SPECTROSCOPY: BEER S LAW INTRODUCTION
|
|
|
- Stuart Hodge
- 9 years ago
- Views:
Transcription
1 SPECTROSCOPY: BEER S LAW INTRODUCTION A useful analytical tool for determining the concentration of colored material in solution is absorption spectrophotometry. Colored substances absorb light in the visible spectrum and the amount of light absorbed is proportional to the concentration of the substance in solution. If I o is the intensity of light entering a solution and I t is the intensity of light exiting the solution, then the transmittance, T, of the solution is given as I t /I o. Transmittance is also expressed as a percentage, (I t /I o )(100%). Frequently, the absorbance, A, rather than transmittance is used for the amount of light a solution absorbs. Absorbance is defined by the equation A = -log(t) or A = log(i o /I t ). The absorbance of a solution depends on the quantity of light absorbed by the species in the solution, the wavelength of the light entering the solution, the length of the solution the light has to pass through, and the concentration of the solution. This relationship is known as Beer's law and is expressed mathematically as A = abc. Here a is the proportionality constant (molar absorptivity if concentration units are molarity), b is the path length of radiation going through the solution, and c is the concentration of the solution. In this experiment an absorption spectra curve of absorption versus wavelength will be obtained for a cobaltous nitrate hexahydrate Co(NO 3 ) 2 6H 2 O solution. From the absorption spectra, the wavelength of maximum absorption is determined and a calibration curve relating absorption to concentration for cobaltous nitrate is prepared. Using the calibration curve, the concentration of an unknown cobaltous nitrate solution is determined by measuring its absorption at the selected wavelength. 1
2 PROCEDURE Solution Preparations Prepare 10 ml of M Co(NO 3 ) 2 6H 2 O by weighing g of the salt into a ml volumetric flask. Add some water and dissolve the salt. Dilute the solution to the mark with water. Prepare a M solution of the salt by pipetting 5.00 ml of the 0.100M solution into a clean 10 ml volumetric flask and dilute to the mark with water. Pipette 5.00 ml of the M solution into a clean 10 ml volumetric flask and dilute with water to the mark to give M salt. Prepare ml of M solution by pipetting 5 ml of the M solution into a clean 10 ml volumetric flask and dilute to the mark with water. Absorption Spectra Procedure Record your partners names. You must each record the data. Following your instructor's directions, calibrate your spectrophotometer so it reads 0% T with no cuvette in the cell compartment. Set the wavelength to 400 nm. Put some distilled water into a clean dry cuvette and place it into the cell compartment. Using the light current knob adjust the % T to read 100 %. Put some of the M cobalt solution into a clean dry cuvette. Insert the cuvette containing the M cobalt solution into the cell compartment and measure its absorbance. Change the wavelength to 410 nm. Calibrate the 100% T with distilled water and measure the absorbance of the M solution. Repeat this process at 10 nm intervals up to 600 nm. From the above data determine the wavelength of maximum light absorption. Calibration Curve Procedure Set the wavelength of your spectrophotometer to the wavelength of maximum absorption as determined in the preceding procedure. Calibrate the 100 % T at this wavelength using distilled water. Now recheck the absorbance of the M solution. Measure the absorbance of the M, M, and M standard cobalt solutions at the selected wavelength. Unknown Solution Obtain a vial of cobalt solution of unknown molarity and measure its absorbance at the selected wavelength used above. DISPOSE ALL COBALT SOLUTIONS IN THE HEAVY METAL CONTAINER. Students may work in pairs on the absorption spectra and the calibration curve but EACH STUDENT MUST DO THEIR OWN UNKNOWN. 2
3 Partner: Absorbance Data Wavelength (nm) Absorbance Wavelength of maximum absorption: nm 3
4 Partner: Calibration Curve Data [Co(NO 3 ) 2 6H 2 O] (M) Absorbance Unknown # RESULTS Absorption Spectra By hand or using Excel or Graphical Analysis, plot a graph of absorbance vs. wavelength for the M cobalt solution. For this graph, it is okay to leave the connecting line in ( connect-the-dots ). Include the graph with the report. Calibration Curve Using Excel or Graphical Analysis, plot a graph of absorbance vs. concentration for the standard cobalt solutions. Fit the best straight line to the data and obtain the slope of the straight line. The y-intercept, b, should be approximately zero. Include the graph with the report. From the calibration curve and the absorbance of your unknown, determine the molarity of your unknown solution. Remember the following. A = abc or A = mc (where m is slope of the calibration curve) Slope of Calibration Curve Unknown Solution Molarity 4
5 Spectroscopy: Beer s Law PRESTUDY 1. How many grams of cupric sulfate pentahydrate are needed to prepare ml of M CuSO 4 5H 2 O? 2. Indicate how you would prepare ml of M CuSO 4 5H 2 O from the above cupric sulfate solution. 3. The following data were obtained for CuSO 4 5H 2 O solutions at a wavelength of 650 nm. Concentration (M) Absorbance a. Using Excel or Graphical Analysis, plot a graph of absorbance (y-axis) vs. concentration (xaxis) using the above data. Get the best straight line and the slope of this line. Include the graph with the prestudy. b. From the graph determine the molarity of a copper sulfate pentahydrate solution whose absorbance is at 650 nm. 5
Phenolphthalein-NaOH Kinetics
Phenolphthalein-NaOH Kinetics Phenolphthalein is one of the most common acid-base indicators used to determine the end point in acid-base titrations. It is also the active ingredient in some laxatives.
EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions.
EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. Outcomes After completing this experiment, the student should be able to: 1. Prepare
Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law
Purpose To become familiar with using a spectrophotometer and gain an understanding of Beer s law and it s relationship to solution concentration. Introduction Scientists use many methods to determine
Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry
Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Jon H. Hardesty, PhD and Bassam Attili, PhD Collin College Department of Chemistry Introduction: In the last lab
Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40
Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40 Note: there is a second document that goes with this one! 2046 - Absorbance Spectrophotometry - Calibration Curve Procedure. The second document
EXPERIMENT 5. Molecular Absorption Spectroscopy: Determination of Iron With 1,10-Phenanthroline
EXPERIMENT 5 Molecular Absorption Spectroscopy: Determination of Iron With 1,10-Phenanthroline UNKNOWN Submit a clean, labeled 100-mL volumetric flask to the instructor so that your unknown iron solution
Lab #11: Determination of a Chemical Equilibrium Constant
Lab #11: Determination of a Chemical Equilibrium Constant Objectives: 1. Determine the equilibrium constant of the formation of the thiocyanatoiron (III) ions. 2. Understand the application of using a
Colorimetric Determination of Iron in Vitamin Tablets
Cautions: 6 M hydrochloric acid is corrosive. Purpose: To colorimetrically determine the mass of iron present in commercial vitamin tablets using a prepared calibration curve. Introduction: Iron is considered
A Beer s Law Experiment
A Beer s Law Experiment Introduction There are many ways to determine concentrations of a substance in solution. So far, the only experiences you may have are acid-base titrations or possibly determining
Lab 5: Quantitative Analysis- Phosphates in Water By: A Generous Student. LBS 171L Section 9 TA: Dana October 27, 2005
How uch Phosphate is the Body Being Exposed to During a Lifetime by Showering? Lab 5: Quantitative Analysis- Phosphates in Water By: A Generous Student LBS 171L Section 9 TA: Dana October 7, 005 [Note:
Lab 2. Spectrophotometric Measurement of Glucose
Lab 2 Spectrophotometric Measurement of Glucose Objectives 1. Learn how to use a spectrophotometer. 2. Produce a glucose standard curve. 3. Perform a glucose assay. Safety Precautions Glucose Color Reagent
Experiment 13H THE REACTION OF RED FOOD COLOR WITH BLEACH 1
Experiment 13H FV 1/25/2011(2-run) THE REACTION OF RED FOOD COLOR WITH BLEACH 1 PROBLEM: Determine the rate law for the chemical reaction between FD&C Red Dye #3 and sodium hypochlorite. LEARNING OBJECTIVES:
Upon completion of this lab, the student will be able to:
1 Learning Outcomes EXPERIMENT B4: CHEMICAL EQUILIBRIUM Upon completion of this lab, the student will be able to: 1) Analyze the absorbance spectrum of a sample. 2) Calculate the equilibrium constant for
Using the Spectrophotometer
Using the Spectrophotometer Introduction In this exercise, you will learn the basic principals of spectrophotometry and and serial dilution and their practical application. You will need these skills to
2 Spectrophotometry and the Analysis of Riboflavin
2 Spectrophotometry and the Analysis of Riboflavin Objectives: A) To become familiar with operating the Platereader; B) to learn how to use the Platereader in determining the absorption spectrum of a compound
Measuring Protein Concentration through Absorption Spectrophotometry
Measuring Protein Concentration through Absorption Spectrophotometry In this lab exercise you will learn how to homogenize a tissue to extract the protein, and then how to use a protein assay reagent to
Reaction Stoichiometry and the Formation of a Metal Ion Complex
Reaction Stoichiometry and the Formation of a Metal Ion Complex Objectives The objectives of this laboratory are as follows: To use the method of continuous variation to determine the reaction stoichiometry
Beer's Law: Colorimetry of Copper(II) Solutions
Exercise 11 Page 1 Illinois Central College CHEMISTRY 130 Name: Beer's Law: Colorimetry of Copper(II) Solutions Objectives In this experiment, we will use Beer's Law to determine the unknown concentrations
Chem 131A: Absorbance of Riboflavin
Chem 131A: Absorbance of Riboflavin Purpose: The purpose of this experiment is to: 1) Familiarize the student with the use of the HP 8452 diode array spectrophotometer, 2) examine the limitations of the
Measuring Manganese Concentration Using Spectrophotometry
Measuring Manganese Concentration Using Spectrophotometry Objectives To use spectroscopy to determine the amount of Manganese is an unknown sample. Scenario Your have just joined a "Green Team" at SMC
Determination of the Mass Percentage of Copper in a Penny. Introduction
Determination of the Mass Percentage of Copper in a Penny Introduction This experiment will cost you one penny ($0.01). The penny must be minted after 1983. Any penny will do; for best results the penny
CHEM 161: Beer s Law and Analysis of a Sports Drink
CHEM 161: Beer s Law and Analysis of a Sports Drink Introduction Although sunlight appears white, it contains a spectrum of colors. A rainbow actually shows this range of colors in visible light: violet,
Spectrophotometric Determination of the pka of Bromothymol Blue
Spectrophotometric Determination of the pka of Bromothymol Blue INRODUCION cidbase indicators are compounds that are simply weak acids (or bases) that exhibit different colors depending on whether they
Chemistry 111 Lab: Intro to Spectrophotometry Page E-1
Chemistry 111 Lab: Intro to Spectrophotometry Page E-1 SPECTROPHOTOMETRY Absorption Measurements & their Application to Quantitative Analysis study of the interaction of light (or other electromagnetic
KINETIC DETERMINATION OF SELENIUM BY VISIBLE SPECTROSCOPY (VERSION 1.8)
Selenium Determination, Page 1 KINETIC DETERMINATION OF SELENIUM BY VISIBLE SPECTROSCOPY I. BACKGROUND. (VERSION 1.8) The majority of reactions used in analytical chemistry possess the following characteristics:
COLORIMETER. Description 0358BT. Figure 1. The Colorimeter
COLORIMETER Description 0358BT Figure 1. The Colorimeter Introduction The Colorimeter is designed to determine the concentration of a solution by analyzing its color intensity. Monochromatic light from
The Determination of an Equilibrium Constant
The Determination of an Equilibrium Constant Computer 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium
Determining the Quantity of Iron in a Vitamin Tablet. Evaluation copy
Determining the Quantity of Iron in a Vitamin Tablet Computer 34 As biochemical research becomes more sophisticated, we are learning more about the role of metallic elements in the human body. For example,
NNIN Nanotechnology Education
NNIN Nanotechnology Education Student Guide Part 1: Silver Nanoparticle Synthesis and Spectroscopy Introduction: In this lab you will synthesize silver nanoparticles one of the most commonly used nanoparticles
QUANTITATIVE INFRARED SPECTROSCOPY. Willard et. al. Instrumental Methods of Analysis, 7th edition, Wadsworth Publishing Co., Belmont, CA 1988, Ch 11.
QUANTITATIVE INFRARED SPECTROSCOPY Objective: The objectives of this experiment are: (1) to learn proper sample handling procedures for acquiring infrared spectra. (2) to determine the percentage composition
2.02 DETERMINATION OF THE FORMULA OF A COMPLEX BY SPECTROPHOTOMETRY
2nd/3rd Year Physical Chemistry Practical Course, Oxford University 2.02 DETERMINATION OF THE FORMULA OF A COMPLEX BY SPECTROPHOTOMETRY (4 points) Outline Spectrometry is widely used to monitor the progress
ATOMIC ABSORTION SPECTROSCOPY: rev. 4/2011 ANALYSIS OF COPPER IN FOOD AND VITAMINS
1 ATOMIC ABSORTION SPECTROSCOPY: rev. 4/2011 ANALYSIS OF COPPER IN FOOD AND VITAMINS Buck Scientific Atomic Absorption Spectrophotometer, Model 200 Atomic absorption spectroscopy (AAS) has for many years
Coordination Compounds with Copper (II) Prelab (Week 2)
Coordination Compounds with Copper (II) Prelab (Week 2) Name Total /10 SHOW ALL WORK NO WORK = NO CREDIT 1. What is the purpose of this experiment? 2. Write the generic chemical formula for the coordination
Experiment 2 Kinetics II Concentration-Time Relationships and Activation Energy
2-1 Experiment 2 Kinetics II Concentration-Time Relationships and Activation Energy Introduction: The kinetics of a decomposition reaction involving hydroxide ion and crystal violet, an organic dye used
Spectrophotometry Practical Lesson on Medical Chemistry and Biochemistry
Spectrophotometry Practical Lesson on Medical Chemistry and Biochemistry General Medicine Jiřina Crkovská (translated by Jan Pláteník) 2010/2011 1 Spectrophotometry is one of the most widely used instrumental
Analytical Chemistry Lab Reports
Analytical Chemistry Lab Reports Format and Calculations John Collins [email protected] Measurement Analytical chemistry is entirely about measurement, what these measurements signify, and the understanding
2C: One in a Million. Part 1: Making solutions. Name: Section: Date: Materials
Name: Section: Date: 2C: One in a Million Drinking water can contain up to 1.3 parts per million (ppm) of copper and still be considered safe. What does parts per million mean? Both living things and the
University of Wisconsin Chemistry 524 Spectroscopic Applications (GFAA, ICP, UV/Vis, Fluorescence)
University of Wisconsin Chemistry 524 Spectroscopic Applications (GFAA, ICP, UV/Vis, Fluorescence) For this laboratory exercise, you will explore a variety of spectroscopic methods used in an analytical
To determine the mass of iron in one adult dose of either a ferrous sulfate or. ferrous gluconate iron supplement using a colorimetric technique.
Lab: Colorimetric Analysis of Iron in Iron Supplements Purpose To determine the mass of iron in one adult dose of either a ferrous sulfate or ferrous gluconate iron supplement using a colorimetric technique.
What s in the Mix? Liquid Color Spectroscopy Lab (Randy Landsberg & Bill Fisher)
What s in the Mix? Liquid Color Spectroscopy Lab (Randy Landsberg & Bill Fisher) Introduction: There is more to a color than a name. Color can tell us lots of information. In this lab you will use a spectrophotometer
INTRODUCTION TO SPECTROMETRY
Experiment 11 INTRODUCTION TO SPECTROMETRY Portions adapted by Ross S. Nord and Colleagues, Chemistry Department, Eastern Michigan University from ANAL 043, written by Donald F. Clemens and Warren A. McAllister,
Determining the Free Chlorine Content of Swimming Pool Water. HOCl H + + OCl. Evaluation copy
Determining the Free Chlorine Content of Swimming Pool Water Computer 33 Physicians in the nineteenth century used chlorine water as a disinfectant. Upon the discovery that certain diseases were transmitted
Chemistry 2351: Inorganic Chemistry I Laboratory Manual
Spectroscopic Determination of a Complex Ion's Stoichiometry by Job's Method ABSTRACT This experiment is adapted from Angelici's classic experiment, but uses Fe(H 2 O) 6-n (SCN) n 3-n as the complex ion.
Chemistry 118 Laboratory University of Massachusetts Boston Beer s Law
Name: LEARNING GOALS: Chemistry 118 Laboratory University of Massachusetts Boston Beer s Law 1. Become familiar with the concept of concentration and molarity. 2. Become familiar with making dilutions
Colorimetry Extinction coefficient (ε) Lambda max (λ max ) Qualitative vs. quantitative analysis
Lab Week 2 - Spectrophotometry Purpose: Introduce students to the use of spectrophotometry for qualitative (what is it) and quantitative (how much is there of it) analysis of biological samples and molecules.
ph: Measurement and Uses
ph: Measurement and Uses One of the most important properties of aqueous solutions is the concentration of hydrogen ion. The concentration of H + (or H 3 O + ) affects the solubility of inorganic and organic
LIQUID CHROMATOGRAPHY HOW MUCH ASPIRIN, ACETAMINOPHEN, AND CAFFEINE ARE IN YOUR PAIN RELIEVER? USING HPLC TO QUANTITATE SUBSTANCES (Revised: 1-13-93)
INTRODUCTION HOW MUCH ASPIRIN, ACETAMINOPHEN, AND CAFFEINE ARE IN YOUR PAIN RELIEVER? USING HPLC TO QUANTITATE SUBSTANCES (Revised: 1-13-93) Headache, sore muscles, arthritis pain... How do you spell relief?
The introduction of your report should be written on the on the topic of the role of indicators on acid base titrations.
Experiment # 13A TITRATIONS INTRODUCTION: This experiment will be written as a formal report and has several parts: Experiment 13 A: Basic methods (accuracy and precision) (a) To standardize a base (~
Chapter 5 -- The Spectrophotometric Determination of the ph of a Buffer. NAME: Lab Section: Date: Sign-Off:
Chapter 5 -- The Spectrophotometric Determination of the ph of a Buffer NAME: Lab Section: Date: Sign-Off: Chapter 5 -- The Spectrophotometric Determination of the ph of a Buffer Introduction Weak acids,
Laboratory 5: Properties of Enzymes
Laboratory 5: Properties of Enzymes Technical Objectives 1. Accurately measure and transfer solutions with pipettes 2. Use a Spectrophotometer to study enzyme action. 3. Properly graph a set of data. Knowledge
Evaluation copy. Case File 9. A Killer Cup of Coffee? GlobalTech manager dies
Case File 9 Killer Cup of Coffee: Using colorimetry to determine concentration of a poison Determine the concentration of cyanide in the solution. A Killer Cup of Coffee? SOUTH PAINTER, Tuesday: It was
Ultraviolet-Visible (UV-Vis) Spectroscopy Background Information
1 Ultraviolet-Visible (UV-Vis) Spectroscopy Background Information Instructions for the Operation of the Cary 300 Bio UV-Visible Spectrophotometer See the Thermo OMNIC Help reference on page 49. Ultraviolet-Visible
Experiment #5: Qualitative Absorption Spectroscopy
Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions
Colorimetric Determination of Iron in Vitamin Tablets
Colorimetric Determination of Iron in Vitamin Tablets Big Picture Conceptual Approach Vitamin Tablet How much Fe? ph = 3.5 Vitamin Tablet How much Fe? Too difficult to eyeball so will have the colorimeter
Shimadzu UV-VIS User s Guide
Shimadzu UV-VIS User s Guide 1) Push the F4 button on the UV-VIS instrument keypad. This will enable PC control. Push the F4 Button 2) Log into the UV-VIS software with your username and password. 3) After
Solubility Product Constants
Solubility Product Constants PURPOSE To measure the solubility product constant (K sp ) of copper (II) iodate, Cu(IO 3 ) 2. GOALS 1 To measure the molar solubility of a sparingly soluble salt in water.
GlobalTech manager dies
Case File 9 Killer Cup of Coffee: Using colorimetry to determine concentration of a poison Determine the concentration of cyanide in the solution. A Killer Cup of Coffee? GlobalTech manager dies SOUTH
To determine the equivalence points of two titrations from plots of ph versus ml of titrant added.
Titration Curves PURPOSE To determine the equivalence points of two titrations from plots of ph versus ml of titrant added. GOALS 1 To gain experience performing acid-base titrations with a ph meter. 2
Experiment 4 The Relationship of Density and Molarity of an Aqueous Salt Solution
Experiment 4 The Relationship of Density and Molarity of an Aqueous Salt Solution Purpose: The purpose of this experiment is to investigate the relationship between the concentration of an aqueous salt
The Determination of an Equilibrium Constant
The Determination of an Equilibrium Constant Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium constant, K
Cadmium Reduction Method Method 8039 0.3 to 30.0 mg/l NO 3 N (HR) Powder Pillows or AccuVac Ampuls
Nitrate DOC316.53.01066 Cadmium Reduction Method Method 8039 0.3 to 30.0 mg/l NO 3 N (HR) Powder Pillows or AccuVac Ampuls Scope and application: For water, wastewater and seawater. Test preparation Instrument-specific
THE ACTIVITY OF LACTASE
THE ACTIVITY OF LACTASE Lab VIS-8 From Juniata College Science in Motion Enzymes are protein molecules which act to catalyze the chemical reactions in living things. These chemical reactions make up the
Determining the Identity of an Unknown Weak Acid
Purpose The purpose of this experiment is to observe and measure a weak acid neutralization and determine the identity of an unknown acid by titration. Introduction The purpose of this exercise is to identify
ENZYME KINETICS ENZYME-SUBSTRATE PRODUCTS
ENZYME KINETICS INTRODUCTION The study of reaction rates catalyzed by enzymes and the factors affecting them is generally referred to as enzyme kinetics. The basic components of an enzyme catalyzed reaction
Graphite Furnace AA, Page 1 DETERMINATION OF METALS IN FOOD SAMPLES BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY (VERSION 1.
Graphite Furnace AA, Page 1 DETERMINATION OF METALS IN FOOD SAMPLES BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY I. BACKGROUND (VERSION 1.0) Atomic absorption spectroscopy (AAS) is a widely used
How do scientists prepare solutions with specific concentrations of solutes?
EXERCISE 2 Name How do scientists prepare solutions with specific concentrations of solutes? Objectives After completing this exercise, you should be able to: define and correctly use the following terms:
EFFECT OF SALT ON CELL MEMBRANES
EFFECT OF SALT ON CELL MEMBRANES LAB CELL 2 INTRODUCTION A eukaryotic cell, a cell with a nucleus, not only has a plasma membrane as its external boundary, but it also has a variety of membranes that divide
Reaction of Blue Food Dye with Bleach
Exercise 2 Reaction of Blue Food Dye with Bleach 2 Introduction In the experiment, you will study the rate of the reaction of FD&C Blue #1 (Blue #1 is denoted by E number E133 in food stuff) with sodium
Application Note: Absorbance
Units Units Theory of absorbance Light absorption occurs when atoms or molecules take up the energy of a photon of light, thereby reducing the transmission of light as it is passed through a sample. Light
Understanding Analytical Chemistry (Weighing, Mixing, Measuring and Evaluating)
Name: Date: Understanding Analytical Chemistry (Weighing, Mixing, Measuring and Evaluating) High School Environmental Science AP Module 1 Environmental Lab NGSSS Big Ideas: This module is a laboratory-based
Ultraviolet Spectroscopy
Ultraviolet Spectroscopy The wavelength of UV and visible light are substantially shorter than the wavelength of infrared radiation. The UV spectrum ranges from 100 to 400 nm. A UV-Vis spectrophotometer
SOLID STATE CHEMISTRY - SURFACE ADSORPTION
SOLID STATE CHEMISTRY - SURFACE ADSORPTION BACKGROUND The adsorption of molecules on the surfaces of solids is a very interesting and useful phenomenon. Surface adsorption is at the heart of such things
9. Analysis of an Acid-Base Titration Curve: The Gran Plot
9. Analysis of an Acid-Base Titration Curve: The Gran Plot In this experiment, you will titrate a sample of pure potassium hydrogen phthalate (Table 10-4) with standard NaOH. A Gran plot will be used to
Stage 1 Desired Results
Lesson Title: Phosphate Testing Contract Discipline Focus: Chemistry Grade level: 11-12 Length of lesson: 1.5 class periods Content Standard(s): Stage 1 Desired Results Understanding (s)/goals Students
Determination of the Sensitivity Range of Biuret Test for Undergraduate Biochemistry Experiments
77 Determination of the Sensitivity Range of Biuret Test for Undergraduate Biochemistry Experiments Gerardo Janairo * ; Marianne Linley Sy; Leonisa Yap; Nancy Llanos-Lazaro; Julita Robles Chemistry Department
UV-Visible Spectroscopy
UV-Visible Spectroscopy UV-Visible Spectroscopy What is UV-Visible Spectroscopy? Molecular spectroscopy that involves study of the interaction of Ultra violet (UV)-Visible radiation with molecules What
Plot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line.
Objective # 6 Finding the slope of a line Material: page 117 to 121 Homework: worksheet NOTE: When we say line... we mean straight line! Slope of a line: It is a number that represents the slant of a line
18 Conductometric Titration
Lab Activity 18 CONDUCTOMETRIC TITRATION LAB ACTIVITY 18 Conductometric Titration Background Titration is the a method of determining the concentration of an unknown solution (the analyte) by reacting
Concentrations and Dilutions of Food Dyes
Concentrations and Dilutions of Food Dyes Learning Goals: 1. Develop an understanding of the use of volumetric glassware. 2. Prepare a series of dye solutions of known concentrations. 3. Explore the relationship
Chemistry 111 Laboratory Experiment 7: Determination of Reaction Stoichiometry and Chemical Equilibrium
Chemistry 111 Laboratory Experiment 7: Determination of Reaction Stoichiometry and Chemical Equilibrium Introduction The word equilibrium suggests balance or stability. The fact that a chemical reaction
THE SPECTROPHOTOMETRIC DETERMINATION OF THE COPPER CONTENT IN THE COPPER-CLAD PENNY (2-6-96)
PURPOSE THE SPECTROPHOTOMETRIC DETERMINATION OF THE COPPER CONTENT IN THE COPPER-CLAD PENNY (2-6-96) The purpose of this experiment is to determine: (1) the percentage of copper in a copperclad penny and
Experiment 9 Electrochemistry I Galvanic Cell
9-1 Experiment 9 Electrochemistry I Galvanic Cell Introduction: Chemical reactions involving the transfer of electrons from one reactant to another are called oxidation-reduction reactions or redox reactions.
Calcium Analysis by EDTA Titration
Calcium Analysis by EDTA Titration ne of the factors that establish the quality of a water supply is its degree of hardness. The hardness of water is defined in terms of its content of calcium and magnesium
Determination of the Rate Law for Food Dye Bleaching with Hypochlorite
This is an example report of an investigation performed in General Chemistry lab. Pay attention to format and content, not on the results or the experiment itself. The report is best explored on screen
Physical Properties of a Pure Substance, Water
Physical Properties of a Pure Substance, Water The chemical and physical properties of a substance characterize it as a unique substance, and the determination of these properties can often allow one to
Table of Content. Enzymes and Their Functions Teacher Version 1
Enzymes and Their Functions Jeisa Pelet, Cornell University Carolyn Wilczynski, Binghamton High School Cornell Learning Initiative in Medicine and Bioengineering (CLIMB) Table of Content Title Page Abstract..
DETERMINING THE DENSITY OF LIQUIDS & SOLIDS
DETERMINING THE DENSITY OF LIQUIDS & SOLIDS 17 Density, like color, odor, melting point, and boiling point, is a physical property of matter. Therefore, density may be used in identifying matter. Density
Chem 405 Biochemistry Lab I Experiment 2 Quantitation of an unknown protein solution.
Chem 405 Biochemistry Lab I Experiment 2 Quantitation of an unknown protein solution. Introduction: The determination of protein concentration is frequently required in biochemical work. Several methods
EXPERIMENT 7 Electrochemical Cells: A Discovery Exercise 1. Introduction. Discussion
EXPERIMENT 7 Electrochemical Cells: A Discovery Exercise 1 Introduction This lab is designed for you to discover the properties of electrochemical cells. It requires little previous knowledge of electrochemical
Acid Base Titrations
Acid Base Titrations Introduction A common question chemists have to answer is how much of something is present in a sample or a product. If the product contains an acid or base, this question is usually
MOLECULAR WEIGHT BY BOILING POINT ELEVATION
MOLECULAR WEIGHT BY BOILING POINT ELEVATION BACKGROUND This experiment demonstrates the use of colligative properties. The goal is to measure the molecular weight of a non-volatile solute by determining
The Rate Constant for Fluorescence Quenching 1
The Rate Constant for Fluorescence Quenching 1 Purpose This experiment utilizes fluorescence intensity measurements to determine the rate constant for the fluorescence quenching of anthracene or perylene
Cary 100 Bio UV-Vis Operating Instructions 09/25/2012 S.V.
1234 Hach Hall 515-294-5805 www.cif.iastate.edu Cary 100 Bio UV-Vis Operating Instructions 09/25/2012 S.V. Location: Contact: 1240 Hach Hall Steve Veysey, 1234 Hach Hall Safety All researchers working
Temperature Scales. The metric system that we are now using includes a unit that is specific for the representation of measured temperatures.
Temperature Scales INTRODUCTION The metric system that we are now using includes a unit that is specific for the representation of measured temperatures. The unit of temperature in the metric system is
An Introduction to Standards and Quality Control for the Laboratory Barbara Martin
An Introduction to Standards and Quality Control for the Laboratory Barbara Martin Hach Company, 2002. All rights reserved. Lit. No. 2426 eac/rb 8/02 1ed In memory of Clifford C. Hach (1919-1990) inventor,
NITRIC OXIDE and NITROGEN DIOXIDE 6014
NITRIC OXIDE and NITROGEN DIOXIDE 6014 NO MW: 30.01 CAS: 10102-43-9 RTECS: QX0525000 46.01 10102-44-0 QW9800000 METHOD: 6014, Issue 1 EVALUATION: FULL Issue 1: 15 August 1994 OSHA : 25 ppm NO; C 1 ppm
Factors Affecting Enzyme Activity
INTRODUCTION Factors Affecting Enzyme Activity The chemical reactions occurring in living things are controlled by enzymes. An enzyme is a protein in the cell which lowers the activation energy of a catalyzed
Experiment 7 (Lab Period 8) Quantitative Determination of Phosphatase Activity
Experiment 7 (Lab Period 8) Quantitative Determination of Phosphatase Activity Phosphatases are enzymes that catalyze the hydrolysis of organic-phosphate compounds, releasing inorganic phosphate from the
