Ti:Sapphire Lasers. Tyler Bowman. April 23, 2015

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Ti:Sapphire Lasers. Tyler Bowman. April 23, 2015"

Transcription

1 Ti:Sapphire Lasers Tyler Bowman April 23, 2015

2 Introduction Ti:Sapphire lasers are a solid state laser group based on using titanium-doped sapphire (Ti:Al 2O 3) plates as a gain medium. These lasers are very popular for a wide range of applications both commercially and for research due to their broad tunability, high stability, and significant potential output power. [1],[2] Additional research into Ti:sapphire has shown it to have a very short upper carrier lifetime, making it ideal for very high quality time-domain pulses. [3] Ti:Sapphire lasers have been shown to overtake many applications of dye lasers due to having similarly large ranges of frequency tuning in a solid-state device instead of a liquid dye. As such, there have been a wide number of applications that have begun to use Ti:sapphire and other crystal-based gain materials for lasers. The first successfully observed lasing of Ti:sapphire was reported by Moulton in 1986, where it was found that pumping with dye lasers, Nd:YAG lasers, and argon-ion lasers provided a tunable range from 660 nm to 986 nm. [4] The first commercial model for mode-locked time-domain pulsing was released in 1990, while the first continuous wave system was developed in [3] From that time Ti:sapphire lasers have expanded into a wide number of applications and research areas. Laser Properties The table in [3] gives a good number of properties of the gain medium for Ti:Sapphire systems. Property Value chemical formula Ti 3+ :Al2O3 crystal structure hexagonal melting point 2040 C thermal conductivity 33 W / (m K) thermal expansion coefficient K 1 thermal shock resistance parameter 790 W/m refractive index at 633 nm 1.76 temperature dependence of refractive index K 1 Ti density for 0.1% at. doping cm 3 fluorescence lifetime 3.2 μs emission cross section at 790 nm cm 2 Table 1: Standard properties of Ti:Sapphire [3]

3 It has been additionally reported that Ti:Sapphire has a good quantum efficiency at room temperature around 0.7 [5], with some estimations going as high as 0.8. [1] It is generally accepted in literature that pulsed Ti:Sapphire systems produce an output power of 0.1 to 3 W of power, while continuous wave systems can maintain a power of several watts. The pulse width of Ti:Sapphire systems is generally on the order of 100 fs, though several research setups of the lasers have approached widths of 5 fs or less. [3] Additionally, a wide range of values for continuous wave Ti:Sapphire lasers were performed in [1], where the laser was approximated as a 4-level system that was then reduced to a 2- level approximation. Within this system the upper state decay rate γ 2 was stated to be 288 khz (with a corresponding decay time of τ 2 = 3.4 µs. This is consistent with the properties reported in Table 1. Additional information found by the experimental analysis of the circular continuous wave cavity are the cavity loss and gain per pass, with the gain defined in terms of the incoming pump power these values are 3.6 % loss per pass in the cavity and 0.707% gain per watt per pass. Thus for that particular setup a pump power of around 5 W was required in order to achieve threshold inversion, though this value would change depending on the intracavity losses. Ti:Sapphire Fabrication The standard method for creating the Ti:Sapphire crystal used in solid state lasers is standard semiconductor processing. For doping sapphire with titanium ions, this generally involves melting down Al 2O 3 (sapphire) crystals in a crucible and infusing the melt with TiO 2 (titanium oxide). The selection of this particular oxide is in order to get the necessary Ti 3+ ions when the oxide bond is broken. A seed crystal of Al 2O 3 is then dipped into the mix and slowly drawn out such that the uniform sapphire crystal solidifies onto the seed. Once a rod of doped Ti:Al2O 3 has been pulled from the melt, it can then be sliced and sectioned into whatever size is needed This particular method is known as the Czochralski growth technique and is commonly used in the semiconductor industry. However, there are many other techniques that are effective in obtaining these crystals as well. [6]

4 Laser Cavity Construction The construction of the Ti:sapphire laser cavity has a very similar structure to most dye laser systems or other regions using a solid gain medium. A sample figure of the laser cavity is given in Fig. 1. Fig. 1: Basic Ti:Sapphire Laser setup (Image sourced from This image gives an example of a ring cavity Ti:sapphire laser excited by an arbitrary pump beam. This setup can also be realized as a resonant cavity in which the signal passes through the Ti:sapphire crystal gain medium twice per round trip through the cavity. However, the presence of intersecting waves in the gain medium can cause spatial hole burning that exhausts the gain medium. Additionally, a resonant cavity has the risk of sending interfering signals back to the pump laser. Finally there is some need for additional space for other components. On the other hand, aligning the beam waist within the Ti:Sapphire crystal for optimized gain is more feasible in the resonant cavity setup. Thus there are some benefits and drawbacks to either setup such that the type of cavity must be chosen based on the specific needs of the laser being built. Within the sample cavity of Fig. 1 there are several additional components in the optical path other than the gain medium and the mirrors. Each of these is a standard component for solid state or dye lasers in order to address some basic considerations for the design. The first object to be addressed

5 is the pump lens, which is needed for mode matching inside of the cavity. Since the exact waist position can be difficult to arrange in the center of the gain medium using the cavity mirrors alone, this focusing lens serves the purpose of bringing the pump signal to a focus in the middle of the crystal. This guarantees a strong and stable gain. [1] The second aspect being addressed is the optical diode, which serves the purpose of limiting the lasing to a single direction within the cavity. While it can be loosely assumed that any fluorescence from the crystal will be parallel with the incident pump signal, this is not the case in practice and there will be some fluorescence traveling the opposite direct through the cavity from the primary lasing signal. In order to eliminate this backwards-traveling signal, a birefringence layer or Faraday rotator is used to change the polarization of the waves that travel through it. The signals are then passed through a half wave plate. In this way, waves traveling in one direction can be given a rotation that eliminates the signal when it passes into the half wave plate, whereas the waves traveling in the other direction will simply change polarization and continue. [1] The third component to note is the standalone birefringent tuner in the optical path. This tuner consists of a material that is nonlinear at optical frequencies, and it is arranged in such a way that it is at a Brewster angle for the wavelength of emission being tuned. Given the nature of the nonlinear medium, any frequencies outside of the tuned frequency are either absorbed or redirected outside of the optical path of the system. In this way the desired frequency of the Ti:sapphire laser is isolated while the other frequencies of the laser s gain bandwidth are tuned out. The final additional component of the ring system is the etalon, which isolates the lowest order mode to propagate while absorbing the rest. [1] The functions of the additional components within the system are generally consistent even if the specific devices used vary. Specifically, components for the isolation of a single wavelength, the

6 enforcement of a single direction of lasing, and the reduction to a single mode are all key aspects of an effective Ti:Sapphire laser cavity. In addition to standard continuous wave activity in the cavity, one of the more attractive aspects of the Ti:Sapphire laser is a very robust ability to be in mode-lock. In short, mode-locking makes use of nonlinear optical systems in order to align the phase components of the signal. This alignment of the signal across a number of frequencies creates a constructive time domain pulse signal. Due to the large gain bandwidth of the Ti:Sapphire emission, these lasers are capable of a very refined pulse with a FWHM as small as 5.5 fs [3],[7]. This mode-lock can be achieved in several ways, but all methods take the role of an effective saturable absorber. [8] These setups generally involve actual saturable absorbers, Kerr lensing, and gain modulator manipulation of the signals, but the final goal is to obtain a group of frequencies within the gain bandwidth that are in phase. The use of Kerr lensing in particular has shown effectiveness in increasing the output power and decreasing the pulse width over saturable absorber reflectors. [9] The use of a mode-locked, pulsing signal opens up a wide number of applications that are not possible with a continuous wave laser. Applications One area of interest uses the wide tunable range of Ti:sapphire lasers in order to pump other laser and optical sources. This technology has been applied for exciting optical-band elements as well as other frequency ranges of interest like terahertz and X-ray signal generation. In particular, the very narrow Ti:Sapphire peak is useful for exciting semiconductor devices and antennas to produce terahertzfrequency pulses representing wide frequency ranges. For increasing the frequency to UV and X-ray frequencies, frequency multiplication of the Ti:Sapphire pulses allow the generation of signals not possible by any other laser system. [8] Other applications include the observance of chemical transitions and other optical properties of materials in very rapid time scales. Additionally, Ti:sapphire lasers have shown particular suitability to multiphonon microscopy due to a high peak power and tight focus. In this

7 application, a narrow peak and small focal point allow for highly specified fluorescence of chemical dyes. The precision of these measurements allows for higher resolution detection while avoiding potential bleaching of the dyes from overexposure. [10] Finally, Ti:Sapphire pulses have been shown to be useful in detecting chemical transitions on the femtosecond scale by exciting individual molecules. [11] In summary, Ti:sapphire lasers have been shown to be highly suitable to many applications. Conclusion Since their first development, Ti:sapphire lasers have shown a strong potential for a wide array of applications due to having a broad gain bandwidth resulting in a highly tunable continuous wave system or a narrow pulsed system in mode-lock. Due to its high flexibility, Ti:sapphire has become one of the most commonly used laser systems in both continuous wave and pulsed systems. References [1] W. L. Erickson and S. P. Singh. System Design and Relaxation Oscillations of a Titanium-Sapphire Laser. MS Thesis. University of Arkansas [2] J. Klein. The Ti:Sapphire Laser: From Research to Industry and Beyond. Photonics Spectra. Published online. Accessed on < [3] R. Paschotta. Titanium-sapphire Lasers. Encyclopedia of Laser Physics and Technology, < accessed on [4] P.F. Moulton. Spectroscopic and laser characteristics of Ti:Al 2O 3. J. Opt. Soc. Am. B, vol. 3, no. 1, January [5] P. Albers, E. Stark, and G. Huber. Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire. J. Opt. Soc. Am. B, vol. 3, no. 1, January [6] R. Uecker, D. Klimm, S. Ganschow, P. Reiche, R. Bertram, M. Roßberg. Czochralski growth of Ti:sapphire laser crystals. Proceedings of SPIE

8 [7] K.F. Wall and A. Sanchez. Titanium Sapphire Lasers. The Lincoln Laboratory Journal, vol. 3, no. 3, [8] G. Steinmeyer. A review of ultrafast optics and optoelectronics. J. Opt. A: Pure Appl. Opt., vol. 5, pp. R1-R15, [9] C.G. Durfee, T. Storz, J. Garlick. S. Hill, J.A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, and S. Backus. Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser. OPTICS EXPRESS, vol. 20, no. 13, pp , 18 June [10] M.D. Young, S. Backus, C. Durfee, and J. Squier. Multiphonon Imaging with a Direct-diode Pumped Femtosecond Ti:sapphire Laser. J. Microsc., vol. 249, no. 2, pp , February [11] A. Talbpour, A.D. Bandrauk, J. Yang, S.L. Chin. Multiphoton ionization of inner-valence electrons and fragmentation of ethylene in an intense Ti:sapphire laser pulse. Chemical Physics Letters, vol. 313, pp , 1999.

Amplification Atomic (or molecular, or semiconductor) system has energy levels Some higher energy states are stable for a short time (ps to ms)

Amplification Atomic (or molecular, or semiconductor) system has energy levels Some higher energy states are stable for a short time (ps to ms) Part 5: Lasers Amplification Atomic (or molecular, or semiconductor) system has energy levels Some higher energy states are stable for a short time (ps to ms) Incident photon can trigger emission of an

More information

What is Laser Ablation? Mass removal by coupling laser energy to a target material

What is Laser Ablation? Mass removal by coupling laser energy to a target material Laser Ablation Fundamentals & Applications Samuel S. Mao Department of Mechanical Engineering University of California at Berkeley Advanced Energy Technology Department March 1, 25 Laser Ablation What

More information

DIRECTLY DIODE PUMPED KERR LENS MODE-LOCKED TI:SAPPHIRE OSCILLATOR

DIRECTLY DIODE PUMPED KERR LENS MODE-LOCKED TI:SAPPHIRE OSCILLATOR DIRECTLY DIODE PUMPED KERR LENS MODE-LOCKED TI:SAPPHIRE OSCILLATOR by Jonathan P. Garlick c Copyright by Jonathan P. Garlick, 2014 All Rights Reserved A thesis submitted to the Faculty and the Board of

More information

Mode-Locked Femtosecond Titanium:Sapphire Laser. Version Trestles-50

Mode-Locked Femtosecond Titanium:Sapphire Laser. Version Trestles-50 Mode-Locked Femtosecond Titanium:Sapphire Laser Version Trestles-50 Del Mar Photonics, Inc 4119 Twilight Ridge San Diego, CA 92130 tel (858) 755-6727 fax (858) 755-6771 support@dmphotonics.com http://www.dmphotonics.com/

More information

FLASH Injector Laser FLASH. Laser 1 Laser 2 Next steps. Siegfried Schreiber Guido Klemz Karsten Klose Ben Polzin Torsten Schulz

FLASH Injector Laser FLASH. Laser 1 Laser 2 Next steps. Siegfried Schreiber Guido Klemz Karsten Klose Ben Polzin Torsten Schulz FLASH Injector Laser Laser 1 Laser 2 Next steps Siegfried Schreiber Guido Klemz Karsten Klose Ben Polzin Torsten Schulz Max-Born-Institut Berlin Ingo Will Ingo Templin FLASH Meeting DESY 16 November 2009

More information

The Fiber Laser Advantage

The Fiber Laser Advantage The Fiber Laser Advantage White Paper PN 200-0200-00 Revision 1.1 January 2009 Calmar Laser, Inc www.calmarlaser.com Overview With the fiber optics revolution for telecommunications in the 1980s, fiber

More information

Alignement of a ring cavity laser

Alignement of a ring cavity laser Alignement of a ring cavity laser 1 Introduction This manual describes a procedure to align the cavity of our Ti:Sapphire ring laser and its injection with an Argon-Ion pump laser beam. The setup is shown

More information

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007 PUMPED Nd:YAG LASER Last Revision: August 21, 2007 QUESTION TO BE INVESTIGATED: How can an efficient atomic transition laser be constructed and characterized? INTRODUCTION: This lab exercise will allow

More information

Acousto-optic modulator

Acousto-optic modulator 1 of 3 Acousto-optic modulator F An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency).

More information

Different Laser Types

Different Laser Types Different Laser Types Lasers can be divided into groups according to different criteria: 1.The state of matter of the active medium: solid, liquid, gas, or plasma. 2.The spectral range of the laser wavelength:

More information

Rationalize the working of gas lasers, solid state lasers, dye lasers and semiconductors lasers.

Rationalize the working of gas lasers, solid state lasers, dye lasers and semiconductors lasers. Module 6 : Reaction Kinetics and Dynamics Lecture 31 : Lasers in Chemistry Objectives After studying this lecture you will be able to do the following Outline the principles of laser action. Rationalize

More information

The light emitted from a laser is monochromatic, directional, and coherent. These three properties of laser light are what can make it more hazardous

The light emitted from a laser is monochromatic, directional, and coherent. These three properties of laser light are what can make it more hazardous 1 The light emitted from a laser is monochromatic, directional, and coherent. These three properties of laser light are what can make it more hazardous than ordinary light. Laser light can deposit a lot

More information

Self-Guided Intense Laser Pulse Propagation in Air

Self-Guided Intense Laser Pulse Propagation in Air Nonlinear Analysis: Modelling and Control, 2000, v.6, No, 2-26 Self-Guided Intense Laser Pulse Propagation in Air R. Danielius, D. Mikalauskas, A. Dubietis and A. Piskarskas Department of Quantum Electronics,

More information

Experiment 5. Lasers and laser mode structure

Experiment 5. Lasers and laser mode structure Northeastern University, PHYS5318 Spring 2014, 1 1. Introduction Experiment 5. Lasers and laser mode structure The laser is a very important optical tool that has found widespread use in science and industry,

More information

Development of High-peak, High-average-power LD Pumped Solid-State Laser System for EUV Generation

Development of High-peak, High-average-power LD Pumped Solid-State Laser System for EUV Generation Development of High-peak, High-average-power LD Pumped Solid-State Laser System for EUV Generation Koji Tsubakimoto, Hidetsugu Yoshida, Hisanori Fujita, Masahiro Nakatsuka, Noriaki Miyanaga, Yasukazu Izawa,

More information

Pulsewidth and noise properties of external-cavity mode-locked semiconductor lasers:

Pulsewidth and noise properties of external-cavity mode-locked semiconductor lasers: Pulsewidth and noise properties of external-cavity mode-locked semiconductor lasers: Simulations and experiments Josep Mulet IMEDEA (CSIC-UIB), Palma de Mallorca, Spain Center COM, Technical University

More information

How to Select a Waveplate

How to Select a Waveplate How to Select a Waveplate A wave retarder is a component that resolves a light wave into two orthogonal polarization components and produces a phase shift between them. The resulting difference in phase

More information

Passively Q-switched 0.1 mj Fiber Laser System at 1.53 µm

Passively Q-switched 0.1 mj Fiber Laser System at 1.53 µm Passively Q-switched 0.1 mj Fiber Laser System at 1.53 µm R. Paschotta, R. Häring, E. Gini, H. Melchior, and U. Keller Institute of Quantum Electronics Swiss Federal Institute of Technology (ETH) CH-8093

More information

electro-mechanical deformable mirrors for Q-switched fiber laser systems

electro-mechanical deformable mirrors for Q-switched fiber laser systems Micro-electro electro-mechanical deformable mirrors for Q-switched Q fiber laser systems Aurelian Crunteanu, D. Bouyge, D. Sabourdy, P. Blondy, V. Couderc and A. Barthélemy Research Institute in Optical

More information

Semiconductor Laser Diode

Semiconductor Laser Diode Semiconductor Laser Diode Outline This student project deals with the exam question Semiconductor laser diode and covers the following questions: Describe how a semiconductor laser diode works What determines

More information

Broadband THz Generation from Photoconductive Antenna

Broadband THz Generation from Photoconductive Antenna Progress In Electromagnetics Research Symposium 2005, Hangzhou, China, August 22-26 331 Broadband THz Generation from Photoconductive Antenna Qing Chang 1, Dongxiao Yang 1,2, and Liang Wang 1 1 Zhejiang

More information

- thus, the total number of atoms per second that absorb a photon is

- thus, the total number of atoms per second that absorb a photon is Stimulated Emission of Radiation - stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons

More information

PHOTONICS Newport Corporation

PHOTONICS Newport Corporation PHOTONICS Newport Corporation Introduction In the past ten years, the commercial and industrial use of laser diodes has dramatically increased with some common applications such as barcode scanning and

More information

Understanding Laser Beam Parameters Leads to Better System Performance and Can Save Money

Understanding Laser Beam Parameters Leads to Better System Performance and Can Save Money Understanding Laser Beam Parameters Leads to Better System Performance and Can Save Money Lasers became the first choice of energy source for a steadily increasing number of applications in science, medicine

More information

Defense & Security Symposium 2004, Kigre Er:glass Publication #144. Eye-Safe Erbium Glass Laser Transmitter Study Q-Switched with Cobalt Spinel

Defense & Security Symposium 2004, Kigre Er:glass Publication #144. Eye-Safe Erbium Glass Laser Transmitter Study Q-Switched with Cobalt Spinel Eye-Safe Erbium Glass Laser Transmitter Study Q-Switched with Cobalt Spinel Ruikun Wu, TaoLue Chen, J.D. Myers, M.J. Myers, Chris R. Hardy, John K. Driver Kigre, Inc. 1 Marshland Road, Hilton Head Island,

More information

Spectral Imaging by Upconversion

Spectral Imaging by Upconversion 35 Spectral Imaging by Upconversion Jeppe Seidelin Dam 1, Christian Pedersen 1 and Peter Tidemand-Lichtenberg 1, 1 DTU Fotonik, Deparment of Photonics Engineering, Frederiksborgvej 399, 4000 Roskilde,

More information

Stability Analysis of the Laser System for the TTF Photoinjector at Fermilab

Stability Analysis of the Laser System for the TTF Photoinjector at Fermilab FERMILAB-TM-2246 Stability Analysis of the Laser System for the TTF Photoinjector at Fermilab Xi Yang Fermi National Accelerator Laboratory Box 500, Batavia IL 60510 Abstract A solid-state laser system

More information

The He-Ne Laser * He-Ne Laser System. Power supply and ballast. interatomic collision. 1E-7 sec

The He-Ne Laser * He-Ne Laser System. Power supply and ballast. interatomic collision. 1E-7 sec The He-Ne Laser * I. Introduction The He-Ne laser (Figure 1) uses a low pressure (ca. 1 Torr He, 0.1 Torr Ne) mixture excited by a dc electric discharge. A ballast resistor is placed in series with the

More information

LASER AND PASSIVE Q-SWITCH CRYSTALS

LASER AND PASSIVE Q-SWITCH CRYSTALS LASER AND PASSIVE Q-SWITCH CRYSTALS page LASER CRYSTALS 126 Ti:Sapphire Crystals 126 Nd:YVO 4 Crystals 128 Nd:YAG Crystals 130 Nd:KGW Crystals 132 Yb:KGW and Yb:KYW Crystals 134 Yb:YAG Crystals 136 PASSIVE

More information

Lasers Design and Laser Systems

Lasers Design and Laser Systems Lasers Design and Laser Systems Tel: 04-856674 Nir Dahan Tel: 04-8292151 nirdahan@tx.technion.ac.il Thank You 1 If it's green, it's biology, If it stinks, it's chemistry, If it has numbers it's math, If

More information

Femtosecond Laser Micromachining

Femtosecond Laser Micromachining Femtosecond Laser Micromachining 02/03/2010 Spring 2010 MSE503 Seminar Deepak Rajput Center for Laser Applications University of Tennessee Space Institute Tullahoma, Tennessee 37388-9700 Email: drajput@utsi.edu

More information

Development of MEMS micromirrors for intracavity laser control

Development of MEMS micromirrors for intracavity laser control Development of MEMS micromirrors for intracavity laser control Walter Lubeigt Centre for Microsystems and Photonics, EEE Department, University of Strathclyde,204 George Street, Glasgow G1 1XW,UK Motivation

More information

LASER MATERIALS. Product Brochure. For more information, visit our web site

LASER MATERIALS. Product Brochure. For more information, visit our web site LASER MATERIALS C O R P O R A T I O N Product Brochure Neodymium YAG Information about our Nd:YAG laser crystal products Laser Rod Specifications Ordering Information Information about Nd:YAG & crystal

More information

RAY TRACING UNIFIED FIELD TRACING

RAY TRACING UNIFIED FIELD TRACING RAY TRACING Start to investigate the performance of your optical system using 3D ray distributions, dot diagrams of ray positions and directions, and optical path length. GEOMETRIC FIELD TRACING Switch

More information

Helium-Neon Laser. Figure 1: Diagram of optical and electrical components used in the HeNe laser experiment.

Helium-Neon Laser. Figure 1: Diagram of optical and electrical components used in the HeNe laser experiment. Helium-Neon Laser Experiment objectives: assemble and align a 3-mW HeNe laser from readily available optical components, record photographically the transverse mode structure of the laser output beam,

More information

Real-world applications of intense light matter interaction beyond the scope of classical micromachining.

Real-world applications of intense light matter interaction beyond the scope of classical micromachining. Dr. Lukas Krainer lk@onefive.com CEO Real-world applications of intense light matter interaction beyond the scope of classical micromachining. 1 Management & Company Company Based in Zürich, Switzerland

More information

Designing and Manufacturing Femtoseconds Ultra-broadband Lasers: Proven, Hands-free Reliability

Designing and Manufacturing Femtoseconds Ultra-broadband Lasers: Proven, Hands-free Reliability Technical Note Designing and Manufacturing Femtoseconds Ultra-broadband Lasers: Proven, Hands-free Reliability This whitepaper reviews how design choices, manufacturing steps and testing protocols substantially

More information

Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm

Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Progress In Electromagnetics Research Symposium Proceedings, Taipei, March 5 8, 3 359 Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Yoshito Sonoda, Takashi Samatsu, and

More information

High-Performance Wavelength-Locked Diode Lasers

High-Performance Wavelength-Locked Diode Lasers Copyright 29 Society of Photo-Optical Instrumentation Engineers. This paper was published in the proceedings of the SPIE Photonics West 29, Vol. 7198-38 (29), High-Power Diode Laser Technology and High-Performance

More information

High Brightness Fiber Coupled Pump Laser Development

High Brightness Fiber Coupled Pump Laser Development High Brightness Fiber Coupled Pump Laser Development Kirk Price, Scott Karlsen, Paul Leisher, Robert Martinsen nlight, 548 NE 88 th Street, Bldg. E, Vancouver, WA 98665 ABSTRACT We report on the continued

More information

Laser Frequency Stabilization with Optical Cavities. Abstract

Laser Frequency Stabilization with Optical Cavities. Abstract Laser Frequency Stabilization with Optical Cavities Anya M. Davis Walla Walla University University of Washington Quantum Computing with Trapped Ions Group INT REU 2009 (Dated: September 17, 2009) Abstract

More information

Quasi-Continuous Wave (CW) UV Laser Xcyte Series

Quasi-Continuous Wave (CW) UV Laser Xcyte Series COMMERCIAL LASERS Quasi-Continuous Wave (CW) UV Laser Xcyte Series Key Features 355 nm outputs available Quasi-CW UV output Field-proven Direct-Coupled Pump (DCP ) TEM00 mode quality Light-regulated output

More information

High-Brightness Diode Laser Modules for Optical Pumping of Fiber Lasers

High-Brightness Diode Laser Modules for Optical Pumping of Fiber Lasers High-Brightness Diode Laser Modules for Optical Pumping of Fiber Lasers Dr. Jörg Neukum, DILAS Diodenlaser GmbH Through optimization of semiconductor structures and optical concepts, application specific

More information

Helium-Neon Laser. 1 Introduction. 2 Background. 2.1 Helium-Neon Gain Medium. 2.2 Laser Cavity. 2.3 Hermite-Gaussian or tranverse Modes

Helium-Neon Laser. 1 Introduction. 2 Background. 2.1 Helium-Neon Gain Medium. 2.2 Laser Cavity. 2.3 Hermite-Gaussian or tranverse Modes Helium-Neon Laser 1 Introduction The Helium-Neon Laser, short HeNe-Laser, is one of the most common used laser for allignement, reference laser and optics demonstrations. Its most used wavelength is at

More information

How lasers work. The laser medium. Population Inversion. L 36 Modern Physics [2] Spontaneous vs Stimulated Emission.

How lasers work. The laser medium. Population Inversion. L 36 Modern Physics [2] Spontaneous vs Stimulated Emission. L 36 Modern Physics [2] How lasers work Medical applications of lasers Applications of high power lasers Medical imaging techniques CAT scans MRI s How lasers work First we must understand the difference

More information

Synthetic Sensing: Proximity / Distance Sensors

Synthetic Sensing: Proximity / Distance Sensors Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,

More information

PHIN. CTF3 photoinjector: RF synchronisation of the laser system. M. Petrarca, K. Elsener, V. Fedosseev, N. Lebas. CERN, Geneva, Switzerland.

PHIN. CTF3 photoinjector: RF synchronisation of the laser system. M. Petrarca, K. Elsener, V. Fedosseev, N. Lebas. CERN, Geneva, Switzerland. PHIN CTF3 photoinjector: RF synchronisation of the laser system M. Petrarca, K. Elsener, V. Fedosseev, N. Lebas CERN, Geneva, Switzerland Abstract In this report, the status of the synchronization system

More information

Holographically corrected telescope for high bandwidth optical communications (as appears in Applied Optics Vol. 38, No. 33, , 20 Nov.

Holographically corrected telescope for high bandwidth optical communications (as appears in Applied Optics Vol. 38, No. 33, , 20 Nov. Holographically corrected telescope for high bandwidth optical communications (as appears in Applied Optics Vol. 38, No. 33, 6833-6835, 20 Nov. 1999) Geoff Andersen and R. J. Knize Laser and Optics Research

More information

ULTRAFAST LASERS: Free electron lasers thrive from synergy with ultrafast laser systems

ULTRAFAST LASERS: Free electron lasers thrive from synergy with ultrafast laser systems Page 1 of 6 ULTRAFAST LASERS: Free electron lasers thrive from synergy with ultrafast laser systems Free electron lasers support unique time-resolved experiments over a wide range of x-ray wavelengths,

More information

A More Efficient Way to De-shelve 137 Ba +

A More Efficient Way to De-shelve 137 Ba + A More Efficient Way to De-shelve 137 Ba + Abstract: Andrea Katz Trinity University UW REU 2010 In order to increase the efficiency and reliability of de-shelving barium ions, an infrared laser beam was

More information

Power and Energy Characteristics of Continuous Waves / Pulsed CO 2 Laser Application in CNG-DI Ignition

Power and Energy Characteristics of Continuous Waves / Pulsed CO 2 Laser Application in CNG-DI Ignition Proceedings of the th WSEAS International Conference on Applications of Electrical Engineering, Istanbul, Turkey, May 7-9, 7 17 Power and Energy Characteristics of Continuous Waves / Pulsed CO Laser Application

More information

Aesthetic Plus LASER TRAINING MANUAL FOR MEDICAL PROFESSIONALS. presents

Aesthetic Plus LASER TRAINING MANUAL FOR MEDICAL PROFESSIONALS. presents Aesthetic Plus presents LASER TRAINING MANUAL FOR MEDICAL PROFESSIONALS INTRODUCTION More than ever before, people are turning to laser esthetics for cosmetic purposes. This is because lasers offer a number

More information

Overview of Modulated and Pulsed Diode Laser Systems

Overview of Modulated and Pulsed Diode Laser Systems 1 Overview of Modulated and Pulsed Diode Laser Systems Contents 1 Introduction 2 2 Pulsed Lasers 2 2.1 Peak Power................................................... 2 2.2 Average Power..................................................

More information

Module 13 : Measurements on Fiber Optic Systems

Module 13 : Measurements on Fiber Optic Systems Module 13 : Measurements on Fiber Optic Systems Lecture : Measurements on Fiber Optic Systems Objectives In this lecture you will learn the following Measurements on Fiber Optic Systems Attenuation (Loss)

More information

Millijoules high master-slave pulse ratio 532 nm picosecond laser

Millijoules high master-slave pulse ratio 532 nm picosecond laser Millijoules high master-slave pulse ratio 532 nm picosecond laser Zhao You Fan Zhongwei 1, Bai Zhenao 12, Zhang Guoxin 2, Lian Fuqiang 12, Zhao You 3, Shen Ming 3 1 Academy of Opto-Electronics, Chinese

More information

CHAPTER 5 ADDITIVE-PULSE MODE-LOCKED FIBER LASERS FORMED WITH THREE APODIZED CHIRPED FIBER GRATINGS

CHAPTER 5 ADDITIVE-PULSE MODE-LOCKED FIBER LASERS FORMED WITH THREE APODIZED CHIRPED FIBER GRATINGS CHAPTER 5 ADDITIVE-PULSE MODE-LOCKED FIBER LASERS FORMED WITH THREE APODIZED CHIRPED FIBER GRATINGS 5.1 INTRODUCTION In this chapter, we analyze the APM fiber lasers formed with three apodized chirped

More information

It has long been a goal to achieve higher spatial resolution in optical imaging and

It has long been a goal to achieve higher spatial resolution in optical imaging and Nano-optical Imaging using Scattering Scanning Near-field Optical Microscopy Fehmi Yasin, Advisor: Dr. Markus Raschke, Post-doc: Dr. Gregory Andreev, Graduate Student: Benjamin Pollard Department of Physics,

More information

Wavelength stabilized high-power diode laser modules

Wavelength stabilized high-power diode laser modules Wavelength stabilized high-power diode laser modules Bernd Köhler *, Thomas Brand, Matthias Haag, Jens Biesenbach DILAS Diodenlaser GmbH, Galileo-Galilei-Str. 10, 55129 Mainz-Hechtsheim, Germany ABSTRACT

More information

Effect of OH - on Fluorescence Lifetime and Laser Performance of Er 3+ Glass

Effect of OH - on Fluorescence Lifetime and Laser Performance of Er 3+ Glass Vol. B4, No. 4 CHINESE JOURNAL OF LASERS August, 1995 Effect of OH - on Fluorescence Lifetime and Laser Performance of Er 3+ Glass JIANG Yasi *, Daniel Rhonehouse, WU Ruikun, Michael J. Myers, John D.

More information

Ultrashort pulse laser processing current industrial applications and beyond

Ultrashort pulse laser processing current industrial applications and beyond Ultrashort pulse laser processing current industrial applications and beyond Stefan Nolte Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Str.

More information

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications Saulius Marcinkevičius Optics, ICT, KTH 1 Outline Optical near field. Principle of scanning near field optical microscope

More information

How to Select a Laser

How to Select a Laser How to Select a Laser We have carefully selected the lasers found to be most popular and useful over the decades for our catalog line. We have included HeNe and semiconductor diode lasers, both of which

More information

Extended-cavity, tunable, GHz-repetition-rate femtosecond optical parametric oscillator pumped at 76 MHz

Extended-cavity, tunable, GHz-repetition-rate femtosecond optical parametric oscillator pumped at 76 MHz Extended-cavity, tunable, GHz-repetition-rate femtosecond optical parametric oscillator pumped at 76 MHz Omid Kokabee, 1,* Adolfo Esteban-Martin, 1 and Majid Ebrahim-Zadeh 1,2 1 ICFO-Institut de Ciencies

More information

A Guide to Acousto-Optic Modulators

A Guide to Acousto-Optic Modulators A Guide to Acousto-Optic Modulators D. J. McCarron December 7, 2007 1 Introduction Acousto-optic modulators (AOMs) are useful devices which allow the frequency, intensity and direction of a laser beam

More information

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator. PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

More information

An Overview of Optical Components

An Overview of Optical Components An Overview of Optical Components For over 40 years, Boston Piezo-Optics specialists have been selecting appropriate quality and cuts of crystal quartz and sapphire for a wide variety of applications.

More information

Passive Optical Resonators

Passive Optical Resonators Passive Optical Resonators Optical Cavities and Feedback Back mirror I 0 I 1 Laser medium with gain, G Output mirror I 3 R = 100% R < 100% I 2 Cavities are essential components of the lasers. They provide

More information

Holographically corrected microscope with a large working distance (as appears in Applied Optics, Vol. 37, No. 10, 1849-1853, 1 April 1998)

Holographically corrected microscope with a large working distance (as appears in Applied Optics, Vol. 37, No. 10, 1849-1853, 1 April 1998) Holographically corrected microscope with a large working distance (as appears in Applied Optics, Vol. 37, No. 10, 1849-1853, 1 April 1998) Geoff Andersen and R. J. Knize Laser and Optics Research Center

More information

Blue Lasers. Photonics and Optical Communications Zubin Bharucha

Blue Lasers. Photonics and Optical Communications Zubin Bharucha Blue Lasers Photonics and Optical Communications Zubin Advantages of blue lasers and Blue (GaN) LEDs are around 100 times brighter than conventional LEDs More efficient (energy-wise) than light bulbs Longer

More information

Wave Properties of Electromagnetic Radiation

Wave Properties of Electromagnetic Radiation Wave Properties of Electromagnetic Radiation Two options are available for analytical utility when an analyte interacts with a beam of electromagnetic radiation in an instrument 1. We can monitor the changes

More information

Radiant Dyes Laser Accessories GmbH

Radiant Dyes Laser Accessories GmbH New NarrowScan New Resonator Design Improved Sine Drive Unit Autotracking Frequency doubling, tripling and mixing Wavelength Separation Unit Frequency Stabilization Temperature Stabilization Wavelength

More information

The interferometric frequency control for tunable lasers

The interferometric frequency control for tunable lasers PB A I a a Quadrature Signals l TC PB B b FPI I b BS Laser Wavelength Quadrature Signal Photo Detectors laser beam to experiment Wedged Beam Splitter Fabry-Perot- Interferometer Normalisation Photo Detectors

More information

PIPELINE LEAKAGE DETECTION USING FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS WHITE PAPER

PIPELINE LEAKAGE DETECTION USING FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS WHITE PAPER PIPELINE LEAKAGE DETECTION USING FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS WHITE PAPER Lufan Zou and Taha Landolsi OZ Optics Limited, 219 Westbrook Road, Ottawa, ON, Canada, K0A 1L0 E-mail:

More information

OMEGA EP OPAL: A Path to a 75-PW Laser System

OMEGA EP OPAL: A Path to a 75-PW Laser System OMEGA EP OPAL: A Path to a 75-PW Laser System Ultra-broadband front end (NOPA1 to 4) 0.25 J, 2.5 ns, 160 nm OMEGA EP Beamline 4 Beamline 3 6.3 kj 2.5 ns 6.3 kj 2.5 ns Noncollinear optical parametric amplifier

More information

Laser Based Micro and Nanoscale Manufacturing and Materials Processing

Laser Based Micro and Nanoscale Manufacturing and Materials Processing Laser Based Micro and Nanoscale Manufacturing and Materials Processing Faculty: Prof. Xianfan Xu Email: xxu@ecn.purdue.edu Phone: (765) 494-5639 http://widget.ecn.purdue.edu/~xxu Research Areas: Development

More information

Scalable Frequency Generation from Single Optical Wave

Scalable Frequency Generation from Single Optical Wave Scalable Frequency Generation from Single Optical Wave S. Radic Jacobs School Of Engineering Qualcomm Institute University of California San Diego - Motivation - Bandwidth Engineering - Noise Inhibition

More information

1 W frequency-doubled VCSEL-pumped blue laser with high pulse energy

1 W frequency-doubled VCSEL-pumped blue laser with high pulse energy 1 W frequency-doubled VCSEL-pumped blue laser with high pulse energy Robert Van Leeuwen, Tong Chen, Laurence Watkins, Guoyang Xu, Jean-Francois Seurin, Qing Wang, Delai Zhou, and Chuni Ghosh Princeton

More information

Lecture 9: Laser oscillators

Lecture 9: Laser oscillators Lecture 9: Laser oscillators Theory of laser oscillation Laser output characteristics Pulsed lasers References: This lecture follows the materials from Fundamentals of Photonics, 2 nd ed., Saleh & Teich,

More information

Fundamentals of Photonics. (Course 1 of 8. Now under field test) EDITORS Arthur Guenther Leno S. Pedrotti Chandrasekhar Roychoudhuri.

Fundamentals of Photonics. (Course 1 of 8. Now under field test) EDITORS Arthur Guenther Leno S. Pedrotti Chandrasekhar Roychoudhuri. Fundamentals of Photonics (Course 1 of 8. Now under field test) EDITORS Arthur Guenther Leno S. Pedrotti Chandrasekhar Roychoudhuri Lasers (Module 5 of 10) William T. Silfvast University of Central Florida

More information

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Introduction Following our previous lab exercises, you now have the skills and understanding to control

More information

Recent developments in high bandwidth optical interconnects. Brian Corbett. www.tyndall.ie

Recent developments in high bandwidth optical interconnects. Brian Corbett. www.tyndall.ie Recent developments in high bandwidth optical interconnects Brian Corbett Outline Introduction to photonics for interconnections Polymeric waveguides and the Firefly project Silicon on insulator (SOI)

More information

CHEM 343: Problem Set #4 (Spectroscopy)

CHEM 343: Problem Set #4 (Spectroscopy) CHEM 343: Problem Set #4 (Spectroscopy) 1) What is the energy, in ev, of UV radiation at 250 nm? What about Visible radiation at 550 nm? hc a) Use the expression E = = hv. Where c is the speed of light,

More information

Undergraduate Research Academy (URA) Cover Sheet

Undergraduate Research Academy (URA) Cover Sheet Winkler 1 STUDENT_Amy Winkler Undergraduate Research Academy (URA) Cover Sheet SEND TO CAMPUS BOX 1300 BY NOON, WEDNESDAY, MARCH 16, 2004 (Please type) MENTOR_Dr. Hamad and Dr. Noble PROJECT TITLE_Design

More information

Solid State Detectors = Semi-Conductor based Detectors

Solid State Detectors = Semi-Conductor based Detectors Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection

More information

Important Types of Lasers

Important Types of Lasers Important Types of Lasers Laser Types There are literally more than 10,000 types of lasers developed by today. Most of them are developed only in laboratory, but some found very broad applications. We

More information

Electronic Structure and the Periodic Table Learning Outcomes

Electronic Structure and the Periodic Table Learning Outcomes Electronic Structure and the Periodic Table Learning Outcomes (a) Electronic structure (i) Electromagnetic spectrum and associated calculations Electromagnetic radiation may be described in terms of waves.

More information

Advances in Laser Diode and OPSL Technologies Render Ion and Metal Vapor Lasers Obsolete

Advances in Laser Diode and OPSL Technologies Render Ion and Metal Vapor Lasers Obsolete White Paper Advances in Laser Diode and OPSL Technologies Render Ion and Metal Vapor Lasers Obsolete There are now many applications for visible and UV continuous wave lasers in the tens to hundreds of

More information

Advancing Laser Innovation from Deep Sea to Space

Advancing Laser Innovation from Deep Sea to Space Advancing Laser Innovation from Deep Sea to Space Laser Innovation... Pressing the Boundaries At Q-Peak our experienced staff in Solid State lasers, Fiber Optic lasers, Ultrafast lasers, Non-linear Optics,

More information

Pulsed Solid State Laser with Passive Q-switch Seminar

Pulsed Solid State Laser with Passive Q-switch Seminar University of Ljubljana Faculty of Mathematics and Physics Department of Physics Pulsed Solid State Laser with Passive Q-switch Seminar Author: Marko Kozinc Mentor: doc. dr. Rok Petkovšek Ljubljana, February

More information

Using light scattering method to find The surface tension of water

Using light scattering method to find The surface tension of water Experiment (8) Using light scattering method to find The surface tension of water The aim of work: The goals of this experiment are to confirm the relationship between angular frequency and wave vector

More information

Silicon, the test mass substrate of tomorrow? Jerome Degallaix The Next Detectors for Gravitational Wave Astronomy Beijing - 2015

Silicon, the test mass substrate of tomorrow? Jerome Degallaix The Next Detectors for Gravitational Wave Astronomy Beijing - 2015 Silicon, the test mass substrate of tomorrow? Jerome Degallaix The Next Detectors for Gravitational Wave Astronomy Beijing - 2015 Program of the talk... What we have now What we know about silicon What

More information

Map to Help Room (G2B90)

Map to Help Room (G2B90) Map to Help Room (G2B90) Lecture room Help room Homework Turn in your homework at the beginning of class next lecture. It will be collected shortly after lecture starts. Put your homework in the appropriate

More information

Measure the Distance Between Tracks of CD and DVD

Measure the Distance Between Tracks of CD and DVD University of Technology Laser & Optoelectronics Engineering Department Laser Eng Branch Laser application Lab. The aim of work: Experiment (9) Measure the Distance Between Tracks of CD and DVD 1-measure

More information

Andreas Siewert, IPG Laser GmbH, Germany AIME on High Energy Lasers, DESY, Hamburg, November 2014

Andreas Siewert, IPG Laser GmbH, Germany AIME on High Energy Lasers, DESY, Hamburg, November 2014 High Power Industrial Grade Fiber Lasers Andreas Siewert, IPG Laser GmbH, Germany AIME on High Energy Lasers, DESY, Hamburg, 12-13 November 2014 Agenda Introduction High Power Industrial Grade Fiber Lasers

More information

Light Emitting Diodes and Laser Diodes

Light Emitting Diodes and Laser Diodes Lecture 11d Light Emitting Diodes and Laser Diodes Reading: (Cont d) Notes and Anderson 2 Chapter 11.3-11.4.5 Some images from Anderson and Anderson text Optical Design Choices Some semiconductor materials

More information

Fundamentals of molecular absorption spectroscopy (UV/VIS)

Fundamentals of molecular absorption spectroscopy (UV/VIS) 10.2.1.3 Molecular spectroscopy 10.2.1.3.1 Introduction Molecular radiation results from the rotational, vibrational and electronic energy transitions of molecules. Band spectra are the combination of

More information

Frequency doubling of He Ne laser radiation at nm

Frequency doubling of He Ne laser radiation at nm Pure Appl. Opt. 5 (1996) 119 124. Printed in the UK Frequency doubling of He Ne laser radiation at 632.8 nm R Stoleru, M L Pascu and A M Dumitras Institute of Atomic Physics, Laser Department, PO Box MG-6,

More information

Self assembled nanoparticle aggregates from line focused femtosecond laser ablation

Self assembled nanoparticle aggregates from line focused femtosecond laser ablation Self assembled nanoparticle aggregates from line focused femtosecond laser ablation Craig A. Zuhlke, Dennis R. Alexander*, John C. Bruce III, Natale J. Ianno, Chad A. Kamler, and Weiqing Yang Department

More information

Light. Light. Overview. In-class activity. What are waves? In this section: PSC 203. What is it? Your thoughts?

Light. Light. Overview. In-class activity. What are waves? In this section: PSC 203. What is it? Your thoughts? Light PSC 203 Overview In this section: What is light? What is the EM Spectrum? How is light created? What can we learn from light? In-class activity Discuss your answers in groups of 2 Think of as many

More information

Lasers Design and Laser Systems

Lasers Design and Laser Systems Lasers Design and Laser Systems Tel: 04-8563674 Nir Dahan Tel: 04-8292151 nirdahan@tx.technion.ac.il Thank You 1 Measuring the width of a laser beam is like trying to measure the size of a cotton ball

More information