Interpretation. Hemodynamic Monitoring Interpretation. Is easy! Don t work to make it hard!!! hemo = dynamic = hemodynamic = Interpretation

Size: px
Start display at page:

Download "Interpretation. Hemodynamic Monitoring Interpretation. Is easy! Don t work to make it hard!!! hemo = dynamic = hemodynamic = Interpretation"

Transcription

1 Hemodynamic Monitoring 2 Is easy! Don t work to make it hard!!! 3 hemo = dynamic = hemodynamic = 1

2 4 Circulation occurs because of blood pressure! Hemodynamics = 5 Without enough BP, tissues will not receive needed oxygen & nutrients However, high BP strains the heart & will eventually cause heart failure 6 If BP " # If BP $# Arterial BP can change w/o affecting venous BP so must measure all BP s 2

3 7 Heart Pump that creates pressure gradient Changes in the heart itself will directly affect BP: "HR or strength of contraction # $ HR or strength of contraction # 8 Blood Amount of fluid in circulatory system affects BP: "blood volume # $ blood volume # 9 Vessels Tone of the blood vessels affect BP: vasoconstriction # vasodilation # 3

4 10 We can manipulate all 3 factors that control BP HR, contractility (epinephrine, Dopamine) Blood volume (diuretics) Vessel tone (epinephrine, Nitroprusside, Dopamine) Changes in hemodynamic measurements will reveal which of the 3 has been altered 11 Rule of 4 s Heart has 4 chambers Each chamber serves 1 of the 4 circulatory branches: LV - RA - RV - LA - 12 Each chamber & connecting artery or venous system has its own BP - 4 pressures LV - systemic arteries - RA - systemic veins - RV - pulmonary arteries - LA - pulmonary veins - Hemodynamics measures each of these pressures 4

5 13 Leave capillaries In capillaries Enter capillaries Must be the same from both ventricles 2. Normally % 3. If not: HR 100/min HR 100/min RVSV 70 ml RVSV 70 ml LVSV 69.9 ml LVSV 69.9 ml = 7.0 lpm x 60 min = liters = 7.0 lpm x 60 min = liters = 6.99 lpm x 60 min = liters = 6.99 lpm x 60 min = liters.6 L. = 600 ml.6 L. = 600 ml Where is that 600 ml? 15 CVP = RAP = RVEDP = RV preload Measures pressure in the systemic venous system Much lower than mean ABP Since most of blood is in the venous system, changes in the CVP reflect changes in vascular volume.... 5

6 16 CVP used to monitor vascular fluid levels & right heart function Treat when - Transducer at level of RA 17 Condition CVP PAP PCWP Q T RV Failure " (N) $ (N) $ (N) $ Hypervolemia " " " " Hypovolemia $ $ $ $ 18 Measures blood moving through the pulmonary arteries into the lungs Increases in PAP occur in lung disease/" PVR 6

7 19 Condition CVP PAP PCWP Q T Lung Problems " " (N) $ (N) $ COPD Pulmonary emboli ARDS (Pulm. edema) Pneumonia Hypervolemia " " " " Hypovolemia $ $ $ $ 20 = PWP = PAOP % LAP % LVEDP % LV preload When BTFDC wedged - no longer measures forward flow of blood Measures back pressure from pulm. veins which are in direct communication with left heart 21 PCWP monitors left heart (LV & mitral valve)! Treat when - 7

8 22 Condition CVP PAP PCWP Q T Left Heart Problems LV failure Mitral valve stenosis Cardiogenic pulm. edema High PEEP " " " (N) $ >12 mmhg >18 mmhg Hypervolemia Hypovolemia " $ " $ " $ " $ 23 Condition CVP PAP PCWP Q T Right heart " (N) $ (N) $ (N) $ Lung Problems " " (N) $ (N) $ Left heart " " " $ Hypervolemia " " " " Hypovolemia $ $ $ $ 24 " PAP + normal PCWP = " PAP + " PCWP = 8

9 25 PAd - PCWP: 26 PCWP cannot be > 27 Preload = Afterload =. BTFDC tip should lie in a Zone III artery Q T $ # O 2 extraction " # PvO 2, SvO 2 $ _ # C(a-v)O 2 " _ SvO 2 is best indicator of tissue oxygenation 9

10 28 56 yof, post-op chole, MVS 1500 hrs 1700 hrs 1900 hrs BP (mmhg) 128/ /90 100/60 CVP (cmh 2 O) HR yom PAP 40/26 mmhg PCWP 18 mmhg CVP. 10 cmh 2 O Q T 3.4 lpm kg. male PAP 53/34 mmhg PCWP 28 mmhg CVP 10.6 cmh 2 O _ C(a-v)O vol% 10

11 31 ICU patient PAP 26/8 mmhg PA mean 15 mmhg PCWP. 28 mmhg Q T 6.0 lpm yof PAP 52/30 mmhg PCWP 10 mmhg CVP. 12 mmhg Q T 3.9 lpm kg. patient PAP 43/21 mmhg PCWP 3 mmhg CVP 12 cmh 2 O. Q T 3.9 lpm _ C(a-v)O vol% 11

12 34 Which of the following disorders is known to cause the PCWP to become elevated? a. ARDS b. LVF c. RVF d. hypervolemia e. increased PVR 35 Data of 70 kg. patient in ICU: Which of the following drugs would the RCP be least likely PAP 53/39 mmhg to recommend? PCWP. 32 mmhg Q T 3.4 lpm a. Dopamine _ C(a-v)O vol% b. morphine sulfate Temp c. oxygen d. propanolol (Inderol) e. furosemide (Lasix) 36 Data of 70 kg. patient in ICU: Which of the following is most likely to be responsible for this PAP 60/38 mmhg patient s elevated PCWP? PCWP. 26 mmhg Q T 11.7 lpm a. hypervolemia _ C(a-v)O vol% b. hypovolemia. VO ml/min c. LVF d. ARDS e. RVF 12

13 37 Data of 70 kg. patient in ICU: Which of the following assessments regarding this PAP 22/6 mmhg patient is true? PCWP _ 2 mmhg C(a-v)O vol% a. Patient is hypovolemic. Temp. 37 b. LVF exists.. c. The Q T is decreased. d. Pulm. edema is inevitable. 38 RCP is monitoring a patient in ICU: Which of the following is the most appropriate assessment? PAP 23/7 mmhg PCWP 26 mmhg a. Data is in error PA mean 16 mmhg b. LV dysfunction exists Q T 10.6 lpm c. PVR is increased d. Patient is hypovolemic e. Normal study 39 Data of 50 kg. patient in ICU: Which of the following is(are) true statements? CVP 10 mmhg PAP 43/21 mmhg a. LVF exists. PCWP 2 mmhg b. Patient is hypovolemic. Q T 2.9 lpm c. CV reserves are excellent. C(a-v)O vol% d. PVR is increased. VO ml/min 13

14 40 28 yof, 4 days post- Fx femur: Which of the following is most likely responsible? RR 40/min PAP 44/27 mmhg a. LVF exists. PCWP 6 mmhg b. Patient is hypervolemic. Q T 5 lpm c. Pulm. emboli are present. BP 85/50 mmhg d. PVR is increased. 41 Data of 70 kg. patient in ICU: Which of the following mechanisms is(are) responsible PCWP 36 mmhg for the low Q T? Q T 3.1 lpm C(a-v)O vol% a. RVF VO ml/min b. LVF c. hypovolemia d. increased PVR e. ARDS 42 Data of 70 kg. patient in ICU: Which of the following mechanisms is(are) responsible PCWP 3 mmhg for the low Q T? Q T 3.1 lpm C(a-v)O vol% a. RVF VO ml/min b. LVF c. hypovolemia d. ARDS 14

15

16

17

18

19

Section Four: Pulmonary Artery Waveform Interpretation

Section Four: Pulmonary Artery Waveform Interpretation Section Four: Pulmonary Artery Waveform Interpretation All hemodynamic pressures and waveforms are generated by pressure changes in the heart caused by myocardial contraction (systole) and relaxation/filling

More information

240- PROBLEM SET INSERTION OF SWAN-GANZ SYSTEMIC VASCULAR RESISTANCE. Blood pressure = f(cardiac output and peripheral resistance)

240- PROBLEM SET INSERTION OF SWAN-GANZ SYSTEMIC VASCULAR RESISTANCE. Blood pressure = f(cardiac output and peripheral resistance) 240- PROBLEM SET INSERTION OF SWAN-GANZ 50 kg Pig Rt Jugular 0 cm Rt Atrium 10 cm Rt ventricle 15 cm Wedge 20-25 cm SYSTEMIC VASCULAR RESISTANCE Blood pressure = f(cardiac output and peripheral resistance)

More information

Normal & Abnormal Intracardiac. Lancashire & South Cumbria Cardiac Network

Normal & Abnormal Intracardiac. Lancashire & South Cumbria Cardiac Network Normal & Abnormal Intracardiac Pressures Lancashire & South Cumbria Cardiac Network Principle Pressures recorded from catheter tip Electrical transducer - wheatstone bridge mechanical to electrical waveform

More information

PULMONARY HYPERTENSION. Charles A. Thompson, M.D., FACC, FSCAI Cardiovascular Institute of the South Zachary, Louisiana

PULMONARY HYPERTENSION. Charles A. Thompson, M.D., FACC, FSCAI Cardiovascular Institute of the South Zachary, Louisiana PULMONARY HYPERTENSION Charles A. Thompson, M.D., FACC, FSCAI Cardiovascular Institute of the South Zachary, Louisiana What is Pulmonary Hypertension? What is normal? Pulmonary artery systolic pressure

More information

Normal Intracardiac Pressures. Lancashire & South Cumbria Cardiac Network

Normal Intracardiac Pressures. Lancashire & South Cumbria Cardiac Network Normal Intracardiac Pressures Lancashire & South Cumbria Cardiac Network Principle Pressures recorded from catheter tip Electrical transducer - wheatstone bridge mechanical to electrical waveform display

More information

Type II Pulmonary Hypertension: Pulmonary Hypertension due to Left Heart Disease

Type II Pulmonary Hypertension: Pulmonary Hypertension due to Left Heart Disease Heart Failure Center Hadassah University Hospital Type II Pulmonary Hypertension: Pulmonary Hypertension due to Left Heart Disease Israel Gotsman MD The Heart Failure Center, Heart Institute Hadassah University

More information

Workshop B: Essentials of Neonatal Cardiology and CHD Anthony C. Chang, MD, MBA, MPH CARDIAC INTENSIVE CARE

Workshop B: Essentials of Neonatal Cardiology and CHD Anthony C. Chang, MD, MBA, MPH CARDIAC INTENSIVE CARE SHUNT LESIONS NEONATAL : CONGENITAL CARDIAC MALFORMATIONS AND CARDIAC SURGERY ANTHONY C. CHANG, MD, MBA, MPH CHILDREN S HOSPITAL OF ORANGE COUNTY ATRIAL SEPTAL DEFECT LEFT TO RIGHT SHUNT INCREASED PULMONARY

More information

Inotropes/Vasoactive Agents Hina N. Patel, Pharm.D., BCPS Cathy Lawson, Pharm.D., BCPS

Inotropes/Vasoactive Agents Hina N. Patel, Pharm.D., BCPS Cathy Lawson, Pharm.D., BCPS Inotropes/Vasoactive Agents Hina N. Patel, Pharm.D., BCPS Cathy Lawson, Pharm.D., BCPS 1. Definition -an agent that affects the contractility of the heart -may be positive (increases contractility) or

More information

Milwaukee School of Engineering Gerrits@msoe.edu. Case Study: Factors that Affect Blood Pressure Instructor Version

Milwaukee School of Engineering Gerrits@msoe.edu. Case Study: Factors that Affect Blood Pressure Instructor Version Case Study: Factors that Affect Blood Pressure Instructor Version Goal This activity (case study and its associated questions) is designed to be a student-centered learning activity relating to the factors

More information

Acute heart failure may be de novo or it may be a decompensation of chronic heart failure.

Acute heart failure may be de novo or it may be a decompensation of chronic heart failure. Management of Acute Left Ventricular Failure Acute left ventricular failure presents as pulmonary oedema due to increased pressure in the pulmonary capillaries. It is important to realise though that left

More information

Vtial sign #1: PULSE. Vital Signs: Assessment and Interpretation. Factors that influence pulse rate: Importance of Vital Signs

Vtial sign #1: PULSE. Vital Signs: Assessment and Interpretation. Factors that influence pulse rate: Importance of Vital Signs Vital Signs: Assessment and Interpretation Elma I. LeDoux, MD, FACP, FACC Associate Professor of Medicine Vtial sign #1: PULSE Reflects heart rate (resting 60-90/min) Should be strong and regular Use 2

More information

Circulatory System Review

Circulatory System Review Circulatory System Review 1. Draw a table to describe the similarities and differences between arteries and veins? Anatomy Direction of blood flow: Oxygen concentration: Arteries Thick, elastic smooth

More information

Fundamentals of Critical Care: Hemodynamics, Monitoring, Shock

Fundamentals of Critical Care: Hemodynamics, Monitoring, Shock Fundamentals of Critical Care: Hemodynamics, Monitoring, Shock Joshua Goldberg, MD Assistant Professor of Surgery Associate Medical Director, Burn Unit UCHSC Definitions and Principles The measurement

More information

Multi-Organ Dysfunction Syndrome Lesson Description Mitch Taylor

Multi-Organ Dysfunction Syndrome Lesson Description Mitch Taylor Multi-Organ Dysfunction Syndrome Lesson Description Mitch Taylor At the completion of this lesson, the student will be able to: Describe shock. Classify shock into 3 major classifications. Hypovolemic

More information

Overview of the Cardiovascular System

Overview of the Cardiovascular System Overview of the Cardiovascular System 2 vascular (blood vessel) loops: Pulmonary circulation: from heart to lungs and back) Systemic circulation: from heart to other organs and back Flow through systemic

More information

Quiz 5 Heart Failure scores (n=163)

Quiz 5 Heart Failure scores (n=163) Quiz 5 Heart Failure summary statistics The correct answers to questions are indicated by *. Students were awarded 2 points for question #3 for either selecting spironolactone or eplerenone. However, the

More information

Inflammatory or cardiogenic lung edema? It does matter!

Inflammatory or cardiogenic lung edema? It does matter! Inflammatory or cardiogenic lung edema? It does matter! Dr Xavier MONNET Medical Intensive Care Unit Bicêtre Hospital FRANCE Conflict of interest Inflammatory or cardiogenic lung edema? It does matter!

More information

Sign up to receive ATOTW weekly email worldanaesthesia@mac.com

Sign up to receive ATOTW weekly email worldanaesthesia@mac.com INTRODUCTION TO CARDIOVASCULAR PHYSIOLOGY ANAESTHESIA TUTORIAL OF THE WEEK 125 16 TH MARCH 2009 Toby Elkington, Specialist Registrar Carl Gwinnutt, Consultant Department of Anaesthesia, Salford Royal NHS

More information

Treatment of cardiogenic shock

Treatment of cardiogenic shock ACUTE HEART FAILURE AND COMORBIDITY IN THE ELDERLY Treatment of cardiogenic shock Christian J. Wiedermann, M.D., F.A.C.P. Associate Professor of Internal Medicine, Medical University of Innsbruck, Austria

More information

Note: The left and right sides of the heart must pump exactly the same volume of blood when averaged over a period of time

Note: The left and right sides of the heart must pump exactly the same volume of blood when averaged over a period of time page 1 HEART AS A PUMP A. Functional Anatomy of the Heart 1. Two pumps, arranged in series a. right heart: receives blood from the systemic circulation (via the great veins and vena cava) and pumps blood

More information

ANAESTHESIA FOR THE PATIENT WITH PULMONARY HYPERTENSION ANAESTHESIA TUTORIAL OF THE WEEK 228

ANAESTHESIA FOR THE PATIENT WITH PULMONARY HYPERTENSION ANAESTHESIA TUTORIAL OF THE WEEK 228 ANAESTHESIA FOR THE PATIENT WITH PULMONARY HYPERTENSION ANAESTHESIA TUTORIAL OF THE WEEK 228 20 TH JUNE 2011 Dr Sarah Thomas, Senior Anaesthetic Registrar Royal Hobart Hospital Correspondence to sarah.thomas@dhhs.tas.gov.au

More information

The Circulatory System. Chapter 17 Lesson 1

The Circulatory System. Chapter 17 Lesson 1 The Circulatory System Chapter 17 Lesson 1 Functions of the Circulatory System Your circulatory system maintains an internal environment in which all the cells in your body are nourished. As your heart

More information

Vascular System The heart can be thought of 2 separate pumps from the right ventricle, blood is pumped at a low pressure to the lungs and then back

Vascular System The heart can be thought of 2 separate pumps from the right ventricle, blood is pumped at a low pressure to the lungs and then back Vascular System The heart can be thought of 2 separate pumps from the right ventricle, blood is pumped at a low pressure to the lungs and then back to the left atria from the left ventricle, blood is pumped

More information

Exchange solutes and water with cells of the body

Exchange solutes and water with cells of the body Chapter 8 Heart and Blood Vessels Three Types of Blood Vessels Transport Blood Arteries Carry blood away from the heart Transport blood under high pressure Capillaries Exchange solutes and water with cells

More information

Resuscitation in congenital heart disease. Peter C. Laussen MBBS FCICM Department Critical Care Medicine Hospital for Sick Children Toronto

Resuscitation in congenital heart disease. Peter C. Laussen MBBS FCICM Department Critical Care Medicine Hospital for Sick Children Toronto Resuscitation in congenital heart disease Peter C. Laussen MBBS FCICM Department Critical Care Medicine Hospital for Sick Children Toronto Evolution of Congenital Heart Disease Extraordinary success: Overall

More information

Edwards FloTrac Sensor & Edwards Vigileo Monitor. Understanding Stroke Volume Variation and Its Clinical Application

Edwards FloTrac Sensor & Edwards Vigileo Monitor. Understanding Stroke Volume Variation and Its Clinical Application Edwards FloTrac Sensor & Edwards Vigileo Monitor Understanding Stroke Volume Variation and Its Clinical Application 1 Topics System Configuration Pulsus Paradoxes Reversed Pulsus Paradoxus What is Stroke

More information

Anatomi & Fysiologi 060301. The cardiovascular system (chapter 20) The circulation system transports; What the heart can do;

Anatomi & Fysiologi 060301. The cardiovascular system (chapter 20) The circulation system transports; What the heart can do; The cardiovascular system consists of; The cardiovascular system (chapter 20) Principles of Anatomy & Physiology 2009 Blood 2 separate pumps (heart) Many blood vessels with varying diameter and elasticity

More information

Fellow TEE Review Workshop Hemodynamic Calculations 2013. Director, Intraoperative TEE Program. Johns Hopkins School of Medicine

Fellow TEE Review Workshop Hemodynamic Calculations 2013. Director, Intraoperative TEE Program. Johns Hopkins School of Medicine Fellow TEE Review Workshop Hemodynamic Calculations 2013 Mary Beth Brady, MD, FASE Director, Intraoperative TEE Program Johns Hopkins School of Medicine At the conclusion of the workshop, the participants

More information

Medical Direction and Practices Board WHITE PAPER

Medical Direction and Practices Board WHITE PAPER Medical Direction and Practices Board WHITE PAPER Use of Pressors in Pre-Hospital Medicine: Proper Indication and State of the Science Regarding Proper Choice of Pressor BACKGROUND Shock is caused by a

More information

Ventilation Perfusion Relationships

Ventilation Perfusion Relationships Ventilation Perfusion Relationships VENTILATION PERFUSION RATIO Ideally, each alveolus in the lungs would receive the same amount of ventilation and pulmonary capillary blood flow (perfusion). In reality,

More information

Bergen Community College Division of Health Professions Department of Respiratory Therapy RSP 240 Diagnostic Monitoring and Patient Assessment

Bergen Community College Division of Health Professions Department of Respiratory Therapy RSP 240 Diagnostic Monitoring and Patient Assessment Date Revised: August 2014 Semester and Year: Fall 2014 Bergen Community College Division of Health Professions Department of Respiratory Therapy RSP 240 Diagnostic Monitoring and Patient Assessment Course

More information

PULMONARY PHYSIOLOGY

PULMONARY PHYSIOLOGY I. Lung volumes PULMONARY PHYSIOLOGY American College of Surgeons SCC Review Course Christopher P. Michetti, MD, FACS and Forrest O. Moore, MD, FACS A. Tidal volume (TV) is the volume of air entering and

More information

Provided by the American Venous Forum: veinforum.org

Provided by the American Venous Forum: veinforum.org CHAPTER 1 NORMAL VENOUS CIRCULATION Original author: Frank Padberg Abstracted by Teresa L.Carman Introduction The circulatory system is responsible for circulating (moving) blood throughout the body. The

More information

Mr GH: Pericardial Window. Anaesthetic Management of Cardiac Tamponade

Mr GH: Pericardial Window. Anaesthetic Management of Cardiac Tamponade Mr GH: Pericardial Window Anaesthetic Management of Cardiac Tamponade Mr GH 56 yo M HOPCx Asbestosis, adenoca R lung 8/52 6/52 cisplatin/ taxol chemo Weekly pleural taps for effusions Sent from Bendigo

More information

Traumatic Cardiac Tamponade. Shane KF Seal 19 November 2003 POS

Traumatic Cardiac Tamponade. Shane KF Seal 19 November 2003 POS Traumatic Cardiac Tamponade Shane KF Seal 19 November 2003 POS Objectives Definition Pathophysiology Diagnosis Treatment Cardiac Tamponade The decompensated phase of cardiac compression resulting from

More information

1 The diagram shows blood as seen under a microscope. Which identifies parts P, Q, R and S of the blood?

1 The diagram shows blood as seen under a microscope. Which identifies parts P, Q, R and S of the blood? 1 1 The diagram shows blood as seen under a microscope. Which identifies parts P, Q, R and S of the blood? 2 The plan shows the blood system of a mammal. What does the part labelled X represent? A heart

More information

STAGES OF SHOCK. IRREVERSIBLE SHOCK Heart deteriorates until it can no longer pump and death occurs.

STAGES OF SHOCK. IRREVERSIBLE SHOCK Heart deteriorates until it can no longer pump and death occurs. STAGES OF SHOCK SHOCK : A profound disturbance of circulation and metabolism, which leads to inadequate perfusion of all organs which are needed to maintain life. COMPENSATED NONPROGRESSIVE SHOCK 30 sec

More information

3. Tunica adventitia is the outermost layer; it is composed of loosely woven connective tissue infiltrated by nerves, blood vessels and lymphatics

3. Tunica adventitia is the outermost layer; it is composed of loosely woven connective tissue infiltrated by nerves, blood vessels and lymphatics Blood vessels and blood pressure I. Introduction - distribution of CO at rest II. General structure of blood vessel walls - walls are composed of three distinct layers: 1. Tunica intima is the innermost

More information

SISTEMA CIRCULATORIO: FUNCIONES PRINCIPALES

SISTEMA CIRCULATORIO: FUNCIONES PRINCIPALES SISTEMA CIRCULATORIO: FUNCIONES PRINCIPALES Transporte y distribución de O2 y CO2, sales, nutrientes, metabolitos, hormonas, células inmunes y Acs. Producción de ultrafiltrado renal. Regulación de temperatura

More information

Introduction to CV Pathophysiology. Introduction to Cardiovascular Pathophysiology

Introduction to CV Pathophysiology. Introduction to Cardiovascular Pathophysiology Introduction to CV Pathophysiology Munther K. Homoud, MD Tufts-New England Medical Center Spring 2008 Introduction to Cardiovascular Pathophysiology 1. Basic Anatomy 2. Excitation Contraction Coupling

More information

Statement on Disability: Pulmonary Hypertension

Statement on Disability: Pulmonary Hypertension Statement on Disability: Pulmonary Hypertension Ronald J. Oudiz, MD and Robyn J. Barst, MD on behalf of Pulmonary Hypertension Association The Scientific Leadership Council of the Pulmonary Hypertension

More information

Chapter 16. Learning Objectives. Learning Objectives 9/11/2012. Shock. Explain difference between compensated and uncompensated shock

Chapter 16. Learning Objectives. Learning Objectives 9/11/2012. Shock. Explain difference between compensated and uncompensated shock Chapter 16 Shock Learning Objectives Explain difference between compensated and uncompensated shock Differentiate among 5 causes and types of shock: Hypovolemic Cardiogenic Neurogenic Septic Anaphylactic

More information

Cardiovascular Physiology

Cardiovascular Physiology Cardiovascular Physiology Heart Physiology for the heart to work properly contraction and relaxation of chambers must be coordinated cardiac muscle tissue differs from smooth and skeletal muscle tissues

More information

Blood vessels. transport blood throughout the body

Blood vessels. transport blood throughout the body Circulatory System Parts and Organs Blood vessels transport blood throughout the body Arteries blood vessels that carry blood AWAY from the heart Pulmonary arteries carry the deoxygenated blood from heart

More information

Critical Care Medicine Information Sheet 2003

Critical Care Medicine Information Sheet 2003 Critical Care Medicine Information Sheet 2003 Respiratory Critical Care 1. Measurement of Hypoxemia a. Alveolar-arterial oxygen difference (A-a gradient) i. A-a gradient = PAO 2 - PaO 2 ii. A-a gradient

More information

Chapter 19 Ci C r i cula l t a i t o i n

Chapter 19 Ci C r i cula l t a i t o i n Chapter 19 Circulation A closed system Circulatory System Consisting of Heart, Arteries, Veins, Capillaries, Blood & the Lymphatic system Blood Make up The blood is made up of Plasma and three main types

More information

THE HEART Dr. Ali Ebneshahidi

THE HEART Dr. Ali Ebneshahidi THE HEART Dr. Ali Ebneshahidi Functions is of the heart & blood vessels 1. The heart is an essential pumping organ in the cardiovascular system where the right heart pumps deoxygenated blood (returned

More information

Parkland College RTT 213 Syllabus. Respiratory Therapy VI: Management of the Critically Ill Patient

Parkland College RTT 213 Syllabus. Respiratory Therapy VI: Management of the Critically Ill Patient Parkland College RTT 213 Syllabus Respiratory Therapy VI: Management of the Critically Ill Patient I. Catalog Description RTT 213 Respiratory Therapy VI 3-0-3 Hemodynamic monitoring: cardiovascular anatomy

More information

Determinants of Blood Oxygen Content Instructor s Guide

Determinants of Blood Oxygen Content Instructor s Guide Determinants of Blood Oxygen Content Instructor s Guide Time to Complete This activity will take approximately 75 minutes, but can be shortened depending on how much time the instructor takes to review

More information

Heart and Vascular System Practice Questions

Heart and Vascular System Practice Questions Heart and Vascular System Practice Questions Student: 1. The pulmonary veins are unusual as veins because they are transporting. A. oxygenated blood B. de-oxygenated blood C. high fat blood D. nutrient-rich

More information

Cardiogenic shock: invasive and non-invasive monitoring John T. Parissis Attikon University Hospital Athens, Greece

Cardiogenic shock: invasive and non-invasive monitoring John T. Parissis Attikon University Hospital Athens, Greece Cardiogenic shock: invasive and non-invasive monitoring John T. Parissis Attikon University Hospital Athens, Greece Disclosures: Research grants by Abbott USA and Orion-Pharma as a member of steering committee

More information

Practical class 3 THE HEART

Practical class 3 THE HEART Practical class 3 THE HEART OBJECTIVES By the time you have completed this assignment and any necessary further reading or study you should be able to:- 1. Describe the fibrous pericardium and serous pericardium,

More information

Heart Failure EXERCISES. Ⅰ. True or false questions (mark for true question, mark for false question. If it is false, correct it.

Heart Failure EXERCISES. Ⅰ. True or false questions (mark for true question, mark for false question. If it is false, correct it. Heart Failure EXERCISES Ⅰ. True or false questions (mark for true question, mark for false question. If it is false, correct it. ) 1. Heart rate increase is a kind of economic compensation, which should

More information

Septic Shock: Pharmacologic Agents for Hemodynamic Support. Nathan E Cope, PharmD PGY2 Critical Care Pharmacy Resident

Septic Shock: Pharmacologic Agents for Hemodynamic Support. Nathan E Cope, PharmD PGY2 Critical Care Pharmacy Resident Septic Shock: Pharmacologic Agents for Hemodynamic Support Nathan E Cope, PharmD PGY2 Critical Care Pharmacy Resident Objectives Define septic shock and briefly review pathophysiology Outline receptor

More information

De onderste steen boven. Regionale refereeravond IC 28 november 2012

De onderste steen boven. Regionale refereeravond IC 28 november 2012 De onderste steen boven Regionale refereeravond IC 28 november 2012 HISTORY Male 68 year Hypertension COPD gold IV Alcohol & nicotine abusus HISTORY - hospital admission: AE COPD with pneumonia (ph 7.32,

More information

UNDERSTANDING CONTINUOUS MIXED VENOUS OXYGEN SATURATION (SvO 2 ) MONITORING WITH THE SWAN-GANZ OXIMETRY TD SYSTEM

UNDERSTANDING CONTINUOUS MIXED VENOUS OXYGEN SATURATION (SvO 2 ) MONITORING WITH THE SWAN-GANZ OXIMETRY TD SYSTEM UNDERSTANDING CONTINUOUS MIXED VENOUS OXYGEN SATURATION (SvO 2 ) MONITORING WITH THE SWAN-GANZ OXIMETRY TD SYSTEM UNDERSTANDING CONTINUOUS MIXED VENOUS OXYGEN SATURATION (SvO2) MONITORING WITH THE EDWARDS

More information

Cardiovascular Biomechanics

Cardiovascular Biomechanics Cardiovascular Biomechanics Instructor Robin Shandas, Ph.D. Associate Professor of Pediatric Cardiology and Mechanical Engineering Robin.shandas@colorado.edu (303) 837-2586 (MWF) / (303) 492-0553 (T,Th)

More information

Chapter 16: Circulation

Chapter 16: Circulation Section 1 (The Body s Transport System) Chapter 16: Circulation 7 th Grade Cardiovascular system (the circulatory system) includes the heart, blood vessels, and blood carries needed substances to the cells

More information

Cardiovascular System & Its Diseases. Lecture #4 Heart Failure & Cardiac Arrhythmias

Cardiovascular System & Its Diseases. Lecture #4 Heart Failure & Cardiac Arrhythmias Cardiovascular System & Its Diseases Lecture #4 Heart Failure & Cardiac Arrhythmias Dr. Derek Bowie, Department of Pharmacology & Therapeutics, Room 1317, McIntyre Bldg, McGill University derek.bowie@mcgill.ca

More information

Current strategies for the prehospital care of congestive heart failure

Current strategies for the prehospital care of congestive heart failure Continuing Education OBJECTIVES Current strategies for the prehospital care of congestive heart failure by Bryan E. Bledsoe, DO, FACEP Upon completion of this article, the reader should be able to: Define

More information

Functions of Blood System. Blood Cells

Functions of Blood System. Blood Cells Functions of Blood System Transport: to and from tissue cells Nutrients to cells: amino acids, glucose, vitamins, minerals, lipids (as lipoproteins). Oxygen: by red blood corpuscles (oxyhaemoglobin - 4

More information

Biol 111 Comparative & Human Anatomy Lab 9: Circulatory System of the Cat Spring 2014

Biol 111 Comparative & Human Anatomy Lab 9: Circulatory System of the Cat Spring 2014 Biol 111 Comparative & Human Anatomy Lab 9: Circulatory System of the Cat Spring 2014 Philip J. Bergmann Lab Objectives 1. To learn how blood flows through a dual circuit circulation with lungs. 2. To

More information

TACO vs. TRALI: Recognition, Differentiation, and Investigation of Pulmonary Transfusion Reactions

TACO vs. TRALI: Recognition, Differentiation, and Investigation of Pulmonary Transfusion Reactions TACO vs. TRALI: Recognition, Differentiation, and Investigation of Pulmonary Transfusion Reactions Shealynn Harris, M.D. Assistant Medical Director American Red Cross Blood Services Southern Region Case

More information

Altitude. Thermoregulation & Extreme Environments. The Stress of Altitude. Reduced PO 2. O 2 Transport Cascade. Oxygen loading at altitude:

Altitude. Thermoregulation & Extreme Environments. The Stress of Altitude. Reduced PO 2. O 2 Transport Cascade. Oxygen loading at altitude: Altitude Thermoregulation & Extreme Environments Reduced PO 2 The Stress of Altitude O 2 Transport Cascade Progressive change in environments oxygen pressure & various body areas Oxygen loading at altitude:

More information

RACE I Rapid Assessment by Cardiac Echo. Intensive Care Training Program Radboud University Medical Centre NIjmegen

RACE I Rapid Assessment by Cardiac Echo. Intensive Care Training Program Radboud University Medical Centre NIjmegen RACE I Rapid Assessment by Cardiac Echo Intensive Care Training Program Radboud University Medical Centre NIjmegen RACE Goal-directed study with specific questions Excludes Doppler ultrasound Perform 50

More information

Pulmonary Artery Hypertension

Pulmonary Artery Hypertension Pulmonary Artery Hypertension Janet M. Pinson, RN, MSN, ACNP Maureen P. Flattery, RN, MS, ANP Virginia Commonwealth University Health System Richmond, VA Pulmonary artery hypertension (PAH) is defined

More information

Direct Arterial Blood Pressure Monitoring Angel M. Rivera CVT, VTS (ECC) Animal Emergency Center Glendale, WI March 2003

Direct Arterial Blood Pressure Monitoring Angel M. Rivera CVT, VTS (ECC) Animal Emergency Center Glendale, WI March 2003 Direct Arterial Blood Pressure Monitoring Angel M. Rivera CVT, VTS (ECC) Animal Emergency Center Glendale, WI March 2003 Introduction Direct measurement of arterial blood pressure is obtained via a peripheral

More information

The heart then repolarises (or refills) in time for the next stimulus and contraction.

The heart then repolarises (or refills) in time for the next stimulus and contraction. Atrial Fibrillation BRIEFLY, HOW DOES THE HEART PUMP? The heart has four chambers. The upper chambers are called atria. One chamber is called an atrium, and the lower chambers are called ventricles. In

More information

Oxygen Transport Calculations M. L. Cheatham, MD, FACS, FCCM

Oxygen Transport Calculations M. L. Cheatham, MD, FACS, FCCM OXYGEN TRANSPORT CALCULATIONS Supply Demand Michael L. Cheatham, MD, FACS, FCCM Director, Surgical Intensive Care Units Orlando Regional Medical Center Orlando, Florida IN REVIEW There are four primary

More information

Inpatient Heart Failure Management: Risks & Benefits

Inpatient Heart Failure Management: Risks & Benefits Inpatient Heart Failure Management: Risks & Benefits Dr. Kenneth L. Baughman Professor of Medicine Harvard Medical School Director, Advanced Heart Disease Section Brigham & Women's Hospital Harvard Medical

More information

12.1: The Function of Circulation page 478

12.1: The Function of Circulation page 478 12.1: The Function of Circulation page 478 Key Terms: Circulatory system, heart, blood vessel, blood, open circulatory system, closed circulatory system, pulmonary artery, pulmonary vein, aorta, atrioventricular

More information

Questions FOETAL CIRCULATION ANAESTHESIA TUTORIAL OF THE WEEK 91 18 TH MAY 2008

Questions FOETAL CIRCULATION ANAESTHESIA TUTORIAL OF THE WEEK 91 18 TH MAY 2008 FOETAL CIRCULATION ANAESTHESIA TUTORIAL OF THE WEEK 91 18 TH MAY 2008 Dr. S. Mathieu, Specialist Registrar in Anaesthesia Dr. D. J. Dalgleish, Consultant Anaesthetist Royal Bournemouth and Christchurch

More information

Foundations of Invasive Hemodynamics

Foundations of Invasive Hemodynamics Foundations of Invasive Hemodynamics Contact Hours: 2.0 First Published: April 17, 2013 Course Expires: September 30, 2016 Copyright 2013 by RN.com All Rights Reserved Reproduction and distribution of

More information

Waveforms. INTRODUCTION TO THE HEARTWARE WAVEFORM ipad APP

Waveforms. INTRODUCTION TO THE HEARTWARE WAVEFORM ipad APP Waveforms INTRODUCTION TO THE HEARTWARE WAVEFORM ipad APP WELCOME Did you ever wonder how you can use the HeartWare System waveforms? Use this app to find out. The HeartWare Waveform App will help you

More information

2161-1 - Page 1. Name: 1) Choose the disease that is most closely related to the given phrase. Questions 10 and 11 refer to the following:

2161-1 - Page 1. Name: 1) Choose the disease that is most closely related to the given phrase. Questions 10 and 11 refer to the following: Name: 2161-1 - Page 1 1) Choose the disease that is most closely related to the given phrase. a disease of the bone marrow characterized by uncontrolled production of white blood cells A) meningitis B)

More information

The Sepsis Puzzle: Identification, Monitoring and Early Goal Directed Therapy

The Sepsis Puzzle: Identification, Monitoring and Early Goal Directed Therapy The Sepsis Puzzle: Identification, Monitoring and Early Goal Directed Therapy Cindy Goodrich RN, MS, CCRN Content Description Sepsis is caused by widespread tissue injury and systemic inflammation resulting

More information

Tired, Aching Legs? Swollen Ankles? Varicose Veins? An informative guide for patients

Tired, Aching Legs? Swollen Ankles? Varicose Veins? An informative guide for patients Tired, Aching Legs? Swollen Ankles? Varicose Veins? An informative guide for patients Are You at Risk? Leg problems are widespread throughout the world, but what most people don t know is that approximately

More information

Physiologic Basis for Fetal Heart Rate Monitoring

Physiologic Basis for Fetal Heart Rate Monitoring Physiologic Basis for Fetal Heart Rate Monitoring Physiologic Basis for Fetal Heart Rate Monitoring The objective of intrapartum fetal heart rate (FHR) monitoring is to prevent fetal injury that might

More information

Renal Blood Flow GFR. Glomerulus Fluid Flow and Forces. Renal Blood Flow (cont d)

Renal Blood Flow GFR. Glomerulus Fluid Flow and Forces. Renal Blood Flow (cont d) GFR Glomerular filtration rate: about 120 ml /minute (180 L a day) Decreases with age (about 10 ml/min for each decade over 40) GFR = Sum of the filtration of two million glomeruli Each glomerulus probably

More information

Distance Learning Program Anatomy of the Human Heart/Pig Heart Dissection Middle School/ High School

Distance Learning Program Anatomy of the Human Heart/Pig Heart Dissection Middle School/ High School Distance Learning Program Anatomy of the Human Heart/Pig Heart Dissection Middle School/ High School This guide is for middle and high school students participating in AIMS Anatomy of the Human Heart and

More information

Universitätsklinik für Kardiologie. Test. Thomas M. Suter Akute Herzinsuffizienz Diagnostik und Therapie thomas.suter@insel.ch 1

Universitätsklinik für Kardiologie. Test. Thomas M. Suter Akute Herzinsuffizienz Diagnostik und Therapie thomas.suter@insel.ch 1 Test Thomas M. Suter Akute Herzinsuffizienz Diagnostik und Therapie thomas.suter@insel.ch 1 Heart Failure - Definition European Heart Journal (2008) 29, 2388 2442 Akute Herzinsuffizienz Diagnostik und

More information

CHAPTER 2: BLOOD CIRCULATION AND TRANSPORT

CHAPTER 2: BLOOD CIRCULATION AND TRANSPORT CHAPTER 2: BLOOD CIRCULATION AND TRANSPORT BLOOD CIRCULATION AND TRANSPORT HUMAN BEING PLANTS Function of heart Wilting Structure of heart Blood vessels: characteristics and functions Transpiration: function

More information

Chapter 20: The Cardiovascular System: The Heart

Chapter 20: The Cardiovascular System: The Heart Chapter 20: The Cardiovascular System: The Heart Chapter Objectives ANATOMY OF THE HEART 1. Describe the location and orientation of the heart within the thorax and mediastinal cavity. 2. Describe the

More information

Anaesthesia and Heart Failure

Anaesthesia and Heart Failure Anaesthesia and Heart Failure Andrew Baldock, Specialist Registrar, Southampton University Hospitals NHS Trust E mail: ajbaldock@doctors.org.uk Self-assessment The following true/false questions may be

More information

Blood Vessels and Circulation

Blood Vessels and Circulation 13 Blood Vessels and Circulation FOCUS: Blood flows from the heart through the arterial blood vessels to capillaries, and from capillaries back to the heart through veins. The pulmonary circulation transports

More information

ANNE ARUNDEL MEDICAL CENTER CRITICAL CARE MEDICATION MANUAL DEPARTMENT OF NURSING AND PHARMACY. Guidelines for Use of Intravenous Isoproterenol

ANNE ARUNDEL MEDICAL CENTER CRITICAL CARE MEDICATION MANUAL DEPARTMENT OF NURSING AND PHARMACY. Guidelines for Use of Intravenous Isoproterenol ANNE ARUNDEL MEDICAL CENTER CRITICAL CARE MEDICATION MANUAL DEPARTMENT OF NURSING AND PHARMACY Guidelines for Use of Intravenous Isoproterenol Major Indications Status Asthmaticus As a last resort for

More information

2.2.1 Pressure and flow rate along a pipe: a few fundamental concepts

2.2.1 Pressure and flow rate along a pipe: a few fundamental concepts 1.1 INTRODUCTION Single-cell organisms live in direct contact with the environment from where they derive nutrients and into where they dispose of their waste. For living systems containing multiple cells,

More information

Low-gradient severe aortic stenosis with normal LVEF: A disturbing clinical entity

Low-gradient severe aortic stenosis with normal LVEF: A disturbing clinical entity Low-gradient severe aortic stenosis with normal LVEF: A disturbing clinical entity Jean-Luc MONIN, MD, PhD Henri Mondor University Hospital Créteil, FRANCE Disclosures : None 77-year-old woman, mild dyspnea

More information

Cardiovascular System

Cardiovascular System Topics to Review Diffusion Skeletal muscle fiber (cell) anatomy Membrane potential and action potentials Action potential propagation Excitation-contraction coupling in skeletal muscle skeletal muscle

More information

Management of the Patient with Aortic Stenosis undergoing Non-cardiac Surgery

Management of the Patient with Aortic Stenosis undergoing Non-cardiac Surgery Management of the Patient with Aortic Stenosis undergoing Non-cardiac Surgery Srinivasan Rajagopal M.D. Assistant Professor Division of Cardiothoracic Anesthesia Objectives Describe the pathophysiology

More information

How To Teach An Integrated Ultrasound

How To Teach An Integrated Ultrasound University of South Carolina School of Medicine Integrated Ultrasound Curriculum iusc Richard Hoppmann The Integrated Ultrasound Curriculum Initiated 2006 First (M1) and Second (M2) Year Medical Students

More information

37 2 Blood and the Lymphatic System Slide 1 of 34

37 2 Blood and the Lymphatic System Slide 1 of 34 1 of 34 Blood is a connective tissue that contains both dissolved substances and specialized cells. 2 of 34 The functions of blood include: collecting oxygen from the lungs, nutrients from the digestive

More information

Page 1. Introduction The blood vessels of the body form a closed delivery system that begins and ends at the heart.

Page 1. Introduction The blood vessels of the body form a closed delivery system that begins and ends at the heart. Anatomy Review: Blood Vessel Structure & Function Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Introduction The blood vessels

More information

HEART FAILURE ROBERT SOUFER, M.D.

HEART FAILURE ROBERT SOUFER, M.D. CHAPTER 14 HEART FAILURE ROBERT SOUFER, M.D. The heart s primary function is to pump blood to all parts of the body, bringing nutrients and oxygen to the tissues and removing waste products. When the body

More information

2/20/2015. Cardiac Evaluation of Potential Solid Organ Transplant Recipients. Issues Specific to Transplantation. Kidney Transplantation.

2/20/2015. Cardiac Evaluation of Potential Solid Organ Transplant Recipients. Issues Specific to Transplantation. Kidney Transplantation. DISCLOSURES I have no relevant financial relationships to disclose. Cardiac Evaluation of Potential Solid Organ Transplant Recipients Michele Hamilton, MD Director, Heart Failure Program Cedars Sinai Heart

More information

Left to Right Shunts and their Calculation. Ghada El Shahed, MD

Left to Right Shunts and their Calculation. Ghada El Shahed, MD Left to Right Shunts and their Calculation Ghada El Shahed, MD Professor of Cardiology Ain Shams University Flow through systemic & pulmonary circulations is normally balanced and equal. Two circulations

More information

The Body s Transport System

The Body s Transport System Circulation Name Date Class The Body s Transport System This section describes how the heart, blood vessels, and blood work together to carry materials throughout the body. Use Target Reading Skills As

More information

Neonatal Reference Guide

Neonatal Reference Guide Operated by REACH Air Medical Services Assessment Heart Rate (beats/min.) Age Rate

More information

3100B Clinical Training Program. 3100B HFOV VIASYS Healthcare

3100B Clinical Training Program. 3100B HFOV VIASYS Healthcare 3100B Clinical Training Program 3100B HFOV VIASYS Healthcare HFOV at Alveolar Level Nieman,, G, SUNY 1999 Who DO We Treat? Only Pathology studied to date has been ARDS Questions about management of adults

More information

Our Human Body On-site student activities Years 5 6

Our Human Body On-site student activities Years 5 6 Our Human Body On-site student activities Years 5 6 Our Human Body On-site student activities: Years 5-6 Student activity (and record) sheets have been developed with alternative themes for students to

More information