Beer's Law: Colorimetry of Copper(II) Solutions

Size: px
Start display at page:

Download "Beer's Law: Colorimetry of Copper(II) Solutions"

Transcription

1 Exercise 11 Page 1 Illinois Central College CHEMISTRY 130 Name: Beer's Law: Colorimetry of Copper(II) Solutions Objectives In this experiment, we will use Beer's Law to determine the unknown concentrations of Copper(II) solutions by comparing the amount of light absorbed by the unknowns to the absorbtion of light by a series of known concentrations. Copper compounds have been used extensively in the treatment of algae in municipal water supply impoundments. Consequently, recent indications that copper levels in the sediments of these impoundments are impeding plant growth have led scientists to more closely monitor Copper levels in natural waterways. Background If white light is passed through a solution containing a colored compound, certain wavelengths of light are selectively absorbed (taken in). The resultant color observed is due to the transmitted light (light which passes through). Copper (II) nitrate appears blue to the eye. This is because red light is absorbed and blue light is transmitted (Table 1). The amount of red light absorbed is directly proportional to the concentration of the copper (II) ions in the solution as defined by Beer's Law. In this experiment we will measure the absorbance of several copper (II) solutions. Table 1. Correlation between wavelength, color, and complementary color in the visible region. Wavelength, nm Color (light absorbed) Complementary color(light transmitted) violet yellow-green blue yellow green-blue orange blue-green red green purple yellow-green violet yellow blue orange green-blue red* blue-green* *For Copper (II) nitrate the absorbtion maximum is 630 nm.

2 Exercise 11 Page 2 Beer's Law In 1852, Beer discovered that the transmittance of light decreases exponentially in proportion to the concentration of the species absorbing the light. The fundamental law regarding the amount of incoming light absorbed by a sample is known as Beer's Law. For example, a full bottle of cola placed beside a bottle containing 1/10 cola and 9/10 water will be drastically different in appearance. This is because there are more molecules causing coloration in the bottle of straight cola than in the diluted bottle. In other words, more of the visible light is being absorbed by the straight cola than by the diluted cola. From this example, it seems reasonable that the amount of light absorbed by a sample, denoted by A, should be proportional to the amount (or concentration, C) of light absorbing molecules in the sample. Therefore, Beer's Law can be stated most simply as: A = k x C where A is the Absorbance of light by the sample. The constant, k, depends on the path length through the sample (diameter of the container), the wavelength of the light used, and the type of absorbing sample. As shown in Table 1., the color of light that a substance absorbs is the "opposite" of the color the substance appears; the solution has the color of the light that is not absorbed. As you will see, a measurement of the absorbance, A, of a sample will allow you to find the concentration of the light-absorbing sample. In other words, you can quantitatively identify chemicals in solution by the amount of light they absorb. So, according to Beer's Law, a plot of the absorbances vs the concentrations of several samples should produce a straight line with a slope, k. Colorimeter A colorimeter measures the amount of light passing through a sample; this intensity of light is known as the transmittance. You will use a Colorimeter (a side view is shown in Figure 1) to measure the concentration of each solution. In this experiment, red light from the LED light source will pass through the solution and strike a photocell. A higher Figure 1. concentration of the colored solution absorbs more light (and transmits less) than a solution of lower concentration. The light sources in the colorimeter are light emitting diodes (LEDs). The LEDs emit a range of wavelengths with a peak, or most intense, wavelength near the center. The peak wavelengths for the colorimeter LEDs are 430 nm, 470 nm, 565 nm, 635 nm for the violet, blue, green and red colored LEDs, respectively. Due to the nature of LEDs, it is incorrect to assume that the light emitted by two

3 Exercise 11 Page 3 LEDs will generate a third color. Therefore, any practical use of the colorimeter will involve only one LED at a given time. Since the photocell detector simply changes resistance in proportion to the intensity of the light that strikes it, we can use the current that passes through the cell to determine the %Transmittance of the sample where outgoing light 100 incoming light %T = or %T = sample current (microamps) blank current (microamps) 100 Unfortunately, %T is not linearly proportional to Concentration. As stated before, it is an exponential relationship. However, Absorbance of light by the sample is linear with concentration. If the current reading (in microamperes) for the photocell without an absorbing specimen in the path is I o and the current reading with an absorbing sample in the path is I, (Figure 2.) then the absorbance of the sample is defined as: Light-emitting Diode (Source) Clear Cuvette Sample I o I CdS Cell (Detector) A = log( I o I ) or A = log( 100 %T ) Figure 2. Connecting the Colorimeter Connect the Vernier Colorimeter to the GoLink USB interface and connect the GoLink to the USB input on your computer. From the Menu Bar select File/Open and click on the folder Chemistry with Computers. Open the file Beer's Law.cmbl. You should now see the window displayed here. Right mouse click anywhere on the graph and choose Graph Options from the pop-up menu. Select the axes options tab and change the x-axis scaling to 0 for the left to 0.15 for the right. Use the arrow buttons on the colorimeter to select the 635 nm LED. Select a single cuvette to use for both your blank and your samples for this experiment.

4 Exercise 11 Page 4 Procedure Preparation of your "Standards" 1. Label five clean test tubes A through E. Fill test tube A approximately 2/3 full with M Cu(NO 3 ) 2. Using a 5.00 ml pipette, transfer 5.00 ml of distilled water into test tubes B through E. 2. Pipette 5.00 ml of solution A into test tube B and mix well. Take care not to lose any of the solution during mixing. In a similar fashion, pipette 5.00 ml of solution B into test tube C; then 5.00 ml of solution C into test tube D; then 5.00 ml of solution D into test tube E. 3. Calculate the Molarities of each of your standards and record them on the report sheet. Note that each successive dilution cut the molarity in half. 4. Label three 50 ml beakers "Unknown 1 through 3" and obtain 10 ml samples of the three unknown Cu +2 solutions. 5. Fill one of the cuvettes with distilled water to serve as a "blank". The blank contains all the constituents used in the analysis except the substance to be measured. We can assume then that the difference in the color between the blank and the sample is due only to the substance to be measured. Distilled water is the reference blank for this experiment. 6. Insert the cuvette containing the distilled water into the opening of the colorimeter. Note that the cuvette is "ribbed" on two sides. IMPORTANT: Be certain that the light path is passing through the CLEAR sides of the cuvette facing the arrow at the top of the cuvette slot. Close the lid of the colorimeter (to keep out stray light) and press the "CAL" button on the colorimeter to calibrate it. Release the CAL button when the red LED begins to flash. When the LED stops flashing, the calibration is complete and your unit is ready to collect data. 7. Click and with the blank still in the colorimeter, click the button. You will be prompted to enter a molarity for the sample. Enter 0.0 for the molarity of the blank. Click OK. 8. Remove the cuvette from the colorimeter and empty it. Fill the cuvette with the copper(ii)nitrate solution from tube E (your most dilute standard.), insert it in the colorimeter, and close the lid. Allow a few seconds for the Absorbance reading to stabilize. Click the button and enter the molarity for the copper solution in tube E. Continue this same process until all of the known standards have been measured, working your way toward the highest Molarity. 9. Once you've finished reading your standard solutions, from the Analyze Menu, choose Linear Fit. (Or click on the Linear Fit icon found on the Toolbar.) Your graph should now look the one displayed here.

5 Exercise 11 Page Now fill the cuvette with the first Unknown solution. As soon as the Absorbance reading stabilizes, choose Analyze from the Menu Bar and select Interpolation Calculator. This should create a dialogue box on your graph indicating the Molarity of your first unknown. Click and drag this dialogue box to a vacant area of the graph. 11. Now fill the cuvette with your next unknown and repeat the Analyze/Interpolation Calculator procedure. Move the dialogue box to another area of the graph. 12. Fill the cuvette with the third unknown and repeat the Analyze/Interpolation Calculator procedure. Once all three unknowns have been analyzed, record the molarities of your unknowns on your report sheet. Your graph should now look like the one shown here. 13. Print a copy of this graph to be attached to your Report Sheet. 14. Exit LoggerPro.

6 Exercise 11 Page 6

7 Exercise 11 Page 7 Illinois Central College CHEMISTRY 130 Name: REPORT SHEET Beer's Law Standards Sample Molarity %Transmittance Absorbance Blank 0.0 M A B C D E Unknowns Sample Absorbance Molarity 1 2 3

8 Exercise 11 Page 8

9 Exercise 11 Page 9 Illinois Central College CHEMISTRY 130 Name: PRELAB: Exp.11 Beer's Law SHOW YOUR WORK 1. A substance that absorbs light at 495 nm appears to have what color? (refer to Table 1.) 2. Referring to the colorimeter in this experiment, if a sample transmits sufficient light to cause a current of 488 microamperes in the photocell compared to a blank solution that allows a current of 622 microamperes, what is the %Transmittance of the solution? 3. What would the Absorbance value be for the solution in problem #2? 4. Why does the procedure for measuring the concentration of a solution photometrically require the use of a "blank"?

10 Exercise 11 Page 10

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant The Determination of an Equilibrium Constant Computer 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium

More information

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions.

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. Outcomes After completing this experiment, the student should be able to: 1. Prepare

More information

Determining the Free Chlorine Content of Swimming Pool Water. HOCl H + + OCl. Evaluation copy

Determining the Free Chlorine Content of Swimming Pool Water. HOCl H + + OCl. Evaluation copy Determining the Free Chlorine Content of Swimming Pool Water Computer 33 Physicians in the nineteenth century used chlorine water as a disinfectant. Upon the discovery that certain diseases were transmitted

More information

2 Spectrophotometry and the Analysis of Riboflavin

2 Spectrophotometry and the Analysis of Riboflavin 2 Spectrophotometry and the Analysis of Riboflavin Objectives: A) To become familiar with operating the Platereader; B) to learn how to use the Platereader in determining the absorption spectrum of a compound

More information

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law Purpose To become familiar with using a spectrophotometer and gain an understanding of Beer s law and it s relationship to solution concentration. Introduction Scientists use many methods to determine

More information

Upon completion of this lab, the student will be able to:

Upon completion of this lab, the student will be able to: 1 Learning Outcomes EXPERIMENT B4: CHEMICAL EQUILIBRIUM Upon completion of this lab, the student will be able to: 1) Analyze the absorbance spectrum of a sample. 2) Calculate the equilibrium constant for

More information

Determining the Quantity of Iron in a Vitamin Tablet. Evaluation copy

Determining the Quantity of Iron in a Vitamin Tablet. Evaluation copy Determining the Quantity of Iron in a Vitamin Tablet Computer 34 As biochemical research becomes more sophisticated, we are learning more about the role of metallic elements in the human body. For example,

More information

Evaluation copy. Case File 9. A Killer Cup of Coffee? GlobalTech manager dies

Evaluation copy. Case File 9. A Killer Cup of Coffee? GlobalTech manager dies Case File 9 Killer Cup of Coffee: Using colorimetry to determine concentration of a poison Determine the concentration of cyanide in the solution. A Killer Cup of Coffee? SOUTH PAINTER, Tuesday: It was

More information

GlobalTech manager dies

GlobalTech manager dies Case File 9 Killer Cup of Coffee: Using colorimetry to determine concentration of a poison Determine the concentration of cyanide in the solution. A Killer Cup of Coffee? GlobalTech manager dies SOUTH

More information

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Jon H. Hardesty, PhD and Bassam Attili, PhD Collin College Department of Chemistry Introduction: In the last lab

More information

Shimadzu UV-VIS User s Guide

Shimadzu UV-VIS User s Guide Shimadzu UV-VIS User s Guide 1) Push the F4 button on the UV-VIS instrument keypad. This will enable PC control. Push the F4 Button 2) Log into the UV-VIS software with your username and password. 3) After

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant The Determination of an Equilibrium Constant Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium constant, K

More information

Using the Spectrophotometer

Using the Spectrophotometer Using the Spectrophotometer Introduction In this exercise, you will learn the basic principals of spectrophotometry and and serial dilution and their practical application. You will need these skills to

More information

A Beer s Law Experiment

A Beer s Law Experiment A Beer s Law Experiment Introduction There are many ways to determine concentrations of a substance in solution. So far, the only experiences you may have are acid-base titrations or possibly determining

More information

Colorimetric Determination of Iron in Vitamin Tablets

Colorimetric Determination of Iron in Vitamin Tablets Cautions: 6 M hydrochloric acid is corrosive. Purpose: To colorimetrically determine the mass of iron present in commercial vitamin tablets using a prepared calibration curve. Introduction: Iron is considered

More information

Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40

Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40 Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40 Note: there is a second document that goes with this one! 2046 - Absorbance Spectrophotometry - Calibration Curve Procedure. The second document

More information

Reaction Stoichiometry and the Formation of a Metal Ion Complex

Reaction Stoichiometry and the Formation of a Metal Ion Complex Reaction Stoichiometry and the Formation of a Metal Ion Complex Objectives The objectives of this laboratory are as follows: To use the method of continuous variation to determine the reaction stoichiometry

More information

Appendix C. Vernier Tutorial

Appendix C. Vernier Tutorial C-1. Vernier Tutorial Introduction: In this lab course, you will collect, analyze and interpret data. The purpose of this tutorial is to teach you how to use the Vernier System to collect and transfer

More information

INTRODUCTION TO SPECTROMETRY

INTRODUCTION TO SPECTROMETRY Experiment 11 INTRODUCTION TO SPECTROMETRY Portions adapted by Ross S. Nord and Colleagues, Chemistry Department, Eastern Michigan University from ANAL 043, written by Donald F. Clemens and Warren A. McAllister,

More information

2C: One in a Million. Part 1: Making solutions. Name: Section: Date: Materials

2C: One in a Million. Part 1: Making solutions. Name: Section: Date: Materials Name: Section: Date: 2C: One in a Million Drinking water can contain up to 1.3 parts per million (ppm) of copper and still be considered safe. What does parts per million mean? Both living things and the

More information

Chemistry 111 Lab: Intro to Spectrophotometry Page E-1

Chemistry 111 Lab: Intro to Spectrophotometry Page E-1 Chemistry 111 Lab: Intro to Spectrophotometry Page E-1 SPECTROPHOTOMETRY Absorption Measurements & their Application to Quantitative Analysis study of the interaction of light (or other electromagnetic

More information

Experiment 2 Kinetics II Concentration-Time Relationships and Activation Energy

Experiment 2 Kinetics II Concentration-Time Relationships and Activation Energy 2-1 Experiment 2 Kinetics II Concentration-Time Relationships and Activation Energy Introduction: The kinetics of a decomposition reaction involving hydroxide ion and crystal violet, an organic dye used

More information

COLORIMETER. Description 0358BT. Figure 1. The Colorimeter

COLORIMETER. Description 0358BT. Figure 1. The Colorimeter COLORIMETER Description 0358BT Figure 1. The Colorimeter Introduction The Colorimeter is designed to determine the concentration of a solution by analyzing its color intensity. Monochromatic light from

More information

Ultraviolet-Visible (UV-Vis) Spectroscopy Background Information

Ultraviolet-Visible (UV-Vis) Spectroscopy Background Information 1 Ultraviolet-Visible (UV-Vis) Spectroscopy Background Information Instructions for the Operation of the Cary 300 Bio UV-Visible Spectrophotometer See the Thermo OMNIC Help reference on page 49. Ultraviolet-Visible

More information

Experiment C-31 Color Absorption

Experiment C-31 Color Absorption 1 Experiment C-31 Color Absorption Objectives To understand the concepts of light waves and color. To investigate how red, green and blue liquids absorb light of different wavelengths. To learn about colorimeter

More information

Lab #11: Determination of a Chemical Equilibrium Constant

Lab #11: Determination of a Chemical Equilibrium Constant Lab #11: Determination of a Chemical Equilibrium Constant Objectives: 1. Determine the equilibrium constant of the formation of the thiocyanatoiron (III) ions. 2. Understand the application of using a

More information

CHEM 161: Beer s Law and Analysis of a Sports Drink

CHEM 161: Beer s Law and Analysis of a Sports Drink CHEM 161: Beer s Law and Analysis of a Sports Drink Introduction Although sunlight appears white, it contains a spectrum of colors. A rainbow actually shows this range of colors in visible light: violet,

More information

Excel Tutorial. Bio 150B Excel Tutorial 1

Excel Tutorial. Bio 150B Excel Tutorial 1 Bio 15B Excel Tutorial 1 Excel Tutorial As part of your laboratory write-ups and reports during this semester you will be required to collect and present data in an appropriate format. To organize and

More information

Phenolphthalein-NaOH Kinetics

Phenolphthalein-NaOH Kinetics Phenolphthalein-NaOH Kinetics Phenolphthalein is one of the most common acid-base indicators used to determine the end point in acid-base titrations. It is also the active ingredient in some laxatives.

More information

Reaction of Blue Food Dye with Bleach

Reaction of Blue Food Dye with Bleach Exercise 2 Reaction of Blue Food Dye with Bleach 2 Introduction In the experiment, you will study the rate of the reaction of FD&C Blue #1 (Blue #1 is denoted by E number E133 in food stuff) with sodium

More information

Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40 Calibration Curve Procedure

Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40 Calibration Curve Procedure Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40 Calibration Curve Procedure Note: there is a second document that goes with this one! 2046 - Absorbance Spectrophotometry. Make sure you

More information

To determine the mass of iron in one adult dose of either a ferrous sulfate or. ferrous gluconate iron supplement using a colorimetric technique.

To determine the mass of iron in one adult dose of either a ferrous sulfate or. ferrous gluconate iron supplement using a colorimetric technique. Lab: Colorimetric Analysis of Iron in Iron Supplements Purpose To determine the mass of iron in one adult dose of either a ferrous sulfate or ferrous gluconate iron supplement using a colorimetric technique.

More information

USING EXCEL ON THE COMPUTER TO FIND THE MEAN AND STANDARD DEVIATION AND TO DO LINEAR REGRESSION ANALYSIS AND GRAPHING TABLE OF CONTENTS

USING EXCEL ON THE COMPUTER TO FIND THE MEAN AND STANDARD DEVIATION AND TO DO LINEAR REGRESSION ANALYSIS AND GRAPHING TABLE OF CONTENTS USING EXCEL ON THE COMPUTER TO FIND THE MEAN AND STANDARD DEVIATION AND TO DO LINEAR REGRESSION ANALYSIS AND GRAPHING Dr. Susan Petro TABLE OF CONTENTS Topic Page number 1. On following directions 2 2.

More information

Chapter 5 -- The Spectrophotometric Determination of the ph of a Buffer. NAME: Lab Section: Date: Sign-Off:

Chapter 5 -- The Spectrophotometric Determination of the ph of a Buffer. NAME: Lab Section: Date: Sign-Off: Chapter 5 -- The Spectrophotometric Determination of the ph of a Buffer NAME: Lab Section: Date: Sign-Off: Chapter 5 -- The Spectrophotometric Determination of the ph of a Buffer Introduction Weak acids,

More information

LIGHTSTICK KINETICS. INTRODUCTION: General background on rate, activation energy, absolute temperature, and graphing.

LIGHTSTICK KINETICS. INTRODUCTION: General background on rate, activation energy, absolute temperature, and graphing. LIGHTSTICK KINETICS From Advancing Science, Gettysburg College INTRODUCTION: General background on rate, activation energy, absolute temperature, and graphing. THE RATE LAW: The rate of a chemical reaction

More information

EXPERIMENT 5. Molecular Absorption Spectroscopy: Determination of Iron With 1,10-Phenanthroline

EXPERIMENT 5. Molecular Absorption Spectroscopy: Determination of Iron With 1,10-Phenanthroline EXPERIMENT 5 Molecular Absorption Spectroscopy: Determination of Iron With 1,10-Phenanthroline UNKNOWN Submit a clean, labeled 100-mL volumetric flask to the instructor so that your unknown iron solution

More information

Phosphates (ortho- and total)

Phosphates (ortho- and total) INTRODUCTION Phosphates (ortho- and total) Phosphorus is an essential nutrient for all aquatic plants and algae. Only a very small amount is needed, however, so an excess of phosphorus can easily occur.

More information

Experiment 13H THE REACTION OF RED FOOD COLOR WITH BLEACH 1

Experiment 13H THE REACTION OF RED FOOD COLOR WITH BLEACH 1 Experiment 13H FV 1/25/2011(2-run) THE REACTION OF RED FOOD COLOR WITH BLEACH 1 PROBLEM: Determine the rate law for the chemical reaction between FD&C Red Dye #3 and sodium hypochlorite. LEARNING OBJECTIVES:

More information

Solubility Product Constants

Solubility Product Constants Solubility Product Constants PURPOSE To measure the solubility product constant (K sp ) of copper (II) iodate, Cu(IO 3 ) 2. GOALS 1 To measure the molar solubility of a sparingly soluble salt in water.

More information

Flash MX Image Animation

Flash MX Image Animation Flash MX Image Animation Introduction (Preparing the Stage) Movie Property Definitions: Go to the Properties panel at the bottom of the window to choose the frame rate, width, height, and background color

More information

Chemistry 118 Laboratory University of Massachusetts Boston Beer s Law

Chemistry 118 Laboratory University of Massachusetts Boston Beer s Law Name: LEARNING GOALS: Chemistry 118 Laboratory University of Massachusetts Boston Beer s Law 1. Become familiar with the concept of concentration and molarity. 2. Become familiar with making dilutions

More information

Experiment #5: Qualitative Absorption Spectroscopy

Experiment #5: Qualitative Absorption Spectroscopy Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions

More information

Cary 100 Bio UV-Vis Operating Instructions 09/25/2012 S.V.

Cary 100 Bio UV-Vis Operating Instructions 09/25/2012 S.V. 1234 Hach Hall 515-294-5805 www.cif.iastate.edu Cary 100 Bio UV-Vis Operating Instructions 09/25/2012 S.V. Location: Contact: 1240 Hach Hall Steve Veysey, 1234 Hach Hall Safety All researchers working

More information

Beckman Coulter DTX 880 Multimode Detector Bergen County Technical Schools Stem Cell Lab

Beckman Coulter DTX 880 Multimode Detector Bergen County Technical Schools Stem Cell Lab Beckman Coulter DTX 880 Multimode Detector Bergen County Technical Schools Stem Cell Lab Room 213 Beckman Coulter DTX 880 Multimode Detector Information The Beckman Coulter DTX 880 Multimode Detector is

More information

Evaluation copy. Enzyme Action: Testing Catalase Activity (Method 1 O 2 Gas Sensor) Computer 2

Evaluation copy. Enzyme Action: Testing Catalase Activity (Method 1 O 2 Gas Sensor) Computer 2 Enzyme Action: Testing Catalase Activity (Method 1 O 2 Gas Sensor) Computer 2 Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most

More information

Measuring Manganese Concentration Using Spectrophotometry

Measuring Manganese Concentration Using Spectrophotometry Measuring Manganese Concentration Using Spectrophotometry Objectives To use spectroscopy to determine the amount of Manganese is an unknown sample. Scenario Your have just joined a "Green Team" at SMC

More information

Scientific Graphing in Excel 2010

Scientific Graphing in Excel 2010 Scientific Graphing in Excel 2010 When you start Excel, you will see the screen below. Various parts of the display are labelled in red, with arrows, to define the terms used in the remainder of this overview.

More information

In this example, Mrs. Smith is looking to create graphs that represent the ethnic diversity of the 24 students in her 4 th grade class.

In this example, Mrs. Smith is looking to create graphs that represent the ethnic diversity of the 24 students in her 4 th grade class. Creating a Pie Graph Step-by-step directions In this example, Mrs. Smith is looking to create graphs that represent the ethnic diversity of the 24 students in her 4 th grade class. 1. Enter Data A. Open

More information

Enzyme Action: Testing Catalase Activity

Enzyme Action: Testing Catalase Activity Enzyme Action: Testing Catalase Activity Experiment 6A Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities

More information

Lab 2. Spectrophotometric Measurement of Glucose

Lab 2. Spectrophotometric Measurement of Glucose Lab 2 Spectrophotometric Measurement of Glucose Objectives 1. Learn how to use a spectrophotometer. 2. Produce a glucose standard curve. 3. Perform a glucose assay. Safety Precautions Glucose Color Reagent

More information

SYNTHESIS AND ANALYSIS OF SILVER/GOLD NANOPARTICLES

SYNTHESIS AND ANALYSIS OF SILVER/GOLD NANOPARTICLES SYNTHESIS AND ANALYSIS OF SILVER/GOLD NANOPARTICLES Background Shelby Hatch and George Schatz Northwestern University, Evanston, IL 60208 All physical and chemical properties are size dependent, and the

More information

Lab 5: Quantitative Analysis- Phosphates in Water By: A Generous Student. LBS 171L Section 9 TA: Dana October 27, 2005

Lab 5: Quantitative Analysis- Phosphates in Water By: A Generous Student. LBS 171L Section 9 TA: Dana October 27, 2005 How uch Phosphate is the Body Being Exposed to During a Lifetime by Showering? Lab 5: Quantitative Analysis- Phosphates in Water By: A Generous Student LBS 171L Section 9 TA: Dana October 7, 005 [Note:

More information

What s in the Mix? Liquid Color Spectroscopy Lab (Randy Landsberg & Bill Fisher)

What s in the Mix? Liquid Color Spectroscopy Lab (Randy Landsberg & Bill Fisher) What s in the Mix? Liquid Color Spectroscopy Lab (Randy Landsberg & Bill Fisher) Introduction: There is more to a color than a name. Color can tell us lots of information. In this lab you will use a spectrophotometer

More information

Experiment 17: Potentiometric Titration

Experiment 17: Potentiometric Titration 1 Experiment 17: Potentiometric Titration Objective: In this experiment, you will use a ph meter to follow the course of acid-base titrations. From the resulting titration curves, you will determine the

More information

University of Wisconsin Chemistry 524 Spectroscopic Applications (GFAA, ICP, UV/Vis, Fluorescence)

University of Wisconsin Chemistry 524 Spectroscopic Applications (GFAA, ICP, UV/Vis, Fluorescence) University of Wisconsin Chemistry 524 Spectroscopic Applications (GFAA, ICP, UV/Vis, Fluorescence) For this laboratory exercise, you will explore a variety of spectroscopic methods used in an analytical

More information

Laboratory 5: Properties of Enzymes

Laboratory 5: Properties of Enzymes Laboratory 5: Properties of Enzymes Technical Objectives 1. Accurately measure and transfer solutions with pipettes 2. Use a Spectrophotometer to study enzyme action. 3. Properly graph a set of data. Knowledge

More information

Task Card #2 SMART Board: Notebook

Task Card #2 SMART Board: Notebook Task Card #2 SMART Board: Notebook Objectives: Participants will learn how to utilize the SMART Notebook. Table of Contents: Launching The SMART Notebook Page 1 Entering Text Page 1 Top Toolbar Page 2

More information

Summary of important mathematical operations and formulas (from first tutorial):

Summary of important mathematical operations and formulas (from first tutorial): EXCEL Intermediate Tutorial Summary of important mathematical operations and formulas (from first tutorial): Operation Key Addition + Subtraction - Multiplication * Division / Exponential ^ To enter a

More information

Colorimetric Determination of Iron in Vitamin Tablets

Colorimetric Determination of Iron in Vitamin Tablets Colorimetric Determination of Iron in Vitamin Tablets Big Picture Conceptual Approach Vitamin Tablet How much Fe? ph = 3.5 Vitamin Tablet How much Fe? Too difficult to eyeball so will have the colorimeter

More information

How to make a line graph using Excel 2007

How to make a line graph using Excel 2007 How to make a line graph using Excel 2007 Format your data sheet Make sure you have a title and each column of data has a title. If you are entering data by hand, use time or the independent variable in

More information

EFFECT OF SALT ON CELL MEMBRANES

EFFECT OF SALT ON CELL MEMBRANES EFFECT OF SALT ON CELL MEMBRANES LAB CELL 2 INTRODUCTION A eukaryotic cell, a cell with a nucleus, not only has a plasma membrane as its external boundary, but it also has a variety of membranes that divide

More information

KI6501 Data Manager. Software User Manual

KI6501 Data Manager. Software User Manual KI6501 Data Manager Software User Manual CONTENTS 1. Installation of USB Virtual COM Port driver software... 2 2. Installation of KI6501 Manager Software... 2 3. Connecting KI6501 to PC (Personal Computer)

More information

Interactive Excel Spreadsheets:

Interactive Excel Spreadsheets: Interactive Excel Spreadsheets: Constructing Visualization Tools to Enhance Your Learner-centered Math and Science Classroom Scott A. Sinex Department of Physical Sciences and Engineering Prince George

More information

EXCEL Tutorial: How to use EXCEL for Graphs and Calculations.

EXCEL Tutorial: How to use EXCEL for Graphs and Calculations. EXCEL Tutorial: How to use EXCEL for Graphs and Calculations. Excel is powerful tool and can make your life easier if you are proficient in using it. You will need to use Excel to complete most of your

More information

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law OBJECTIVES: To verify Ohm s law, the mathematical relationship among current, voltage or potential difference, and resistance, in a simple circuit.

More information

Presentations and PowerPoint

Presentations and PowerPoint V-1.1 PART V Presentations and PowerPoint V-1.2 Computer Fundamentals V-1.3 LESSON 1 Creating a Presentation After completing this lesson, you will be able to: Start Microsoft PowerPoint. Explore the PowerPoint

More information

Table of Contents. 1. Overview... 3. 1.1 Materials Required. 3 1.2 System Requirements. 3 1.3 User Mode 3. 2. Installation Instructions..

Table of Contents. 1. Overview... 3. 1.1 Materials Required. 3 1.2 System Requirements. 3 1.3 User Mode 3. 2. Installation Instructions.. Table of Contents 1. Overview..... 3 1.1 Materials Required. 3 1.2 System Requirements. 3 1.3 User Mode 3 2. Installation Instructions.. 4 2.1 Installing the On Call Diabetes Management Software. 4 2.2

More information

Enzyme Action: Testing Catalase Activity

Enzyme Action: Testing Catalase Activity Enzyme Action: Testing Catalase Activity DataQuest 12 Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities

More information

Using Excel for your assignments

Using Excel for your assignments [Type here] Using Excel for your assignments This document covers the basics of using Excel to perform simple data analysis and represent that data visually. Excel is a very powerful data analysis tool.

More information

Osmosis. Evaluation copy

Osmosis. Evaluation copy Osmosis Computer 5 In order to survive, all organisms need to move molecules in and out of their cells. Molecules such as gases (e.g., O 2, CO 2 ), water, food, and wastes pass across the cell membrane.

More information

6 H2O + 6 CO 2 (g) + energy

6 H2O + 6 CO 2 (g) + energy AEROBIC RESPIRATION LAB DO 2.CALC From Biology with Calculators, Vernier Software & Technology, 2000. INTRODUCTION Aerobic cellular respiration is the process of converting the chemical energy of organic

More information

Creating Charts in Microsoft Excel A supplement to Chapter 5 of Quantitative Approaches in Business Studies

Creating Charts in Microsoft Excel A supplement to Chapter 5 of Quantitative Approaches in Business Studies Creating Charts in Microsoft Excel A supplement to Chapter 5 of Quantitative Approaches in Business Studies Components of a Chart 1 Chart types 2 Data tables 4 The Chart Wizard 5 Column Charts 7 Line charts

More information

Lab 2 Biochemistry. Learning Objectives. Introduction. Lipid Structure and Role in Food. The lab has the following learning objectives.

Lab 2 Biochemistry. Learning Objectives. Introduction. Lipid Structure and Role in Food. The lab has the following learning objectives. 1 Lab 2 Biochemistry Learning Objectives The lab has the following learning objectives. Investigate the role of double bonding in fatty acids, through models. Developing a calibration curve for a Benedict

More information

Spreadsheets and Laboratory Data Analysis: Excel 2003 Version (Excel 2007 is only slightly different)

Spreadsheets and Laboratory Data Analysis: Excel 2003 Version (Excel 2007 is only slightly different) Spreadsheets and Laboratory Data Analysis: Excel 2003 Version (Excel 2007 is only slightly different) Spreadsheets are computer programs that allow the user to enter and manipulate numbers. They are capable

More information

Flame Tests & Electron Configuration

Flame Tests & Electron Configuration Flame Tests & Electron Configuration INTRODUCTION Many elements produce colors in the flame when heated. The origin of this phenomenon lies in the arrangement, or configuration of the electrons in the

More information

ph units constitute a scale which allows scientists to determine the acid or base content of a substance or solution. The ph 0

ph units constitute a scale which allows scientists to determine the acid or base content of a substance or solution. The ph 0 ACID-BASE TITRATION LAB PH 2.PALM INTRODUCTION Acids and bases represent a major class of chemical substances. We encounter them every day as we eat, clean our homes and ourselves, and perform many other

More information

Prism 6 Step-by-Step Example Linear Standard Curves Interpolating from a standard curve is a common way of quantifying the concentration of a sample.

Prism 6 Step-by-Step Example Linear Standard Curves Interpolating from a standard curve is a common way of quantifying the concentration of a sample. Prism 6 Step-by-Step Example Linear Standard Curves Interpolating from a standard curve is a common way of quantifying the concentration of a sample. Step 1 is to construct a standard curve that defines

More information

Sample Table. Columns. Column 1 Column 2 Column 3 Row 1 Cell 1 Cell 2 Cell 3 Row 2 Cell 4 Cell 5 Cell 6 Row 3 Cell 7 Cell 8 Cell 9.

Sample Table. Columns. Column 1 Column 2 Column 3 Row 1 Cell 1 Cell 2 Cell 3 Row 2 Cell 4 Cell 5 Cell 6 Row 3 Cell 7 Cell 8 Cell 9. Working with Tables in Microsoft Word The purpose of this document is to lead you through the steps of creating, editing and deleting tables and parts of tables. This document follows a tutorial format

More information

Spectrophotometry Practical Lesson on Medical Chemistry and Biochemistry

Spectrophotometry Practical Lesson on Medical Chemistry and Biochemistry Spectrophotometry Practical Lesson on Medical Chemistry and Biochemistry General Medicine Jiřina Crkovská (translated by Jan Pláteník) 2010/2011 1 Spectrophotometry is one of the most widely used instrumental

More information

Measuring Protein Concentration through Absorption Spectrophotometry

Measuring Protein Concentration through Absorption Spectrophotometry Measuring Protein Concentration through Absorption Spectrophotometry In this lab exercise you will learn how to homogenize a tissue to extract the protein, and then how to use a protein assay reagent to

More information

Pivot Tables & Pivot Charts

Pivot Tables & Pivot Charts Pivot Tables & Pivot Charts Pivot tables... 2 Creating pivot table using the wizard...2 The pivot table toolbar...5 Analysing data in a pivot table...5 Pivot Charts... 6 Creating a pivot chart using the

More information

Evaluation copy. Titration of a Diprotic Acid: Identifying an Unknown. Computer

Evaluation copy. Titration of a Diprotic Acid: Identifying an Unknown. Computer Titration of a Diprotic Acid: Identifying an Unknown Computer 25 A diprotic acid is an acid that yields two H + ions per acid molecule. Examples of diprotic acids are sulfuric acid, H 2 SO 4, and carbonic

More information

This activity will show you how to draw graphs of algebraic functions in Excel.

This activity will show you how to draw graphs of algebraic functions in Excel. This activity will show you how to draw graphs of algebraic functions in Excel. Open a new Excel workbook. This is Excel in Office 2007. You may not have used this version before but it is very much the

More information

Microsoft Excel 2013: Charts June 2014

Microsoft Excel 2013: Charts June 2014 Microsoft Excel 2013: Charts June 2014 Description We will focus on Excel features for graphs and charts. We will discuss multiple axes, formatting data, choosing chart type, adding notes and images, and

More information

Excel -- Creating Charts

Excel -- Creating Charts Excel -- Creating Charts The saying goes, A picture is worth a thousand words, and so true. Professional looking charts give visual enhancement to your statistics, fiscal reports or presentation. Excel

More information

Enzyme Action: Testing Catalase Activity 50 Points

Enzyme Action: Testing Catalase Activity 50 Points Names: LabQuest Enzyme Action: Testing Catalase Activity 50 Points 6A Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the

More information

SA-9600 Surface Area Software Manual

SA-9600 Surface Area Software Manual SA-9600 Surface Area Software Manual Version 4.0 Introduction The operation and data Presentation of the SA-9600 Surface Area analyzer is performed using a Microsoft Windows based software package. The

More information

Make Voice Calls and Share Documents using Skype*

Make Voice Calls and Share Documents using Skype* Make Voice Calls and Share Documents using Skype* Intel Easy Steps 1 2012 Intel Corporation Using Skype for making Voice Calls and Sharing Documents In the previous activity Using Skype to Communicate

More information

Dealing with Data in Excel 2010

Dealing with Data in Excel 2010 Dealing with Data in Excel 2010 Excel provides the ability to do computations and graphing of data. Here we provide the basics and some advanced capabilities available in Excel that are useful for dealing

More information

Inking in MS Office 2013

Inking in MS Office 2013 VIRGINIA TECH Inking in MS Office 2013 Getting Started Guide Instructional Technology Team, College of Engineering Last Updated: Fall 2013 Email tabletteam@vt.edu if you need additional assistance after

More information

USER MANUAL Detcon Log File Viewer

USER MANUAL Detcon Log File Viewer USER MANUAL Detcon Log File Viewer DETCON, Inc. 4055 Technology Forest Blvd., The Woodlands, Texas 77381 Ph.281.367.4100 / Fax 281.298.2868 www.detcon.com January 29, 2013 Document #4482 Revision 1.00

More information

Create a Poster Using Publisher

Create a Poster Using Publisher Contents 1. Introduction 1. Starting Publisher 2. Create a Poster Template 5. Aligning your images and text 7. Apply a background 12. Add text to your poster 14. Add pictures to your poster 17. Add graphs

More information

ENZYME ACTION: TESTING CATALASE ACTIVITY

ENZYME ACTION: TESTING CATALASE ACTIVITY ENZYME ACTION: TESTING CATALASE ACTIVITY LAB ENZ 1.CALC From Biology with Calculators, Vernier Software & Technology, 2000 INTRODUCTION Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically.

More information

Building your own Spectroscope

Building your own Spectroscope Building your own Spectroscope 0-0.341-0.445-0.606-0.872-1.36 Lyman Balmer Paschen n=4 n=8 n=7 n=6 n=5 n=4 ENERGY/10-19 J -2.42-5.45 E 5 2 E 4 2 E 3 2 E E 5 3 4 3 n=3 n=2 (Many other transitions beyond

More information

RuleBender 1.1.415 Tutorial

RuleBender 1.1.415 Tutorial RuleBender 1.1.415 Tutorial Installing and Launching RuleBender Requirements OSX Getting Started Linux Getting Started Windows Getting Started Using the Editor The Main Window Creating and Opening Files

More information

Determination of the Rate Law for Food Dye Bleaching with Hypochlorite

Determination of the Rate Law for Food Dye Bleaching with Hypochlorite This is an example report of an investigation performed in General Chemistry lab. Pay attention to format and content, not on the results or the experiment itself. The report is best explored on screen

More information

Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data

Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data Introduction In several upcoming labs, a primary goal will be to determine the mathematical relationship between two variable

More information

Instructions for Formatting APA Style Papers in Microsoft Word 2010

Instructions for Formatting APA Style Papers in Microsoft Word 2010 Instructions for Formatting APA Style Papers in Microsoft Word 2010 To begin a Microsoft Word 2010 project, click on the Start bar in the lower left corner of the screen. Select All Programs and then find

More information

1.5 MONITOR. Schools Accountancy Team INTRODUCTION

1.5 MONITOR. Schools Accountancy Team INTRODUCTION 1.5 MONITOR Schools Accountancy Team INTRODUCTION The Monitor software allows an extract showing the current financial position taken from FMS at any time that the user requires. This extract can be saved

More information

15. Acid-Base Titration. Discover the concentration of an unknown acid solution using acid-base titration.

15. Acid-Base Titration. Discover the concentration of an unknown acid solution using acid-base titration. S HIFT INTO NEUTRAL 15. Acid-Base Titration Shift into Neutral Student Instruction Sheet Challenge Discover the concentration of an unknown acid solution using acid-base titration. Equipment and Materials

More information