium(CPE) Photons V Homogeneous phantom v Uniform photon field No heterogeneous E/B field

21 ose and Collision Kerma (under the condition of CPE) Large cavity theory en c K A B en B en A en B c A c B A K K

22 Break own of CPE (CPE does not exit in many situations) For high-energy photon beams: the attenuation of the photon beam is significant for a full electron buildup, it is impossible for CPE to occur. For example, a 10 MeV photon beam is attenuated 7% in the maximum range of its secondary electrons.

23 Transient Charged Particle Equilibrium (TCPE) ( is proportional to Kc) TCPE K c e ' x Kc K c TCPE K c 1 ' x

24 Cavity Theory (to convert dose from one material to another) Large cavity theory (for "photon detectors"): If the detector size is much greater than the mean electron range in a phantom irradiated by a photon beam, then ose to medium med det en med,det ose to detector Conversion factor

25 Cavity Theory (cont.) Small (Bragg-Gray) cavity theory (for "electron detectors"): if the detector size is much smaller than the mean electron range in a phantom irradiated by a photon beam, then ose to medium med det s med,det ose to detector Conversion factor

26 Cavity Theory (Cont.) Burlin cavity theory: for intermediate sized detectors med det en med,det = ( 1 ) smed,det ose to medium ose to detector Conversion factor + 1; see Ma and Nahum PMB 38: (1993)

27 Bragg-Gary Cavity Theory 1st condition: cavity does not perturb electron fluence W w g g W w 2nd condition: dose deposited by electrons crossing it

28 w g w g w g S S S Bragg-Gary Cavity Theory Unrestricted stopping power for primary electrons CPE exists for knock-on electrons Primary only

29 m g E g g m m E g m L d L d L max max Spencer-Attix Cavity Theory Restricted stopping power Track-end effect Spencer-Attix theory explicitly takes into account all knock-on electrons above some energy threshold (traditionally called ) Primary & secondary

30 Spencer-Attix vs. Bragg-Gray (S-A is more accurate than B-G) Water to air stopping power ratios at 0.65 of csda range (Nahum1978). Incident Energy Stopping power ratio for water to air (MeV) Spencer-Attix (MeV) Bragg-Gray Q: What s the difference between S-A and B-G?

31 Kilovoltage X-Ray Beam Calibration (The AAPM TG-61 Protocol) Use both the in-air and in-phantom methods for tube potentials kv More complete data (for water, tissue & bone) Recommendations for relative measurements Recommendations for QA and consistency check Q: What s new in TG-61?

32 The physics of kv x-ray dosimetry Very short electron ranges (< 0.5 mm water) Large scatter contributions and SS, field size, beam quality dependent Bragg-Gray cavity conditions very difficult to fulfil - even for air-filled ion chambers Kerma = dose (also Kcol = K as negl. Brem.) Ion chambers calibrated as exposure meters and used as photon detectors Q: What s the difference between kv & MV x-ray dosimetry?

33 Formalism for kv x-ray dosimetry The backscatter method w w MNK ( en / ) air Pstem, air B w N K K c / M c

34 Formalism for kv x-ray dosimetry The in-phantom method w MN K ( / P P en w ) air sheath Q,cham N K K c / M c

35 in air Farm energy / kvp RK NACP Capin diode N23342 Markus

36 Farmer RK NACP iode Capintec 0.6 N Markus Spokas

37 RK 110 NACP diode Farmer 100 Spokas TL N23342 Markus depth / g/cm2 Capintec

38 RK 100 NACP 90 diode Farmer 80 Spokas 70 TL 60 N depth / g/cm2 Markus Capintec

39 Megavoltage Photon & Electron Calibration (The AAPM TG-51 Protocol) TG-51 applies to clinical reference dosimetry for external beam radiation therapy using ion chambers. Beam quality range: 60Co - 50 MV for photons 4-50 MeV for electrons A water phantom (at least 30cm x 30cm x 30cm) for clinical reference dosimetry, other phantom materials for routine checks and relative dosimetry measurements. A 1-mm (±20%) lead foil for photon beams

40 Megavoltage Photon & Electron Calibration (The AAPM TG-51 Protocol) Simplification compared to TG-21 (less tabulated data). TG-21: w MP ion C cap w L / Pwall Prepl Ngas air TG-51: Q w Mk Q N 60 Co, w for photons: for electrons: Q w Q w M raw M P raw TP P P ion pol P P TP ion P P elec elec P k pol k k Q N 60 Co, w P N 60 ' Q Co R50 ecal gr, w

41 Beam Specification Photon beam specification: %dd(10)x %dd(10) : measured P at 10 cm depth in water for a 10cm x 10cm field at 100cm SS %dd(10)x : the photon component of the P at 10 cm depth in water for a 10cm x 10cm field at 100cm SS %dd(10)pb : the P at 10 cm depth in water for a 10cm x 10cm field at 100cm SS with a 1 mm lead foil at about 50 cm from the phantom surface (or 30cm if 50cm clearance is not available) Q: How to derive %dd(10)x?

42 Reference Conditions Photon beam measurements: The reference depth: d ref = 10 cm depth in water for a 10cm x 10cm field at 100cm SS or SA. SS SA 10 x 10

43 Reference Conditions Electron beam measurements: The reference depth: d ref = 0.6 R cm depth in water The field size is 10x10 for E 20 MeV or 20x20 for E > 20 MeV SS = cm are allowed d max d ref R 50

44 Electron beam specification: R 50 R 50 : the depth in water at which the absorbed dose falls to 50% of the maximum dose I 50 : the depth in water at which the measured ionization falls to 50% of the maximum ionization or R 50 = 1.029I (cm) for 2cm I 50 10cm R 50 = 1.059I (cm) for I 50 > 10cm

45 Questions: Can you describe the equipment need for MV photon and electron reference dosimetry? Can you describe the step-by-step procedure to etermine w in a photon beam? Can you describe the step-by-step procedure to etermine w in an electron beam? Q: Could you explain the physical meaning of the k Q factor?

46 Measurement of Absorbed ose The specific heat of water is 1 cal/g/ o C and 1 cal = J. The rise in temperature, T produced by 1 Gy is T cal kg cal kgc 4 / C 3 Steve omen's water calorimeter

47 Ionization Chamber osimetry Farmer chamber: the thimble wall is made of graphite and the central electrode is made of aluminum. The collecting volume of the chamber is nominally 0.6 cm 3. Energy response of a Farmer chamber Can you describe the geometry and wire connection?

48 Ionization Chamber osimetry Parallel-plate chamber: a parallel-plate chamber usually has a thin front wall (window) and a small electrode spacing. 2 mm Guard ring 3 mm Collecting electrode What s the function of the 3 mm guard ring?

49 Charge Measurement According to AAPM TG-51: M P ion P TP P elec P pol M raw Can you explain these P factors?

50 Questions: What s chemical dosimetry? Can you describe Fricke dosimetry? What kind of solid detectors are commonly used for radiotherapy dosimetry? Can you describe how film, diode and TL work, and their accuracy?

51 I remember I read it somewhere!!!

52 Acknowledgments Notes from previous courses by John Horton, Ph.. avid W.O. Rogers, Ph.. Peter Almond, Ph.. are gratefully acknowledged

ABSORBED DOSE DETERMINATION IN EXTERNAL BEAM RADIOTHERAPY

ABSORBED DOSE DETERMINATION IN EXTERNAL BEAM RADIOTHERAPY TECHNICAL REPORTS SERIES No. 398 Absorbed Dose Determination in External Beam Radiotherapy An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water Sponsored by the

More information

AAPM protocol for 40 300 kv x-ray beam dosimetry in radiotherapy and radiobiology

AAPM protocol for 40 300 kv x-ray beam dosimetry in radiotherapy and radiobiology AAPM protocol for 40 300 kv x-ray beam dosimetry in radiotherapy and radiobiology C.-M. Ma, Chair a) Radiation Oncology Dept., Stanford University School of Medicine, Stanford, California 94305-5304 and

More information

Principles of dosimetry The ionization chamber

Principles of dosimetry The ionization chamber Principles of dosimetry The ionization chamber FYS-KJM 4710 Audun Sanderud Department of Physics Ionometry 1) Ionometry: the measurement of the number of ionizations in substance The number of ionizations

More information

Clinical Physics. Dr/Aida Radwan Assistant Professor of Medical Physics Umm El-Qura University

Clinical Physics. Dr/Aida Radwan Assistant Professor of Medical Physics Umm El-Qura University Clinical Physics Dr/Aida Radwan Assistant Professor of Medical Physics Umm El-Qura University Physics of Radiotherapy using External Beam Dose distribution PHANTOMS Basic dose distribution data are usually

More information

AAPM s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams

AAPM s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams AAPM s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams Peter R. Almond Brown Cancer Center, Louisville, Kentucky 40202 Peter J. Biggs Department of Radiation Oncology,

More information

Challenges in small field MV photon dosimetry

Challenges in small field MV photon dosimetry Challenges in small field MV photon dosimetry Maria Mania Aspradakis Cantonal Hospital of Lucerne, Lucerne, Switzerland Cantonal Hospital of Lucerne, Lucerne, Switzerland maria.aspradakis@ksl.ch Why are

More information

Chapter 9 CALIBRATION OF PHOTON AND ELECTRON BEAMS

Chapter 9 CALIBRATION OF PHOTON AND ELECTRON BEAMS Chapter 9 CALIBRATION OF PHOTON AND ELECTRON BEAMS P. ANDREO Department of Medical Radiation Physics, University of Stockholm, Karolinska Institute, Stockholm, Sweden J.P. SEUNTJENS, E.B. PODGORSAK Department

More information

CHAPTER 9. CALIBRATION OF PHOTON AND ELECTRON BEAMS

CHAPTER 9. CALIBRATION OF PHOTON AND ELECTRON BEAMS Review of Radiation Oncology Physics: A Handbook for Teachers and Students CHAPTER 9. CALIBRATION OF PHOTON AND ELECTRON BEAMS PEDRO ANDREO Department of Medical Radiation Physics University of Stockholm,

More information

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9 Module 9 This module presents information on what X-rays are and how they are produced. Introduction Module 9, Page 2 X-rays are a type of electromagnetic radiation. Other types of electromagnetic radiation

More information

ACCELERATORS AND MEDICAL PHYSICS 2

ACCELERATORS AND MEDICAL PHYSICS 2 ACCELERATORS AND MEDICAL PHYSICS 2 Ugo Amaldi University of Milano Bicocca and TERA Foundation EPFL 2-28.10.10 - U. Amaldi 1 The icone of radiation therapy Radiation beam in matter EPFL 2-28.10.10 - U.

More information

Clinical Photon Beams

Clinical Photon Beams Dosimetric Characteristics of Clinical Photon Beams Jatinder R Palta PhD University of Florida Department of Radiation Oncology Gainesville, Florida Disclosures Research development grants from Philips

More information

Variance reduction techniques used in BEAMnrc

Variance reduction techniques used in BEAMnrc Variance reduction techniques used in BEAMnrc D.W.O. Rogers Carleton Laboratory for Radiotherapy Physics. Physics Dept, Carleton University Ottawa, Canada http://www.physics.carleton.ca/~drogers ICTP,Trieste,

More information

Irradiation Field Size: 5cmX5cm 10cmX10cm 15cmX15cm 20cmX20cm. Focus-Surface Distance: 100cm. 20cm Volume of Ion Chamber : 1cmX1cmX1cm

Irradiation Field Size: 5cmX5cm 10cmX10cm 15cmX15cm 20cmX20cm. Focus-Surface Distance: 100cm. 20cm Volume of Ion Chamber : 1cmX1cmX1cm Proceedings of the Ninth EGS4 Users' Meeting in Japan, KEK Proceedings 200-22, p.5-8 MONTE CARLO SIMULATION ANALYSIS OF BACKSCATTER FACTOR FOR LOW-ENERGY X-RAY K. Shimizu, K. Koshida and T. Miyati Department

More information

Production of X-rays and Interactions of X-rays with Matter

Production of X-rays and Interactions of X-rays with Matter Production of X-rays and Interactions of X-rays with Matter Goaz and Pharoah. Pages 11-20. Neill Serman Electrons traveling from the filament ( cathode) to the target (anode) convert a small percentage

More information

The Calibration Chain: Role of BIPM,

The Calibration Chain: Role of BIPM, The Calibration Chain: Role of BIPM, PSDLs and ADCLs J. Seuntjens and M. McEwen McGill University & National Research Council CANADA Clinical Dosimetry for Radiotherapy, 2009 AAPM Summer School PSDL ADCL

More information

Chapter XIII. PDD TAR TMR Dose Free Space

Chapter XIII. PDD TAR TMR Dose Free Space Ver 2.11 Chapter XIII PDD TAR TMR Dose Free Space Joseph F. Buono RTT Allied Health Science Nassau Community College 1 Education Drive Garden City, NY 11530-6793 phone: 516-572 - 7536 oice - 9460 Secretary

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

Qualitätsmanagement-Handbuch

Qualitätsmanagement-Handbuch U r Kalibrier- und Messmöglichkeiten Qualitätsmanagement-Handbuch Relative erweiterte Messunsicherheit, die sich aus der Standardmessunsicherheit durch Multiplikation mit dem Erweiterungsfaktor k = 2 ergibt.

More information

TISSUE INHOMOGENEITY CORRECTIONS FOR MEGAVOLTAGE PHOTON BEAMS

TISSUE INHOMOGENEITY CORRECTIONS FOR MEGAVOLTAGE PHOTON BEAMS AAPM REPORT NO. 85 TISSUE INHOMOGENEITY CORRECTIONS FOR MEGAVOLTAGE PHOTON BEAMS Report of Task Group No. 65 of the Radiation Therapy Committee of the American Association of Physicists in Medicine Members

More information

1. Orthovoltage vs. megavoltage x-rays. (AL) External beam radiation sources: Orthovoltage radiotherapy: 200-500 kv range

1. Orthovoltage vs. megavoltage x-rays. (AL) External beam radiation sources: Orthovoltage radiotherapy: 200-500 kv range 1. Orthovoltage vs. megavoltage x-rays. (AL) External beam radiation sources: Orthovoltage radiotherapy: 200-500 kv range The radiation from orthovoltage units is referred to as x-rays, generated by bombarding

More information

Atomic and Nuclear Physics Laboratory (Physics 4780)

Atomic and Nuclear Physics Laboratory (Physics 4780) Gamma Ray Spectroscopy Week of September 27, 2010 Atomic and Nuclear Physics Laboratory (Physics 4780) The University of Toledo Instructor: Randy Ellingson Gamma Ray Production: Co 60 60 60 27Co28Ni *

More information

Introduction to the Monte Carlo method

Introduction to the Monte Carlo method Some history Simple applications Radiation transport modelling Flux and Dose calculations Variance reduction Easy Monte Carlo Pioneers of the Monte Carlo Simulation Method: Stanisław Ulam (1909 1984) Stanislaw

More information

Characterisation of two new ionisation chamber types for use in reference electron dosimetry in the UK

Characterisation of two new ionisation chamber types for use in reference electron dosimetry in the UK NPL REPORT DQL-RD001 Characterisation of two new ionisation chamber types for use in reference electron dosimetry in the UK Julia A D Pearce September 2004 September 2004 CHARACTERISATION OF TWO NEW IONISATION

More information

Use of the VALIDATOR Dosimetry System for Quality Assurance and Quality Control of Blood Irradiators

Use of the VALIDATOR Dosimetry System for Quality Assurance and Quality Control of Blood Irradiators Technical Note: 9 Use of the VALIDATOR Dosimetry System for Quality Assurance and Quality Control of Blood Irradiators 1- Introduction The VALIDATOR, model TN-ID-60, is a compact, and stand-alone dosimetry

More information

High-Energy Electron Beam Therapy Dosimetry with Ionisation Chambers

High-Energy Electron Beam Therapy Dosimetry with Ionisation Chambers Schweizerische Gesellschaft für Strahlenbiologie und Medizinische Physik Société Suisse de Radiobiologie et de Physique Médicale Società Svizzera di Radiobiologia e di Fisica Medica Swiss Society of Radiobiology

More information

Lecture 2 Macroscopic Interactions. 22.106 Neutron Interactions and Applications Spring 2010

Lecture 2 Macroscopic Interactions. 22.106 Neutron Interactions and Applications Spring 2010 Lecture 2 Macroscopic Interactions 22.106 Neutron Interactions and Applications Spring 2010 Objectives Macroscopic Interactions Atom Density Mean Free Path Moderation in Bulk Matter Neutron Shielding Effective

More information

Chapter 8 ELECTRON BEAMS: PHYSICAL AND CLINICAL ASPECTS

Chapter 8 ELECTRON BEAMS: PHYSICAL AND CLINICAL ASPECTS Chapter 8 ELECTRON BEAMS: PHYSICAL AND CLINICAL ASPECTS W. STRYDOM Department of Medical Physics, Medical University of Southern Africa, Pretoria, South Africa W. PARKER, M. OLIVARES Department of Medical

More information

Introduction. Chapter 15 Radiation Protection. Regulatory bodies. Dose Equivalent. Regulatory bodies. Main Principles of Radiation Protection

Introduction. Chapter 15 Radiation Protection. Regulatory bodies. Dose Equivalent. Regulatory bodies. Main Principles of Radiation Protection Introduction Chapter 15 Radiation Protection Radiation Dosimetry I Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4 th ed. F.M. Khan, The Physics of Radiation Therapy, 4th ed., Chapter

More information

DETERMINATION OF THE EFFECTIVE VOLUME OF AN EXTRAPOLATION CHAMBER FOR X-RAY DOSIMETRY

DETERMINATION OF THE EFFECTIVE VOLUME OF AN EXTRAPOLATION CHAMBER FOR X-RAY DOSIMETRY X Congreso Regional Latinoamericano IRPA de Protección y Seguridad Radiológica Radioprotección: Nuevos Desafíos para un Mundo en Evolución Buenos Aires, 12 al 17 de abril, 2015 SOCIEDAD ARGENTINA DE RADIOPROTECCIÓN

More information

X-ray Production. Target Interactions. Principles of Imaging Science I (RAD119) X-ray Production & Emission

X-ray Production. Target Interactions. Principles of Imaging Science I (RAD119) X-ray Production & Emission Principles of Imaging Science I (RAD119) X-ray Production & Emission X-ray Production X-rays are produced inside the x-ray tube when high energy projectile electrons from the filament interact with the

More information

Ionizing Radiation, Czech Republic, CMI (Czech Metrology Institute)

Ionizing Radiation, Czech Republic, CMI (Czech Metrology Institute) Ionizing Radiation, Czech Republic, (Czech Metrology Institute) Calibration or Measurement RADIOACTIVITY 1.0E+00 1.0E+02 Bq cm -2 C-14 1.0E+01 1.0E+02 Bq cm -2 Co-60 1.0E+01 1.0E+02 Bq cm -2 Sr-90 1.0E+01

More information

Image Quality and Radiation Dose for Intraoral Radiography: Hand-Held Held (Nomad), Battery Powered

Image Quality and Radiation Dose for Intraoral Radiography: Hand-Held Held (Nomad), Battery Powered Image Quality and Radiation Dose for Intraoral Radiography: Hand-Held Held (Nomad), Battery Powered vs. Wall-Mount X-Ray X Systems Edgar Bailey*, MSEHE, CHP Consultant Joel Gray*, PhD, FAAPM DIQUAD, LLC

More information

Perturbation correction factors for the NACP-02 plane-parallel ionization chamber in water in high-energy electron beams

Perturbation correction factors for the NACP-02 plane-parallel ionization chamber in water in high-energy electron beams INSTITUTE OF PHYSICS PUBLISHING Phys. Med. Biol. 51 (2006) 1221 1235 PHYSICS IN MEDICINE AND BIOLOGY doi:10.1088/0031-9155/51/5/012 Perturbation correction factors for the NACP-02 plane-parallel ionization

More information

Recognition. Radiation Survey Objectives. Objectives. Part 1 Documentation Radiation Source Survey Objectives Radiation Detectors Techniques

Recognition. Radiation Survey Objectives. Objectives. Part 1 Documentation Radiation Source Survey Objectives Radiation Detectors Techniques Recognition I will take this opportunity to recognize and thank the following people s contributions to this presentation. Considerations for: Diagnostic Radiology, Nuclear Medicine and, Oncology M. S.

More information

Cyclotron Centre in Poland and 2D thermoluminescence dosimetry

Cyclotron Centre in Poland and 2D thermoluminescence dosimetry Cyclotron Centre in Poland and 2D thermoluminescence dosimetry Jan Gajewski Institute of Nuclear Physics, Kraków, Poland Department of Radiation Dosimetry Nuclear Physics Institute Academy of Science of

More information

Basics of Nuclear Physics and Fission

Basics of Nuclear Physics and Fission Basics of Nuclear Physics and Fission A basic background in nuclear physics for those who want to start at the beginning. Some of the terms used in this factsheet can be found in IEER s on-line glossary.

More information

Monte Carlo Simulations: Efficiency Improvement Techniques and Statistical Considerations

Monte Carlo Simulations: Efficiency Improvement Techniques and Statistical Considerations Monte Carlo Simulations: Efficiency Improvement Techniques and Statistical Considerations Daryoush Sheikh-Bagheri, Ph.D. 1, Iwan Kawrakow, Ph.D. 2, Blake Walters, M.Sc. 2, and David W.O. Rogers, Ph.D.

More information

Chemistry 13: States of Matter

Chemistry 13: States of Matter Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

More information

Study the Quality Assurance of Conventional X-ray Machines Using Non Invasive KV meter

Study the Quality Assurance of Conventional X-ray Machines Using Non Invasive KV meter Study the Quality Assurance of Conventional X-ray Machines Using Non Invasive KV meter T.M.Taha Radiation Protection Department, Nuclear Research Center, Atomic Energy Authority, Cairo.P.O.13759 Egypt.

More information

Performance evaluation and quality assurance of Varian enhanced dynamic wedges

Performance evaluation and quality assurance of Varian enhanced dynamic wedges JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 7, NUMBER 1, WINTER 2006 Performance evaluation and quality assurance of Varian enhanced dynamic wedges Parham Alaei and Patrick D. Higgins Department

More information

7üVNORD. TÜV NORD Röntgentechnik

7üVNORD. TÜV NORD Röntgentechnik .. TÜV NORD Röntgentechnik Niedersachsen Nordrhein-Westfalen Hamburg Schleswig-Holstein Baden-Württemberg Mecklenburg-Vorpommern Bremen Sachsen-Anhalt Berlin Brandenburg Sachsen' Thüringen' Bayern' Hessen

More information

Quality Assurance of Radiotherapy Equipment

Quality Assurance of Radiotherapy Equipment Clinical Implementation of Technology & Quality Assurance in Radiation Oncology For the course: Survey of Clinical Radiation Oncology 1 Quality Assurance of Radiotherapy Equipment Outline: A. Criteria

More information

Scripps Proton Therapy Center: Configuration and Implementation

Scripps Proton Therapy Center: Configuration and Implementation Scripps Proton Therapy Center: Configuration and Implementation Anthony Mascia Proton Symposium 2013 Annual AAPM Meeting Indianapolis, Indiana USA Facility Configuration Scripps Proton Therapy Center ***All

More information

Chapter 3: Radiation Dosimeters

Chapter 3: Radiation Dosimeters Chapter 3: Radiation Dosimeters Set of 113 slides based on the chapter authored by J. Izewska and G. Rajan of the IAEA publication (ISBN 92-0-107304-6): Review of Radiation Oncology Physics: A Handbook

More information

Advanced variance reduction techniques applied to Monte Carlo simulation of linacs

Advanced variance reduction techniques applied to Monte Carlo simulation of linacs MAESTRO Advanced variance reduction techniques applied to Monte Carlo simulation of linacs Llorenç Brualla, Francesc Salvat, Eric Franchisseur, Salvador García-Pareja, Antonio Lallena Institut Gustave

More information

Secondary Neutrons in Proton and Ion Therapy

Secondary Neutrons in Proton and Ion Therapy Secondary Neutrons in Proton and Ion Therapy L. Stolarczyk Institute of Nuclear Physics PAN, Poland on behalf of WG9 EURADOS Acknowledgments EURADOS Workig Group 9 Roger Harrison Jean Marc Bordy Carles

More information

Development of on line monitor detectors used for clinical routine in proton and ion therapy

Development of on line monitor detectors used for clinical routine in proton and ion therapy Development of on line monitor detectors used for clinical routine in proton and ion therapy A. Ansarinejad Torino, february 8 th, 2010 Overview Hadrontherapy CNAO Project Monitor system: Part1:preliminary

More information

CHAPTER 10. ACCEPTANCE TESTS AND COMMISSIONING MEASUREMENTS

CHAPTER 10. ACCEPTANCE TESTS AND COMMISSIONING MEASUREMENTS Review of Radiation Oncology Physics: A Handbook for Teachers and Students CHAPTER 10. ACCEPTANCE TESTS AND COMMISSIONING MEASUREMENTS JOHN L. HORTON Department of Radiation Physics University of Texas

More information

Reduction of Electron Contamination Using a Filter for 6MV Photon Beam

Reduction of Electron Contamination Using a Filter for 6MV Photon Beam J. Korean Soc Ther Radiol Oncol : Vol. 15, No. 2, June, 1997 Reduction of Electron Contamination Using a Filter for 6MV Photon Beam Choul Soo Lee, MPH., Myung Jin Yoo, Ph.D. and Ha Yong Yum, M.D. Department

More information

QA of intensity-modulated beams using dynamic MLC log files

QA of intensity-modulated beams using dynamic MLC log files 36 Original Article QA of intensity-modulated beams using dynamic MLC log files M. Dinesh Kumar, N. Thirumavalavan, D. Venugopal Krishna, M. Babaiah Department of Radiation Oncology, Yashoda Cancer Institute,

More information

MODELING AND IMPLEMENTATION OF THE MECHANICAL SYSTEM AND CONTROL OF A CT WITH LOW ENERGY PROTON BEAM

MODELING AND IMPLEMENTATION OF THE MECHANICAL SYSTEM AND CONTROL OF A CT WITH LOW ENERGY PROTON BEAM MODELING AND IMPLEMENTATION OF THE MECHANICAL SYSTEM AND CONTROL OF A CT WITH LOW ENERGY PROTON BEAM João Antônio Palma Setti, j.setti@pucpr.br Pontifícia Universidade Católica do Paraná / Rua Imaculada

More information

Scan Time Reduction and X-ray Scatter Rejection in Dual Modality Breast Tomosynthesis. Tushita Patel 4/2/13

Scan Time Reduction and X-ray Scatter Rejection in Dual Modality Breast Tomosynthesis. Tushita Patel 4/2/13 Scan Time Reduction and X-ray Scatter Rejection in Dual Modality Breast Tomosynthesis Tushita Patel 4/2/13 Breast Cancer Statistics Second most common cancer after skin cancer Second leading cause of cancer

More information

METHODS OF BOLUSING THE TRACHEOSTOMY STOMA

METHODS OF BOLUSING THE TRACHEOSTOMY STOMA PII S0360-3016(00)01550-9 Int. J. Radiation Oncology Biol. Phys., Vol. 50, No. 1, pp. 69 74, 2001 Copyright 2001 Elsevier Science Inc. Printed in the USA. All rights reserved 0360-3016/01/$ see front matter

More information

Manual for simulation of EB processing. Software ModeRTL

Manual for simulation of EB processing. Software ModeRTL 1 Manual for simulation of EB processing Software ModeRTL How to get results. Software ModeRTL. Software ModeRTL consists of five thematic modules and service blocks. (See Fig.1). Analytic module is intended

More information

INTRODUCTION. A. Purpose

INTRODUCTION. A. Purpose New York State Department of Health Bureau of Environmental Radiation Protection Guide for Radiation Safety/Quality Assurance Programs Computed Radiography INTRODUCTION A. Purpose This guide describes

More information

Monte Carlo simulation of a scanning whole body counter and the effect of BOMAB phantom size on the calibration.

Monte Carlo simulation of a scanning whole body counter and the effect of BOMAB phantom size on the calibration. Monte Carlo simulation of a scanning whole body counter and the effect of BOMAB phantom size on the calibration. Gary H. Kramer, Linda C. Burns and Steven Guerriere Human Monitoring Laboratory, Radiation

More information

BB-18 Black Body High Vacuum System Technical Description

BB-18 Black Body High Vacuum System Technical Description BB-18 Black Body High Vacuum System Technical Description The BB-18 Black Body is versatile and is programmed for use as a fixed cold target at 80 K or variable target, at 80 K- 350 K no extra cost. The

More information

90 degrees Bremsstrahlung Source Term Produced in Thick Targets by 50 MeV to 10 GeV Electrons

90 degrees Bremsstrahlung Source Term Produced in Thick Targets by 50 MeV to 10 GeV Electrons SLAC-PUB-7722 January 9 degrees Bremsstrahlung Source Term Produced in Thick Targets by 5 MeV to GeV Electrons X. S. Mao et al. Presented at the Ninth International Conference on Radiation Shielding, Tsukuba,

More information

kv-& MV-CBCT Imaging for Daily Localization: Commissioning, QA, Clinical Use, & Limitations

kv-& MV-CBCT Imaging for Daily Localization: Commissioning, QA, Clinical Use, & Limitations kv-& MV-CBCT Imaging for Daily Localization: Commissioning, QA, Clinical Use, & Limitations Moyed Miften, PhD Dept of Radiation Oncology University of Colorado Denver Questions Disease Stage (local, regional,

More information

Improved dosimetry for BNCT by activation foils, modified thermoluminescent detectors and recombination chambers

Improved dosimetry for BNCT by activation foils, modified thermoluminescent detectors and recombination chambers NUKLEONIKA 2004;49(2):51 56 ORIGINAL PAPER Improved dosimetry for BNCT by activation foils, modified thermoluminescent detectors and recombination chambers Paweł Bilski, Natalia Golnik, Paweł Olko, Krzysztof

More information

Conversion coefficients from air kerma to personal dose equivalent H p (3) for eye-lens dosimetry

Conversion coefficients from air kerma to personal dose equivalent H p (3) for eye-lens dosimetry Conversion coefficients from air kerma to personal dose equivalent H p (3) for eye-lens dosimetry ORAMED project Rapport CEA J. Daures (1), J. Gouriou (1), JM Bordy (1) (1) CEA, LIST, Laboratoire National

More information

IGRT. IGRT can increase the accuracy by locating the target volume before and during the treatment.

IGRT. IGRT can increase the accuracy by locating the target volume before and during the treatment. DERYA ÇÖNE RADIOTHERAPY THERAPIST ACIBADEM KOZYATAGI HOSPITAL RADIATION ONCOLOGY DEPARTMENT IGRT IGRT (image-guided radiation therapy) is a technique that reduces geometric uncertainties by considering

More information

A dosimetry technique for measuring kilovoltage cone-beam CT dose on a linear accelerator using radiotherapy equipment

A dosimetry technique for measuring kilovoltage cone-beam CT dose on a linear accelerator using radiotherapy equipment JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 15, NUMBER 4, 2014 A dosimetry technique for measuring kilovoltage cone-beam CT dose on a linear accelerator using radiotherapy equipment Daniel Scandurra,

More information

Coating Thickness and Composition Analysis by Micro-EDXRF

Coating Thickness and Composition Analysis by Micro-EDXRF Application Note: XRF Coating Thickness and Composition Analysis by Micro-EDXRF www.edax.com Coating Thickness and Composition Analysis by Micro-EDXRF Introduction: The use of coatings in the modern manufacturing

More information

3D SCANNER. 3D Scanning Comes Full Circle. Your Most Valuable QA and Dosimetry Tools

3D SCANNER. 3D Scanning Comes Full Circle. Your Most Valuable QA and Dosimetry Tools 3D SCANNER 3D Scanning Comes Full Circle Your Most Valuable QA and Dosimetry Tools BETTER OUTCOMES THROUGH TECHNOLOGY The 3D SCANNER is different by design. 3D SCANNER has been developed from the ground

More information

5.2 ASSESSMENT OF X-RAY TUBE LEAKAGE RADIATION AND X-RAY TUBE OUTPUT TOTAL FILTRATION

5.2 ASSESSMENT OF X-RAY TUBE LEAKAGE RADIATION AND X-RAY TUBE OUTPUT TOTAL FILTRATION 5.2 ASSESSMENT OF X-RAY TUBE LEAKAGE RADIATION AND X-RAY TUBE OUTPUT TOTAL FILTRATION 5.2.1 Task The bremsstrahlung produced by the X-ray tube has a continuous spectrum, limited by the set and spreads

More information

Worldwide Quality Assurance networks for radiotherapy dosimetry

Worldwide Quality Assurance networks for radiotherapy dosimetry Worldwide Quality Assurance networks for radiotherapy dosimetry Joanna Izewska Dosimetry and Medical Radiation Physics Section dosimetry@iaea.org Audit in radiotherapy dosimetry Objectives to enhance confidence

More information

Radiochromic Film. David F. Lewis, Ph.D. Senior Science Fellow Advanced Materials Group International Specialty Products dlewis@ispcorp.

Radiochromic Film. David F. Lewis, Ph.D. Senior Science Fellow Advanced Materials Group International Specialty Products dlewis@ispcorp. Radiochromic Film David F. Lewis, Ph.D. Senior Science Fellow Advanced Materials Group International Specialty Products dlewis@ispcorp.com October 20, 2010 High Resolution Imaging 1984: Could we make a

More information

How To Use A Proton For Radiation Therapy

How To Use A Proton For Radiation Therapy Proton Cancer Therapy: Using Laser Accelerate Protons for Radiation Therapy A Thesis Submitted in Partial Fulfillment of the Requirements for Graduation with Research Distinction in Engineering Physics

More information

In room Magnetic Resonance Imaging guided Radiotherapy (MRIgRT( MRIgRT) Jan Lagendijk and Bas Raaymakers

In room Magnetic Resonance Imaging guided Radiotherapy (MRIgRT( MRIgRT) Jan Lagendijk and Bas Raaymakers In room Magnetic Resonance Imaging guided Radiotherapy (MRIgRT( MRIgRT) Jan Lagendijk and Bas Raaymakers : Chris Bakker Boxue Liu Alexander Raaijmakers Rajko Topolnjak Richard van de Put Uulke van der

More information

Assessing Radiation Dose: How to Do It Right

Assessing Radiation Dose: How to Do It Right Assessing Radiation Dose: How to Do It Right Michael McNitt-Gray, PhD, DABR, FAAPM Professor, Department of Radiology Director, UCLA Biomedical Physics Graduate Program David Geffen School of Medicine

More information

The effects of radiation on the body can be divided into Stochastic (random) effects and deterministic or Non-stochastic effects.

The effects of radiation on the body can be divided into Stochastic (random) effects and deterministic or Non-stochastic effects. RADIATION SAFETY: HOW TO EDUCATE AND PROTECT YOURSELF AND YOUR STAFF John Farrelly, DVM, MS, ACVIM (Oncology), ACVR (Radiation Oncology) Cornell University Veterinary Specialists The Veterinary Cancer

More information

Quality Control and Maintenance Programs

Quality Control and Maintenance Programs Quality Control and Maintenance Programs Cari Borrás, D.Sc., FACR, FAAPM Visiting Professor DOIN-DEN / UFPE Recife, Pernambuco, Brazil Co-Chair, IUPESM Health Technology Task Group 1 Medical Imaging Equipment

More information

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Energy Transport Focus on heat transfer Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Conduction Conduction heat transfer occurs only when there is physical contact

More information

DETERMINATION OF THE LINEAR ATTENUATION COEFFICIENTS AND BUILDUP FACTORS OF MCP-96 ALLOY FOR USE IN TISSUE COMPENSATION AND RADIATION PROTECTION

DETERMINATION OF THE LINEAR ATTENUATION COEFFICIENTS AND BUILDUP FACTORS OF MCP-96 ALLOY FOR USE IN TISSUE COMPENSATION AND RADIATION PROTECTION DETERMINATION OF THE LINEAR ATTENUATION COEFFICIENTS AND BUILDUP FACTORS OF MCP-96 ALLOY FOR USE IN TISSUE COMPENSATION AND RADIATION PROTECTION A THESIS SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT

More information

Quality Assurance for Treatment Planning Systems

Quality Assurance for Treatment Planning Systems Quality Assurance for Treatment Planning Systems PTCOG Educational Session May 19 th 2010 Oliver Jäkel Heidelberg Ion Beam Therapy Center and German Cancer Research Center, Heidelberg Introduction Outline

More information

Radiation Detection and Measurement

Radiation Detection and Measurement Radiation Detection and Measurement June 2008 Tom Lewellen Tkldog@u.washington.edu Types of radiation relevant to Nuclear Medicine Particle Symbol Mass (MeV/c 2 ) Charge Electron e-,! - 0.511-1 Positron

More information

. Tutorial #3 Building Complex Targets

. Tutorial #3 Building Complex Targets . Tutorial #3 Building Complex Targets. Mixed Gas/Solid Targets Gas Ionization Chamber Previous Tutorials have covered how to setup TRIM, determine which ion and energy to specify for a semiconductor n-well

More information

The Phenomenon of Photoelectric Emission:

The Phenomenon of Photoelectric Emission: The Photoelectric Effect. The Wave particle duality of light Light, like any other E.M.R (electromagnetic radiation) has got a dual nature. That is there are experiments that prove that it is made up of

More information

Dosimetric considerations for patients with HIP prostheses undergoing pelvic irradiation. Report of the AAPM Radiation Therapy Committee Task Group 63

Dosimetric considerations for patients with HIP prostheses undergoing pelvic irradiation. Report of the AAPM Radiation Therapy Committee Task Group 63 Dosimetric considerations for patients with HIP prostheses undergoing pelvic irradiation. Report of the AAPM Radiation Therapy Committee Task Group 63 Chester Reft University of Chicago, Chicago, Illinois

More information

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity

More information

Proton Radiotherapy. Cynthia Keppel Scientific and Technical Director Hampton University Proton Therapy Institute. Lead Virginia.

Proton Radiotherapy. Cynthia Keppel Scientific and Technical Director Hampton University Proton Therapy Institute. Lead Virginia. Proton Radiotherapy Cynthia Keppel Scientific and Technical Director Hampton University Proton Therapy Institute Lead Virginia g October 16, 2009 About Proton Therapy Cancer is the (2nd) largest cause

More information

Update on ACR Digital Mammography QC Manual

Update on ACR Digital Mammography QC Manual Update on ACR Digital Mammography QC Manual Priscilla F. Butler, M.S. Medical Physicist and Senior Director, ACR, Reston, VA (with thanks to Eric Berns, Ph.D.) Overview Phantom Specifications QC Manual

More information

Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Measurement of Charge-to-Mass (e/m) Ratio for the Electron Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic

More information

Feasibility Study of Neutron Dose for Real Time Image Guided. Proton Therapy: A Monte Carlo Study

Feasibility Study of Neutron Dose for Real Time Image Guided. Proton Therapy: A Monte Carlo Study Feasibility Study of Neutron Dose for Real Time Image Guided Proton Therapy: A Monte Carlo Study Jin Sung Kim, Jung Suk Shin, Daehyun Kim, EunHyuk Shin, Kwangzoo Chung, Sungkoo Cho, Sung Hwan Ahn, Sanggyu

More information

Diagnostic x-ray imaging relies on the attenuation of

Diagnostic x-ray imaging relies on the attenuation of X-Ray Imaging Physics for Nuclear Medicine Technologists. Part 2: X-Ray Interactions and Image Formation* J. Anthony Seibert, PhD; and John M. Boone, PhD Department of Radiology, University of California

More information

Solid State Detectors = Semi-Conductor based Detectors

Solid State Detectors = Semi-Conductor based Detectors Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection

More information

3D SCANNERTM. 3D Scanning Comes Full Circle. s u n. Your Most Valuable QA and Dosimetry Tools A / B / C. The 3D SCANNER Advantage

3D SCANNERTM. 3D Scanning Comes Full Circle. s u n. Your Most Valuable QA and Dosimetry Tools A / B / C. The 3D SCANNER Advantage 3D SCANNERTM 3D Scanning Comes Full Circle Relative 3D Dosimetry offering the easiest setup, most objectivity, and best consistency available The 3D SCANNER Advantage Advanced Design Ring and diameter

More information

Chapter 1: Chemistry: Measurements and Methods

Chapter 1: Chemistry: Measurements and Methods Chapter 1: Chemistry: Measurements and Methods 1.1 The Discovery Process o Chemistry - The study of matter o Matter - Anything that has mass and occupies space, the stuff that things are made of. This

More information

Radiographic Grid. Principles of Imaging Science II (RAD 120) Image-Forming X-Rays. Radiographic Grids

Radiographic Grid. Principles of Imaging Science II (RAD 120) Image-Forming X-Rays. Radiographic Grids Principles of Imaging Science II (RAD 120) Radiographic Grids 1 Image-Forming X-Rays Four X-ray paths a. X-rays interact with patient and scatter away from the receptor b. X-rays interact and are absorbed

More information

MLC Characteristics. Treatment Delivery Systems 2 Field Shaping; Design Characteristics and Dosimetry Issues. Presentation Outline

MLC Characteristics. Treatment Delivery Systems 2 Field Shaping; Design Characteristics and Dosimetry Issues. Presentation Outline Treatment Delivery Systems 2 Field Shaping; Design Characteristics and Dosimetry Issues Timothy D. Solberg David Geffen School of Medicine at UCLA TU-A-517A-1 Presentation Outline MLC Characteristics TG-50

More information

2 Absorbing Solar Energy

2 Absorbing Solar Energy 2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could

More information

Quality Assurance in Stereotactic. Radiotherapy

Quality Assurance in Stereotactic. Radiotherapy Quality Assurance in Stereotactic Radiosurgery and Fractionated Stereotactic Radiotherapy David Shepard, Ph.D. Swedish Cancer Institute Seattle, WA Timothy D. Solberg, Ph.D. University of Texas Southwestern

More information

RADIATION THERAPY. Dosimetry Pioneers since 1922 NEW

RADIATION THERAPY. Dosimetry Pioneers since 1922 NEW RADIATION THERAPY Dosimetry Pioneers since 1922 NEW New Product Releases 2015 One phantom multiple options 4D Patient and Machine QA Modular Phantom for Stay flexible. Go modular. } Revolutionary new modular

More information

Submitted to Radiation Measurements INVESTIGATION OF OSL SIGNAL OF RESISTORS FROM MOBILE PHONES FOR ACCIDENTAL DOSIMETRY

Submitted to Radiation Measurements INVESTIGATION OF OSL SIGNAL OF RESISTORS FROM MOBILE PHONES FOR ACCIDENTAL DOSIMETRY Submitted to Radiation Measurements INVESTIGATION OF OSL SIGNAL OF RESISTORS FROM MOBILE PHONES FOR ACCIDENTAL DOSIMETRY A. Mrozik, B. Marczewska, P. Bilski, W. Gieszczyk Institute of Nuclear Physics PAN,

More information

Chemistry 1000 Lecture 2: Nuclear reactions and radiation. Marc R. Roussel

Chemistry 1000 Lecture 2: Nuclear reactions and radiation. Marc R. Roussel Chemistry 1000 Lecture 2: Nuclear reactions and radiation Marc R. Roussel Nuclear reactions Ordinary chemical reactions do not involve the nuclei, so we can balance these reactions by making sure that

More information

Calorimetry in particle physics experiments

Calorimetry in particle physics experiments Calorimetry in particle physics experiments Unit n. 8 Calibration techniques Roberta Arcidiacono Lecture overview Introduction Hardware Calibration Test Beam Calibration In-situ Calibration (EM calorimeters)

More information

Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.

Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion. Name Period Gas Laws Kinetic energy is the energy of motion of molecules. Gas state of matter made up of tiny particles (atoms or molecules). Each atom or molecule is very far from other atoms or molecules.

More information

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided. CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas

More information

CT: Size Specific Dose Estimate (SSDE): Why We Need Another CT Dose Index. Acknowledgements

CT: Size Specific Dose Estimate (SSDE): Why We Need Another CT Dose Index. Acknowledgements CT: Size Specific Dose Estimate (SSDE): Why We Need Another CT Dose Index Keith J. Strauss, MSc, FAAPM, FACR Clinical Imaging Physicist Cincinnati Children s Hospital University of Cincinnati College of

More information