After-pulse-discarding in single-photon detection to reduce bit errors in quantum key distribution

Size: px
Start display at page:

Download "After-pulse-discarding in single-photon detection to reduce bit errors in quantum key distribution"

Transcription

1 After-pulse-discarding in single-photon detection to reduce bit errors in quantum key distribution A. Yoshizawa, R. Kaji and H. Tsuchida National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1, Umezono, Tsukuba-shi, Japan Abstract: We demonstrate fiber-optic quantum key distribution (QKD) at 1 nm using single-photon detectors operating at MHz. Such highspeed single-photon detectors are essential to the realization of efficient QKD. However, after-pulses increase bit errors. In the demonstration, we discard after-pulses by measuring time intervals of detection events. For a fiber length of 1. km, we have achieved a key rate of 17 khz with an error of 2%. 23 Optical Society of America OCIS codes: (27.27) Quantum optics; (6.6) Fiber optics and optical communications References and links 1. N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74, (22). 2. P. A. Hiskett, G. Bonfrate, G. S. Buller and P. D. Townsend, Eighty kilometer transmission experiment using an InGaAs/InP SPAD-based quantum cryptography receiver operating at 1. µm, J. Mod. Opt. 48, (21). 3. P. A. Hiskett, J. M. Smith, G. S. Buller and P. D. Townsend, Low-noise single-photon detection at wavelength 1. µm, Electron. Lett. 37, (21). 4. M. Bourennane, A. Karlsson, J. P. Ciscar and M. Mathes, Single-photon counters in the telecommunication wavelength region of 1 nm for quantum information processing, J. Mod. Opt. 48, (21).. D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity and T. Wall, Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs, J. Mod. Opt. 48, (21). 6. A. Yoshizawa, R. Kaji and H. Tsuchida, A method of discarding after-pulses in single-photon detection for quantum key distribution, Jpn. J. Appl. Phys. 41, (22). 7. D. Stuchi, N. Gisin, O. Guinnard, G. Ribordy and H. Zbinden, Quantum key distribution over 67 km with a plug & play system, New J. Phys. 4, (22). 8. A. Yoshizawa, R. Kaji and H. Tsuchida, Quantum efficiency evaluation method for gated mode single photon detector, Electron. Lett. 38, (22). 9. C. H. Bennett, Quantum cryptography using any two nonorthogonal states, Phys. Rev. Lett. 68, (1992). 1. D. S. Bethune and W. P. Risk, An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light, IEEE J. Quantum Electron. 36, (2). 11. C. H. Bennett and G. Brassard, Quantum Cryptography: Public Key Distribution and Coin Tossing, in Proc. of IEEE Inter. Conf. on Computers and Signal Processing, Bangalore, India (Institute of Electrical and Electronics Engineers, New York, 1984), pp Introduction Quantum key distribution (QKD) is a technique to share a private key of a random binary sequence between two remote parties, sender and receiver (called Alice and Bob, respectively) by exchanging qubits described by single photons or weak coherent pulses, in order to implement a secure one-time-pad encryption and decryption (for a good review, see [1]). Since any unknown qubit state cannot be perfectly copied, an eavesdropper (Eve) (C) 23 OSA 2 June 23 / Vol. 11, No. 11 / OPTICS EXPRESS 133

2 disturbs the transmitted qubits when extracting information. Its security relies on the laws of quantum mechanics. If a single-mode fiber is used as a quantum channel, the most desirable wavelength for low-loss transmission is 1 nm. Recently, 8-km fiber-optic QKD experiments were reported at 1 nm [2]. The performance of indium-gallium-arsenide (InGaAs) avalanche photodiodes (APDs) is widely investigated for single-photon detection at 1 nm. A common method is referred to as the gated mode, in which the APD is pulsebiased above its breakdown [3-]. During the gate-on time, a photon-induced avalanche can grow into a macroscopic pulse. However, a thermally excited carrier also triggers an avalanche, giving a dark count in detection. Furthermore, carriers are trapped every avalanche and if one emits during the next gate-on times, it can trigger a new avalanche. For 1 nm, this avalanche (after-pulse) is frequently found in detection if the repetition frequency exceeds 1 MHz, resulting in a significant increase of bit errors in QKD [-6]. However, high-speed single-photon detectors are essential to the realization of efficient QKD. Since only traps with an emission lifetime comparable to or longer than a reciprocal of the repetition frequency generate after-pulses, introducing a dead time in detection, during which, following an avalanche, no gates are applied to the APD, is an effective way to reduce bit errors in QKD [7]. In this paper, we demonstrate discarding of after-pulses by measuring time intervals of detection events to reduce bit errors in QKD. In the demonstration, single-photon detectors operating at a repetition frequency of MHz are used. Furthermore, Alice is connected to Bob with two single-mode fibers. One is used as a quantum channel while the other for clock sharing. Such a system removes bit errors related to backscattered photons from the clock pulse. Here, we have achieved a key rate of 17 khz with an error of 2% for a fiber length of 1. km. 2. Single-photon detectors The evaluation method for gated-mode single-photon detectors described here makes it possible to measure the quantum efficiency and the after-pulse probabilities per gate from the same data [8]. Here, only important parts are summarized. To obtain the probability distribution, we measure time intervals of detection events. Let p interval ( t) denote the probability of finding t among those measured. Also, let p after-pulse ( t) denote the (conditional) probability that an after-pulse is observed after t following a previous avalanche. Then, one finds that for each interval t n = n/v with n = 1,2,3 p interval ( t n ) = c( t n )e ( n 1)ηµ [(1 e ηµ ) + p after pulse ( t n )] (1) Here, v is a repetition frequency; η is a quantum efficiency and µ is an average of photons per incoming pulse. The probability of finding no after-pulses within an interval of t n can be written as (n = 2,3,4 ) n 1 c( t n ) =Π k=1 [1 p after pulse ( t n )]. (2) For long intervals such that p after-pulse ( t n ) ~, c( t n ) becomes n-independent, enabling us to determine η from the slope of lnp interval ( t n ). Here, ln stands for natural logarithm. Furthermore, considering that c( t 1 ) = 1, p after-pulse ( t n ) is calculated by substituting the estimated value of η into Eq. (1). In the following, two single-photon detectors (D and D1) operating at v = MHz are evaluated. Figure 1 shows lnp interval ( t n ) of D measured at µ =.1. After-pulses are observed as a nonlinear decrease of the measured data for t n < 1 µs. However, for longer intervals, lnp interval ( t n ) decreases linearly, yielding a quantum efficiency of η = 13%. Figure 2 shows lnp interval ( t n ) of D1 measured at the same value of µ. Figure 3 shows the calculated p after-pulse ( t n ), where solid and open circles correspond to those of D (C) 23 OSA 2 June 23 / Vol. 11, No. 11 / OPTICS EXPRESS 134

3 and D1, respectively. Although they have different probabilities for t n < 4 µs, each afterpulse is mostly found within 1 µs following a previous avalanche. Table 1 summarizes operating conditions and evaluation results of D and D1. Here, d thermal and d after-pulse are darkcount probabilities per gate resulting from thermally excited carriers and after-pulses, respectively. The former is evaluated after excluding after-pulses by measuring time intervals of dark counts and discarding those with t n < 1 µs (= t after-puse ). The remaining dark counts are found with a probability of d thermal exp(-d thermal v t after-pulse ), which becomes nearly equal to d thermal if d thermal v t after-pulse << 1. Then, the difference between the dark-count probabilities per gate with and without discarding after-pulses coincides with d after-pulse Non-linear decrease - In p interval η = 13% Interval t (µs) n Fig. 1. ln p interval ( t n ) of D Non-linear decrease - In p interval η = 11% Interval t (µs) n Fig. 2. ln p interval ( t n ) of D1. (C) 23 OSA 2 June 23 / Vol. 11, No. 11 / OPTICS EXPRESS 13

4 Table 1. Operating conditions and evaluation results of single-photon detectors D D1 η 13% 11% d thermal d after-pulse Gate time 1.6 ns Temperature 243 K.3.2 D D1.2 p after-pulse Interval t (µs) n Fig. 3. p after-pulse versus t n. 3. Quantum key distribution 3.1 Quantum channel Figure 4 shows a schematic diagram of the system employed for the QKD demonstration (Bennett s two-coherent-protocol: B92 [9]). Alice is connected to Bob with two 1.-km dispersion-shifted single-mode fibers (DSF1 and DSF2) with a loss of.21 db/km. DSF1 is a quantum channel while DSF2 is used for clock sharing. Here, only the system related to the quantum channel is explained. A gain-switched laser diode (LD1) produces a sequence of light pulses at a repetition frequency of MHz, each having a width of ps with a bandwidth of 1 nm centered at 1 nm. With a polarization controller (PC), the polarization state is aligned for transmission through a polarizing beam splitter (PBS1). With a half-wave plate (HWP) and PBS2, the pulse is divided into signal and reference pulses. After transmission through a quarter-wave plate (QWP) and reflection by a mirror (M), the reference pulse leaves Bob, going to Alice ahead of the signal pulse. With a fiber-optic delay line (DL) and a Faraday rotator mirror (FRM), the signal pulse is delayed for 1 ns compared with the reference pulse. Due to birefringence fluctuations in DSF1, both polarization states become unknown when arriving at Alice. With a polarization-independent phase modulator (PM) [1], Alice modulates the signal pulse at random but evenly between and π while letting the reference pulse unchanged. Alice s FRM guarantees that Bob receives the signal and reference pulses with polarization states linear but orthogonal to their initial states [7, 1]. A pseudo-random number generator (PRNG) outputs a voltage pulse with a width of ns, which is applied to PM only when the bit value is 1. Alice returns the signal and reference pulses to Bob after attenuating those pulses with an attenuator (AT) such that the signal pulse has an average of. photons. At Bob, the reference pulse is delayed compared with the (C) 23 OSA 2 June 23 / Vol. 11, No. 11 / OPTICS EXPRESS 136

5 signal pulse, both re-arriving at PBS2 simultaneously with identical intensity. The recombined pulse is horizontally or vertically polarized, which only reflects Alice s phase choice. The private key can be established by interpreting single-photon detectors D and D1 as and 1, respectively 3.2 Clock sharing Figure 4 also shows how to share the clock between Alice and Bob. A gain-switched laser diode (LD2) produces a sequence of light pulses at a repetition frequency of 1 MHz, each having a width of ps with a bandwidth of 1 nm centered at 1 nm. To synchronize LD1 with LD2, a two-channel synthesized function generator (SFG) is used, which also triggers a delay generator (DG) whose outputs become timing signals for gated-mode operation of D and D1. Alice detects clock pulses sent by Bob via DSF2 with a conventional avalanche photodiode (C-APD), whose output pulse is converted into a square wave with a frequency of 1 MHz, which becomes a reference signal of a frequency synthesizer (FS). A sinusoidal wave with a frequency of 1 MHz is generated from FS, and is applied as a time-base signal to an arbitrary wave function generator, which is used as PRNG. Since the signal/reference pulse and the clock pulse are transmitted through separate fibers, the difference in temperature between DSF1 and DSF2 will cause the relative temporal walk-off between those pulses. However, such a walk-off is estimated to be ~.6 ns/k [2], and is not a significant problem because it is much smaller than the width of the voltage pulse applied to PM (= ns). Compared with the signal and reference pulses, the clock pulse is strong enough to produce a large number of backscattered photons. The presented system prevents those photons from entering single-photon detectors. Thus, only half of backscattered photons from the signal and reference pulses (much weaker than the clock pulse) become bit errors in QKD. DL FRM PBS2 Bob DSF1 Alice M QWP HWP AT PM PBS1 Circulator D1 DG D LD2 SFG DSF2 C-APD FS FRM PRNG PC LD1 Fig. 4. Experimental setup for quantum key distribution. LD1 and LD2: gain-switched laser diodes, PC: polarization controller, PBS1 and PBS2: polarizing beam splitters, HWP: halfwave plate, QWP: quarter-wave plate, M: mirror, DL: delay line, FRM: Faraday rotator mirror, D and D1: single-photon detectors, SFG: synthesized function generator, DG: delay generator, PM: phase modulator, C-APD: conventional avalanche photodiode, PRNG: pseudo-random number generator, AT: attenuator, DSF1 and DSF2: dispersion-shifted single-mode fibers, FS: frequency synthesizer. 4. Results and discussion Figure shows the quantum bit-error rate (QBER) of D after discarding detection events with intervals t n < t discard. Solid circles are the measured results while open circles are corresponding key rates. For t discard < µs, after-pulses are effectively discarded, leading to a (C) 23 OSA 2 June 23 / Vol. 11, No. 11 / OPTICS EXPRESS 137

6 significant decrease in QBER. However, if t discard exceeds µs, the QBER slowly decreases and then becomes t discard -independent. Meanwhile, the key rate shows an exponential decrease such that r = kv exp( kv t discard ). (3) Here, k = ηµexp[-(αl+β)/1]. Note that η is a quantum efficiency of Bob s single-photon detector (D) whereas µ is an average of photons of the signal pulse measured by Alice. α is a fiber loss in db/km; L is a fiber length (km) and β is an internal loss (db) of Bob s system. In the demonstration, η = 13%, µ =., α =.21, L = 1. and β = 3. A curve in Fig. is obtained by substituting those parameters into Eq. (3). Figure 6 shows the measured results corresponding to D1. A curve in this figure is also obtained by substituting the same parameters as D except that η = 11% into Eq. (3). Approximately, the QBER can be written as 1 D µs Exponential Quantum bit-error rate (%) 1 1 Key rate (khz) t (µs) discard Fig.. Measured and calculated quantum bit-error rates (solid circles and open squares, respectively) and corresponding key rates (open circles) of D. (C) 23 OSA 2 June 23 / Vol. 11, No. 11 / OPTICS EXPRESS 138

7 1 D1 1 Quantum bit-error rate (%) 1 µs Exponential 1 Key rate (khz) t (µs) discard Fig. 6. Measured and calculated quantum bit-error rates (solid circles and open squares, respectively) and corresponding key rates (open circles) of D1. e qber ~ d thermal + 1 1/k p after pulse ( t discard + t n ) + e others. (4) 2k 2 n=1 In this equation, the first and second terms on the right-hand side express contributions to bit errors of thermally excited carriers and after-pulses, respectively. In the following calculation, we assume that p after-pulse ~ for t n > 1 µs whereas others are presented as solid and open circles in Fig. 3. The third term on the right-hand side of this equation is the QBER induced by backscattered photons from the signal and reference pulses in the quantum channel, internal reflections at Bob s system and other imperfections of optical and electrical components. In the demonstration, e others ~ 1% and is independent of t discard. Open squares in Figs. and 6 are those calculated with Eq. (4), agreeing with the results obtained in QKD experiments (solid circles). Since the key rate decreases with t discard, we have to properly determine t discard for D and D1. For example, if we choose t discard = 7.6 µs for D and µs for D1, respectively, the total key rate becomes 17 khz with an error of 2%. It is well known that Benett-Brassard-84 protocol (BB84) [11] is the most popular protocol and is more secure than the demonstrated B92 protocol. However, since the systems of two protocols are so similar, the demonstrated discarding method seems to be effective for both protocols to reduce bit errors in QKD. We are planning to increase the repetition frequency of the single-photon detectors for realizing more efficient QKD although afterpulses are more often found in detection. In the demonstration, the sender is connected to the receiver with two single-mode fibers. One is a quantum channel and the other is used for carrying strong clock pulses. In this case, it is important to consider what new strategies could be applied by Eve and see how those strategies influence the security of the QKD. Studying such a security problem will be necessary in the future.. Summary We have demonstrated fiber-optic quantum key distribution at 1 nm using single-photon detectors operating at MHz. After-pulses are discarded by measuring time intervals of detection events, leading to a significant reduction of the quantum bit-error rate. For a fiber length of 1. km, we have achieved a key rate of 17 khz with an error of 2%. (C) 23 OSA 2 June 23 / Vol. 11, No. 11 / OPTICS EXPRESS 139

A High Speed Quantum Communication Testbed

A High Speed Quantum Communication Testbed A High Speed Communication Testbed Carl J. Williams, Xiao Tang, Mikko Hiekkero, Julie Rouzaud, Richang Lu, Andreas Goedecke, Alan Migdall, Alan Mink, Anastase Nakassis, Leticia Pibida, Jesse Wen a, Edward

More information

Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems

Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems Thiago Ferreira da Silva, 1,2,* Guilherme B. Xavier, 3,4,5 Guilherme P. Temporão, 1 and Jean Pierre

More information

A Probabilistic Quantum Key Transfer Protocol

A Probabilistic Quantum Key Transfer Protocol A Probabilistic Quantum Key Transfer Protocol Abhishek Parakh Nebraska University Center for Information Assurance University of Nebraska at Omaha Omaha, NE 6818 Email: aparakh@unomaha.edu August 9, 01

More information

Simulation and Best Design of an Optical Single Channel in Optical Communication Network

Simulation and Best Design of an Optical Single Channel in Optical Communication Network International Arab Journal of e-technology, Vol., No., June 11 91 Simulation and Best Design of an Optical Single Channel in Optical Communication Network Salah Alabady Computer Engineering Department,

More information

A More Efficient Way to De-shelve 137 Ba +

A More Efficient Way to De-shelve 137 Ba + A More Efficient Way to De-shelve 137 Ba + Abstract: Andrea Katz Trinity University UW REU 2010 In order to increase the efficiency and reliability of de-shelving barium ions, an infrared laser beam was

More information

Proposed experiment to test the non-locality hypothesis in transient light-interference phenomena

Proposed experiment to test the non-locality hypothesis in transient light-interference phenomena Proposed experiment to test the non-locality hypothesis in transient light-interference phenomena Masanori Sato Honda Electronics Co., Ltd., 20 Oyamazuka, Oiwa-cho, Toyohashi, Aichi 441-3193, Japan Abstract

More information

Four Wave Mixing in Closely Spaced DWDM Optical Channels

Four Wave Mixing in Closely Spaced DWDM Optical Channels 544 VOL. 1, NO. 2, AUGUST 2006 Four Wave Mixing in Closely Spaced DWDM Optical Channels Moncef Tayahi *, Sivakumar Lanka, and Banmali Rawat Advanced Photonics Research lab, Department of Electrical Engineering

More information

The New Approach of Quantum Cryptography in Network Security

The New Approach of Quantum Cryptography in Network Security The New Approach of Quantum Cryptography in Network Security Avanindra Kumar Lal 1, Anju Rani 2, Dr. Shalini Sharma 3 (Avanindra kumar) Abstract There are multiple encryption techniques at present time

More information

Incoherent beam combining using stimulated Brillouin scattering in multimode fibers

Incoherent beam combining using stimulated Brillouin scattering in multimode fibers Incoherent beam combining using stimulated Brillouin scattering in multimode fibers Timothy H. Russell and Won B. Roh Air Force Institute of Technology, Wright-Patterson AFB, Ohio 45433 timothy.russell@afit.edu;

More information

Module 13 : Measurements on Fiber Optic Systems

Module 13 : Measurements on Fiber Optic Systems Module 13 : Measurements on Fiber Optic Systems Lecture : Measurements on Fiber Optic Systems Objectives In this lecture you will learn the following Measurements on Fiber Optic Systems Attenuation (Loss)

More information

Designing Fiber Optic Systems David Strachan

Designing Fiber Optic Systems David Strachan Designing Fiber Optic Systems David Strachan Everyone knows that fiber optics can carry a huge amount of data. There are more benefits to using fiber optics in broadcast applications than you might realize.

More information

Avalanche Photodiodes: A User's Guide

Avalanche Photodiodes: A User's Guide !"#$%& Abstract Avalanche Photodiodes: A User's Guide Avalanche photodiode detectors have and will continue to be used in many diverse applications such as laser range finders and photon correlation studies.

More information

Quantum Key Distribution as a Next-Generation Cryptographic Protocol. Andrew Campbell

Quantum Key Distribution as a Next-Generation Cryptographic Protocol. Andrew Campbell Quantum Key Distribution as a Next-Generation Cryptographic Protocol Andrew Campbell Abstract Promising advances in the field of quantum computing indicate a growing threat to cryptographic protocols based

More information

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus Please do not remove this manual from from the lab. It is available at www.cm.ph.bham.ac.uk/y2lab Optics Introduction Optical fibres are widely used for transmitting data at high speeds. In this experiment,

More information

24 th IEEE Annual Computer Communications Workshop (CCW)

24 th IEEE Annual Computer Communications Workshop (CCW) 24 th IEEE Annual Computer Communications Workshop (CCW) Exploration of Quantum Cryptography in Network Security Presented by Mehrdad S. Sharbaf Sharbaf & Associates Loyola Marymount University California

More information

arxiv:1403.3122v1 [quant-ph] 12 Mar 2014

arxiv:1403.3122v1 [quant-ph] 12 Mar 2014 Relativistic Quantum Cryptography I. V. Radchenko and K. S. Kravtsov A.. Prokhorov General Physics Institute RAS, oscow, Russia S. P. Kulik Faculty of Physics, oscow State University, oscow, Russia S.

More information

AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz

AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz AN1200.04 Application Note: FCC Regulations for ISM Band Devices: Copyright Semtech 2006 1 of 15 www.semtech.com 1 Table of Contents 1 Table of Contents...2 1.1 Index of Figures...2 1.2 Index of Tables...2

More information

Progress Toward Quantum Communications Networks: Opportunities and Challenges

Progress Toward Quantum Communications Networks: Opportunities and Challenges Progress Toward Quantum Communications Networks: Opportunities and Challenges Robert J. Runser *a,b, Thomas Chapuran a, Paul Toliver a, Nicholas A. Peters a, Matthew S. Goodman a, Jon T. Kosloski b, Nnake

More information

Experiment 5. Lasers and laser mode structure

Experiment 5. Lasers and laser mode structure Northeastern University, PHYS5318 Spring 2014, 1 1. Introduction Experiment 5. Lasers and laser mode structure The laser is a very important optical tool that has found widespread use in science and industry,

More information

Single Photon Counting Module COUNT -Series

Single Photon Counting Module COUNT -Series Description Laser Components COUNT series of s has been developed to offer a unique combination of high photon detection efficiency, wide dynamic range and ease of use for photon counting applications.

More information

Evolution and Prospect of Single-Photon

Evolution and Prospect of Single-Photon S. Cova, M. Ghioni, A. Lotito, F. Zappa Evolution and Prospect of Single-Photon Avalanche Diodes and Quenching Circuits Politecnico di Milano, Dip. Elettronica e Informazione, Milano, Italy Outline Introduction

More information

Modeling and Performance Analysis of DWDM Based 100 Gbps Low Power Inter-satellite Optical Wireless Communication (LP-IsOWC) System

Modeling and Performance Analysis of DWDM Based 100 Gbps Low Power Inter-satellite Optical Wireless Communication (LP-IsOWC) System ISSN(Print): 2377-0538 ISSN(Online): 2377-0546 DOI: 10.15764/STSP.2015.01001 Volume 2, Number 1, January 2015 SOP TRANSACTIONS ON SIGNAL PROCESSING Modeling and Performance Analysis of DWDM Based 100 Gbps

More information

A Laser Scanner Chip Set for Accurate Perception Systems

A Laser Scanner Chip Set for Accurate Perception Systems A Laser Scanner Chip Set for Accurate Perception Systems 313 A Laser Scanner Chip Set for Accurate Perception Systems S. Kurtti, J.-P. Jansson, J. Kostamovaara, University of Oulu Abstract This paper presents

More information

High-speed transparent switch via frequency upconversion

High-speed transparent switch via frequency upconversion High-speed transparent switch via frequency upconversion Aaron P. VanDevender and Paul G. Kwiat Department of Physics, University of Illinois at Urbana-Champaign 1110 W Green St., Urbana, IL, 61801 vandvndr@uiuc.edu

More information

FIBER OPTIC COMMUNICATIONS. Optical Fibers

FIBER OPTIC COMMUNICATIONS. Optical Fibers FIBER OPTIC COMMUNICATIONS Optical Fibers Fiber optics (optical fibers) are long, thin strands of very pure glass about the size of a human hair. They are arranged in bundles called optical cables and

More information

A Guide to Acousto-Optic Modulators

A Guide to Acousto-Optic Modulators A Guide to Acousto-Optic Modulators D. J. McCarron December 7, 2007 1 Introduction Acousto-optic modulators (AOMs) are useful devices which allow the frequency, intensity and direction of a laser beam

More information

Introduction to Optical Link Design

Introduction to Optical Link Design University of Cyprus Πανεπιστήµιο Κύπρου 1 Introduction to Optical Link Design Stavros Iezekiel Department of Electrical and Computer Engineering University of Cyprus HMY 445 Lecture 08 Fall Semester 2014

More information

École Supérieure d'optique

École Supérieure d'optique Conference on Education and Training in Optics & Photonics Marseille, 27 th October 2005 An Optical Time Domain Reflectometry Set-Up for Laboratory Work at École Supérieure d'optique École Supérieure d'optique

More information

Improving Chromatic Dispersion and PMD Measurement Accuracy

Improving Chromatic Dispersion and PMD Measurement Accuracy Improving Chromatic Dispersion and PMD Measurement Accuracy White Paper Michael Kelly Agilent Technologies Signal transmission over optical fibers relies on preserving the waveform from transmitter to

More information

Simulation of Gaussian Pulses Propagation Through Single Mode Optical Fiber Using MATLAB . MATLAB

Simulation of Gaussian Pulses Propagation Through Single Mode Optical Fiber Using MATLAB . MATLAB Iraqi Journal of Science, 213, Vol.4, No.3, pp.61-66 Simulation of Gaussian Pulses Propagation Through Single Mode Optical Fiber Using MATLAB Salah Al Deen Adnan Taha *, Mehdi M. Shellal, and Ahmed Chyad

More information

Duobinary Modulation For Optical Systems

Duobinary Modulation For Optical Systems Introduction Duobinary Modulation For Optical Systems Hari Shanar Inphi Corporation Optical systems by and large use NRZ modulation. While NRZ modulation is suitable for long haul systems in which the

More information

A receiver TDC chip set for accurate pulsed time-of-flight laser ranging

A receiver TDC chip set for accurate pulsed time-of-flight laser ranging A receiver TDC chip set for accurate pulsed time-of-flight laser ranging Juha Kostamovaara, Sami Kurtti, Jussi-Pekka Jansson University of Oulu, Department of Electrical Engineering, Electronics Laboratory,

More information

10 Gb/s all-optical boolean XOR with SOA fiber Sagnac gate

10 Gb/s all-optical boolean XOR with SOA fiber Sagnac gate 10 Gb/s all-optical boolean XOR with SOA fiber Sagnac gate T. Houbavlis (1), K. Zoiros (1), A. Hatziefremidis (1), H. Avramopoulos (1), L. Occhi (2), G. Guekos (2), S. Hansmann (3), H. Burkhard (3) and

More information

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007 PUMPED Nd:YAG LASER Last Revision: August 21, 2007 QUESTION TO BE INVESTIGATED: How can an efficient atomic transition laser be constructed and characterized? INTRODUCTION: This lab exercise will allow

More information

Analysis and Improvement of Mach Zehnder Modulator Linearity Performance for Chirped and Tunable Optical Carriers

Analysis and Improvement of Mach Zehnder Modulator Linearity Performance for Chirped and Tunable Optical Carriers 886 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 20, NO. 5, MAY 2002 Analysis and Improvement of Mach Zehnder Modulator Linearity Performance for Chirped and Tunable Optical Carriers S. Dubovitsky, Member, IEEE,

More information

Fibre Bragg Grating Sensors An Introduction to Bragg gratings and interrogation techniques

Fibre Bragg Grating Sensors An Introduction to Bragg gratings and interrogation techniques Fibre Bragg Grating Sensors An ntroduction to Bragg gratings and interrogation techniques Dr Crispin Doyle Senior Applications Engineer, Smart Fibres Ltd. 2003 1) The Fibre Bragg Grating (FBG) There are

More information

Differential-phase-shift quantum key distribution using heralded narrow-band single photons

Differential-phase-shift quantum key distribution using heralded narrow-band single photons Differential-phase-shift quantum key distribution using heralded narrow-band single photons Chang Liu, 1 Shanchao Zhang, 1 Luwei Zhao, 1 Peng Chen, 1 C. -H. F. Fung, 2 H. F. Chau, 2 M. M. T. Loy, 1 and

More information

Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm

Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Progress In Electromagnetics Research Symposium Proceedings, Taipei, March 5 8, 3 359 Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Yoshito Sonoda, Takashi Samatsu, and

More information

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 22, NO. 2, FEBRUARY 2004 1

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 22, NO. 2, FEBRUARY 2004 1 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 22, NO. 2, FEBRUARY 2004 1 Photon-Counting OTDR for Local Birefringence and Fault Analysis in the Metro Environment M. Wegmuller, F. Scholder, and N. Gisin Abstract

More information

(Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier

(Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier (Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier (no PiN and pinned Diodes) Peter Fischer P. Fischer, ziti, Uni Heidelberg, Seite 1 Overview Reminder: Classical Photomultiplier

More information

A PC-BASED TIME INTERVAL COUNTER WITH 200 PS RESOLUTION

A PC-BASED TIME INTERVAL COUNTER WITH 200 PS RESOLUTION 35'th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting San Diego, December 2-4, 2003 A PC-BASED TIME INTERVAL COUNTER WITH 200 PS RESOLUTION Józef Kalisz and Ryszard Szplet

More information

E190Q Lecture 5 Autonomous Robot Navigation

E190Q Lecture 5 Autonomous Robot Navigation E190Q Lecture 5 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 2014 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator

More information

Lab 9: The Acousto-Optic Effect

Lab 9: The Acousto-Optic Effect Lab 9: The Acousto-Optic Effect Incoming Laser Beam Travelling Acoustic Wave (longitudinal wave) O A 1st order diffracted laser beam A 1 Introduction qb d O 2qb rarefractions compressions Refer to Appendix

More information

DIRECTIONAL FIBER OPTIC POWER MONITORS (TAPS/PHOTODIODES)

DIRECTIONAL FIBER OPTIC POWER MONITORS (TAPS/PHOTODIODES) Features: DIRECTIONAL FIBER OPTIC POWER MONITORS (TAPS/PHOTODIODES) PATENT NUMBERS: CANADA 2,494,133, USA 7095931, 7295731 AND CHINA 1672073 Telcordia GR-468 qualified Available in versions for any wavelength

More information

Quantum cryptography

Quantum cryptography Quantum cryptography Optical fibers to carry information 10 Kb/s 1Tb/s 10 12 b/s Optical fibers vs electrical cables Frequency: 10 8 Hz vs 10 15 Hz Bit rate for electrical interconnections B B 0 A l 2

More information

Interferometric Measurement of Dispersion in Optical Components

Interferometric Measurement of Dispersion in Optical Components Interferometric Measurement of Dispersion in Optical Components Mark Froggatt, Eric Moore, and Matthew Wolfe Luna Technologies, Incorporated, 293-A Commerce Street, Blacksburg, Virginia 246 froggattm@lunatechnologies.com.

More information

QUANTUM LIGHT :! A BRIEF INTRODUCTION!

QUANTUM LIGHT :! A BRIEF INTRODUCTION! Quantum Physics QUANTUM LIGHT : A BRIEF INTRODUCTION Philippe Grangier Laboratoire Charles Fabry de l'institut d'optique, UMR 85 du CNRS, 927 Palaiseau, France Quantum Physics * Alain Aspect, in «Demain

More information

ISTITUTO NAZIONALE DI FISICA NUCLEARE

ISTITUTO NAZIONALE DI FISICA NUCLEARE ISTITUTO NAZIONALE DI FISICA NUCLEARE Sezione di Catania INFN/TC-11/02 February 28, 2011 PRELIMINARY TESTS OF A SCINTILLATOR-BASED MINI-STATION FOR EXTENSIVE AIR SHOWERS MEASUREMENTS S.Aiola 1, P. La Rocca

More information

Projects. Objective To gain hands-on design and measurement experience with real-world applications. Contents

Projects. Objective To gain hands-on design and measurement experience with real-world applications. Contents Projects Contents 9-1 INTRODUCTION...................... 43 9-2 PROJECTS......................... 43 9-2.1 Alarm Radar Sensor................ 43 9-2.2 Microwave FM Communication Link....... 46 9-2.3 Optical

More information

Bandwidth analysis of multimode fiber passive optical networks (PONs)

Bandwidth analysis of multimode fiber passive optical networks (PONs) Optica Applicata, Vol. XXXIX, No. 2, 2009 Bandwidth analysis of multimode fiber passive optical networks (PONs) GRZEGORZ STEPNIAK *, LUKASZ MAKSYMIUK, JERZY SIUZDAK Institute of Telecommunications, Warsaw

More information

Fast optical source for quantum key distribution based on semiconductor optical amplifiers

Fast optical source for quantum key distribution based on semiconductor optical amplifiers Fast optical source for quantum key distribution based on semiconductor optical amplifiers M. Jofre, 1, A. Gardelein, 1 G. Anzolin, 1 W. Amaya, 2 J. Capmany, 2 R. Ursin, 3,4,L.Peñate, 5 D. Lopez, 5 J.

More information

Multiplexing. Multiplexing is the set of techniques that allows the simultaneous transmission of multiple signals across a single physical medium.

Multiplexing. Multiplexing is the set of techniques that allows the simultaneous transmission of multiple signals across a single physical medium. Multiplexing Multiplexing is the set of techniques that allows the simultaneous transmission of multiple signals across a single physical medium. The following two factors in data communications lead to

More information

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Practical Course M I. Physikalisches Institut Universität zu Köln May 15, 2014 Abstract Nuclear magnetic resonance (NMR) techniques are widely used in physics, chemistry, and

More information

AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE

AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE Thank you for purchasing your Amplified High Speed Fiber Photodetector. This user s guide will help answer any questions you may have regarding the

More information

ALMA Memo No. 519 An alternative scheme of round-trip phase correction

ALMA Memo No. 519 An alternative scheme of round-trip phase correction ALMA Memo No. 519 An alternative scheme of round-trip phase correction Hitoshi KIUCHIa and Masoto ISHIGUROa anational Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan, hitoshi.kiuchi@nao.ac.jp,

More information

Application of Quantum Cryptography to an Eavesdropping Detectable Data Transmission

Application of Quantum Cryptography to an Eavesdropping Detectable Data Transmission Title Application of Quantum Cryptography Detectable Data Transmission Author(s) Kudo, Takamitsu; Usuda, Tsuyoshi Sa Masayasu IEICE Transactions on Fundamentals Citation Communications and Computer Science

More information

Cabling & Test Considerations for 10 Gigabit Ethernet LAN

Cabling & Test Considerations for 10 Gigabit Ethernet LAN Introduction Current communication data rates in local networks range from 10/100 megabits per second (Mbps) in Ethernet to 1 gigabit per second (Gbps) in fiber distributed data interface (FDDI) and Gigabit

More information

Numeric modeling of synchronous laser pulsing and voltage pulsing field evaporation

Numeric modeling of synchronous laser pulsing and voltage pulsing field evaporation Numeric modeling of synchronous laser pulsing and voltage pulsing field evaporation L. ZHAO 1, A. NORMAND, J. HOUARD, I. BLUM, F. DELAROCHE, F. VURPILLOT Normandie Univ, UNIROUEN, INSA Rouen, CNRS, GPM,

More information

Quantum Cryptography: Privacy Through Uncertainty (Released October 2002) by Salvatore Vittorio

Quantum Cryptography: Privacy Through Uncertainty (Released October 2002) by Salvatore Vittorio Quantum Cryptography: Privacy Through Uncertainty (Released October 2002) by Salvatore Vittorio Review Key Citations Web Sites Glossary Conferences Editor Review Article 1. Cryptography - an Overview I

More information

OPTICAL FIBERS INTRODUCTION

OPTICAL FIBERS INTRODUCTION OPTICAL FIBERS References: J. Hecht: Understanding Fiber Optics, Ch. 1-3, Prentice Hall N.J. 1999 D. R. Goff: Fiber Optic Reference Guide (2 nd ed.) Focal Press 1999 Projects in Fiber Optics (Applications

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: Key Distillation Process on Quantum Cryptography Protocols in

More information

Broadband THz Generation from Photoconductive Antenna

Broadband THz Generation from Photoconductive Antenna Progress In Electromagnetics Research Symposium 2005, Hangzhou, China, August 22-26 331 Broadband THz Generation from Photoconductive Antenna Qing Chang 1, Dongxiao Yang 1,2, and Liang Wang 1 1 Zhejiang

More information

Quantum Key Distribution Protocols: A Review

Quantum Key Distribution Protocols: A Review IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 2, Ver. XI (Mar-Apr. 2014), PP 01-09 Quantum Key Distribution Protocols: A Review Hitesh Singh 1, D.L.

More information

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak FIBER OPTIC COMMUNICATIONS Optical Fibers Fiber optics (optical fibers) are long, thin strands of very pure glass about the size of a human hair. They are arranged in bundles called optical cables and

More information

Scientific Exchange Program

Scientific Exchange Program Scientific Exchange Program Electrical characterization of photon detectors based on acoustic charge transport Dr. Paulo Santos, Paul Drude Institute, Berlin,Germany Dr. Pablo Diniz Batista, Brazilian

More information

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation

More information

APSYN420A/B Specification 1.24. 0.65-20.0 GHz Low Phase Noise Synthesizer

APSYN420A/B Specification 1.24. 0.65-20.0 GHz Low Phase Noise Synthesizer APSYN420A/B Specification 1.24 0.65-20.0 GHz Low Phase Noise Synthesizer 1 Introduction The APSYN420 is a wideband low phase-noise synthesizer operating from 0.65 to 20 GHz. The nominal output power is

More information

A wave lab inside a coaxial cable

A wave lab inside a coaxial cable INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 25 (2004) 581 591 EUROPEAN JOURNAL OF PHYSICS PII: S0143-0807(04)76273-X A wave lab inside a coaxial cable JoãoMSerra,MiguelCBrito,JMaiaAlves and A M Vallera

More information

arxiv:1306.4174v1 [cs.cr] 18 Jun 2013

arxiv:1306.4174v1 [cs.cr] 18 Jun 2013 arxiv:1306.4174v1 [cs.cr] 18 Jun 2013 Physical-layer encryption on the public internet: a stochastic approach to the Kish-Sethuraman cipher Lachlan J. Gunn James M. Chappell Andrew Allison Derek Abbott

More information

Quantum Cryptography: The Ultimate Solution to Secure Data Transmission?

Quantum Cryptography: The Ultimate Solution to Secure Data Transmission? Quantum Cryptography: The Ultimate Solution to Secure Data Transmission? Ioannis P. Antoniades 1, Amalia N. Miliou 2, Miltiades K. Hatalis 3 1 Department of Informatics, Aristotle University of Thessaloniki,

More information

Fiber Optics: Engineering from Global to Nanometer Dimensions

Fiber Optics: Engineering from Global to Nanometer Dimensions Fiber Optics: Engineering from Global to Nanometer Dimensions Prof. Craig Armiento Fall 2003 1 Optical Fiber Communications What is it? Transmission of information using light over an optical fiber Why

More information

# 2. Selecting and Using Thermistors for Temperature Control

# 2. Selecting and Using Thermistors for Temperature Control # 2 Selecting and Using Thermistors for Temperature Control Selecting and Using Thermistors for Temperature Control Thermally sensitive resistors (thermistors) are used widely in laser diode and detector

More information

Limiting factors in fiber optic transmissions

Limiting factors in fiber optic transmissions Limiting factors in fiber optic transmissions Sergiusz Patela, Dr Sc Room I/48, Th. 13:00-16:20, Fri. 9:20-10:50 sergiusz.patela@pwr.wroc.pl eportal.pwr.wroc.pl Copying and processing permitted for noncommercial

More information

Quantum Encoder and Decoder for Secret Key Distribution with Check Bits

Quantum Encoder and Decoder for Secret Key Distribution with Check Bits Research Journal of Applied Sciences, Engineering and Technology 6(23): 4381-4386, 2013 ISSN: 2040-7459; e-issn: 2040-7467 Maxwell Scientific Organization, 2013 Submitted: January 31, 2013 Accepted: May

More information

Optical vector network analyzer for single-scan measurements of loss, group delay, and polarization mode dispersion

Optical vector network analyzer for single-scan measurements of loss, group delay, and polarization mode dispersion Optical vector network analyzer for single-scan measurements of loss, group delay, and polarization mode dispersion Dawn K. Gifford, Brian J. Soller, Matthew S. Wolfe, and Mark E. Froggatt We present a

More information

Email: tjohn@mail.nplindia.ernet.in

Email: tjohn@mail.nplindia.ernet.in USE OF VIRTUAL INSTRUMENTS IN RADIO AND ATMOSPHERIC EXPERIMENTS P.N. VIJAYAKUMAR, THOMAS JOHN AND S.C. GARG RADIO AND ATMOSPHERIC SCIENCE DIVISION, NATIONAL PHYSICAL LABORATORY, NEW DELHI 110012, INDIA

More information

IN RECENT YEARS, the increase of data transmission over

IN RECENT YEARS, the increase of data transmission over 1356 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 8, AUGUST 2004 A 3.125-Gb/s Clock and Data Recovery Circuit for the 10-Gbase-LX4 Ethernet Rong-Jyi Yang, Student Member, IEEE, Shang-Ping Chen, and

More information

Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B

Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation

More information

PIPELINE LEAKAGE DETECTION USING FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS WHITE PAPER

PIPELINE LEAKAGE DETECTION USING FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS WHITE PAPER PIPELINE LEAKAGE DETECTION USING FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS WHITE PAPER Lufan Zou and Taha Landolsi OZ Optics Limited, 219 Westbrook Road, Ottawa, ON, Canada, K0A 1L0 E-mail:

More information

Attaching the PA-A1-ATM Interface Cables

Attaching the PA-A1-ATM Interface Cables CHAPTER 4 Attaching the PA-A1-ATM Interface Cables To continue your PA-A1-ATM port adapter installation, you must attach the port adapter cables. The instructions that follow apply to all supported platforms.

More information

CHAPTER 11: Flip Flops

CHAPTER 11: Flip Flops CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach

More information

Design and Test of Fast Laser Driver Circuits

Design and Test of Fast Laser Driver Circuits Design and Test of Fast Laser Driver Circuits Since the invention of the laser by Theodore H Maiman 50 years ago, lasers have found widespread applications in various technological fields, such as telecommunications,

More information

Challenges in DWDM System Spectral Analysis By Laurent Begin and Jim Nerschook

Challenges in DWDM System Spectral Analysis By Laurent Begin and Jim Nerschook Challenges in DWDM System Spectral Analysis By Laurent Begin and Jim Nerschook TABLE OF CONTENTS: 1.0 Satisfying the Thirst for Bandwidth 02 2.0 The Solution, DWDM 02 3.0 Resolution 04 4.0 Wavelength Accuracy

More information

Sunny 1, Rinku Garg 2 Department of Electronics and Communication Engg. GJUS&T Hissar, India

Sunny 1, Rinku Garg 2 Department of Electronics and Communication Engg. GJUS&T Hissar, India Performance Analysis of Optical CDMA System Using W/T Codes Sunny 1, Rinku Garg 2 Department of Electronics and Communication Engg. GJUS&T Hissar, India Abstract This paper represents the performance of

More information

DIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse.

DIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse. DIGITAL COUNTERS http://www.tutorialspoint.com/computer_logical_organization/digital_counters.htm Copyright tutorialspoint.com Counter is a sequential circuit. A digital circuit which is used for a counting

More information

EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS

EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS 1 EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides

More information

Fiber Optics: Fiber Basics

Fiber Optics: Fiber Basics Photonics Technical Note # 21 Fiber Optics Fiber Optics: Fiber Basics Optical fibers are circular dielectric wave-guides that can transport optical energy and information. They have a central core surrounded

More information

Adding Heart to Your Technology

Adding Heart to Your Technology RMCM-01 Heart Rate Receiver Component Product code #: 39025074 KEY FEATURES High Filtering Unit Designed to work well on constant noise fields SMD component: To be installed as a standard component to

More information

Measuring of optical output and attenuation

Measuring of optical output and attenuation Measuring of optical output and attenuation THEORY Measuring of optical output is the fundamental part of measuring in optoelectronics. The importance of an optical power meter can be compared to an ammeter

More information

Laser-induced surface phonons and their excitation of nanostructures

Laser-induced surface phonons and their excitation of nanostructures CHINESE JOURNAL OF PHYSICS VOL. 49, NO. 1 FEBRUARY 2011 Laser-induced surface phonons and their excitation of nanostructures Markus Schmotz, 1, Dominik Gollmer, 1 Florian Habel, 1 Stephen Riedel, 1 and

More information

Experimental investigation of a coherent quantum measurement of the degree of polarization of a single-mode light beam

Experimental investigation of a coherent quantum measurement of the degree of polarization of a single-mode light beam JOURNAL OF MODERN OPTICS, 2003, VOL. 50, NO. 11, 1679 1690 Experimental investigation of a coherent quantum measurement of the degree of polarization of a single-mode light beam M. LEGRE, M. WEGMULLER

More information

Experimental plug and play quantum coin flipping

Experimental plug and play quantum coin flipping Experimental plug and play quantum coin flipping Anna Pappa, Paul Jouguet, Thomas Lawson, André Chailloux, Matthieu Legré, Patrick Trinkler, Iordanis Kerenidis, Eleni Diamanti To cite this version: Anna

More information

With the advent of Gigabit Ethernet

With the advent of Gigabit Ethernet INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT Int. J. Network Mgmt 2001; 11:139 146 (DOI: 10.1002/nem.396) The importance of modal bandwidth in Gigabit Ethernet systems By David N. Koon Ł This article deals

More information

Ti:Sapphire Lasers. Tyler Bowman. April 23, 2015

Ti:Sapphire Lasers. Tyler Bowman. April 23, 2015 Ti:Sapphire Lasers Tyler Bowman April 23, 2015 Introduction Ti:Sapphire lasers are a solid state laser group based on using titanium-doped sapphire (Ti:Al 2O 3) plates as a gain medium. These lasers are

More information

The Phase Modulator In NBFM Voice Communication Systems

The Phase Modulator In NBFM Voice Communication Systems The Phase Modulator In NBFM Voice Communication Systems Virgil Leenerts 8 March 5 The phase modulator has been a point of discussion as to why it is used and not a frequency modulator in what are called

More information

Pump-probe experiments with ultra-short temporal resolution

Pump-probe experiments with ultra-short temporal resolution Pump-probe experiments with ultra-short temporal resolution PhD candidate: Ferrante Carino Advisor:Tullio Scopigno Università di Roma ƒla Sapienza 22 February 2012 1 Pump-probe experiments: generalities

More information

Sol: Optical range from λ 1 to λ 1 +Δλ contains bandwidth

Sol: Optical range from λ 1 to λ 1 +Δλ contains bandwidth 1. Use Figure 3.47 and Figure 3.50 to explain why the bandwidth of twisted-wire pairs and coaxial cable decreases with distance. Figure 3.47 figure 3.50 sol: The bandwidth is the range of frequencies where

More information

10 Gb/s WDM-PON Using Downstream OFDM and Upstream OOK

10 Gb/s WDM-PON Using Downstream OFDM and Upstream OOK 10 Gb/s WDM-PON Using Downstream OFDM and Upstream OOK Jing Huang, Deming Liu & Cheng Zeng College of Optoelectronic Science and Engineering Huazhong University of Science and Technology, Wuhan 430074,

More information

INTERFERENCE OF SOUND WAVES

INTERFERENCE OF SOUND WAVES 1/2016 Sound 1/8 INTERFERENCE OF SOUND WAVES PURPOSE: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves and to observe interference phenomena with ultrasonic sound waves.

More information