The Aerodynamics of Gliders

Size: px
Start display at page:

Download "The Aerodynamics of Gliders"

Transcription

1 The Aerodynamics of Gliders Your goal is to create an airplane that will sink at the slowest possible rate when launched from altitude. The lighter the plane is, the easier it will be to maximize the time aloft. The rules regulate the minimum weight, so keeping it as close to the minimum as possible will be advantageous. Gravity is our source of energy. Converting gravity to thrust will allow our airplane to fly. How this energy is managed will determine your time aloft. Aerodynamics will be used to help resist the force of gravity from pulling the plane down too quickly. For an airplane to create lift (and counter gravity), it must move forward (thrust). Air fills all of the space around airplane just as it does around us. As the plane moves forward, the wing will divide the sea of air, some will go over it and some will go under it. If the plane causes the air molecules to move out of their natural position, it will take some of the energy (called drag, or the resistance to thrust). So the goal is to move the least amount of air necessary to achieve the aerodynamic benefit of creating lift. Lift is nothing more than creating a lower air pressure on one side of an object than the other. To create an upward lift (to combat the gravity pulling downward), we must cause the air molecules to slightly move out of their natural position. If we can get some of these molecules to spread apart from each other, this will decrease the air pressure in that area. If we can get the air molecules to push together a little closer, this will increase the air pressure in that area. The wing is our devise that is used to accomplish this. As the wing moves forward, it divides the air. If the wing is tilted so that the front edge is higher than the rear edge, the air going under it will be pushed down as it slides along the under side of the wing. This air is packed together a little more tightly with the other air molecules beneath them. This creates a slightly higher air pressure (under the wing). The air above the wing will have to be pulled downward to fill what otherwise would be a void in the path of this tilted wing moving forward. As the air rushes downward to fill this void, it must slightly spread apart. Air molecules that are spread apart have a lower

2 air pressure than molecules that are packed together. So the difference in the air pressure around the wing (higher below and lower above) is lift. The act of moving these air molecules takes energy. So making lift is not free. The payment is in the form of drag, which is the opposing force to thrust (the forward movement). So our goal is to make only as much lift as necessary to resist being pulled down too quickly. It is advantageous to go only as fast as necessary to create enough lift to help resist the pull of gravity. This will minimize the number of air molecules that are disturbed, which will reserve the energy available for forward movement (thrust). The speed is affected by changing the balance (or Center of Gravity) to make the airplane tilt its nose downward causing it to fly faster or upward to fly slower. This can be accomplished by the position of the clay on the airplane. The optimum setup will be to add clay to bring the plane up to the legal minimum weight of 2 grams. Hopefully when all of this clay is on the very front of the nose, it will have the Center of Gravity (balance point) too far forw ard causing the plane s nose to drop and fly too fast. T his w ill allow you to pinch off a small portion of that clay and move it back on the fuselage stick to adjust the Center of Gravity to where the plane flys best. Repositioning this small piece of clay w ill allow very delicate adjustm ents in the plane s balance to let you discover its best speed (and angle) of flight. If the Center of Gravity is still too far to the rear with all of the ballast clay on the nose, you will have two choices. Add more clay to the nose to get the desired Center of Gravity (making your plane heavier than required), or reposition the wing rearward (maybe ½ to start) in order to allow som e of the original ballast clay to be moved rearward to experiment with different Center of Gravity settings. Changing the shape or the angle of the wing will affect the position of the air molecules as they move around it, creating higher or lower pressure areas. Wings are normally cambered (curved) over the top surface. This is an effective way to let the air molecules more gradually move into the spread apart (lower pressure) position that we are after. N ew ton s F irst Law of Physics states that a body at rest will remain at rest until acted upon by an external force. Even these little air molecules follow this rule. Our wing will force them out of their position. But the quicker and the further that we make them move, the more energy that it takes. The highest performance results in disturbing the air molecules the minimum amount necessary to get the desired results and to more gradually move them into a new position. Or in aerodynamic terms, minimize drag. For this airplane (since it is so light), a rather flat camber was chosen because only a very small difference in air pressure is necessary to achieve our goal. A more curved upper surface may be needed if it were necessary to carry more weight with the same wing area. This airplane is also utilizing the technique of allowing the horizontal stabilizer (at the tail) to act as a second wing. This divides the duty of lifting the weight of the plane over the greatest wing area possible. This will make the Center of Gravity very sensitive as it will have the greatest effect on determining the angle that the plane flys through the air (the Angle of Attack).

3 The Angle of Attack is the angle of the wings in relation to the air that the plane is moving through. This angle has a major effect on how many air molecules we disturb as the plane moves forward. The flatter the angle the easier it penetrates through the air and the less energy that it takes. However there must be a positive Angle of Attack (that means the front edge is higher than the rear edge) to achieve lift. So once again, it is important to make the minimum amount of lift necessary to meet our goal of achieving the slowest sink rate possible. This means that we want a very small Angle of Attack. Each of the two wings (the regular wing and the horizontal stabilizer at the tail) is slightly different. The angle that they are attached to the fuselage is called the Angle of Incidence. Because of the tapered cut on the top of the fuselage stick, the horizontal stabilizer is attached with a very slight upward angle (positive Angle of Incidence). The wing is mounted on posts that allow adjustment of its Angle of Incidence. The term Decalage is a comparison of the Angle of Incidence of the wing and the Angle of Incidence of the tail. The more the forward edge of the wing is raised (without changing the angle of the tail), the more positive the Decalage is. Generally, some positive Decalage is necessary to allow the wing to gain slightly more lift than the tail when the speed increases. This is called positive Dynamic Stability. This is what allows the airplane to recover from a nosedive by gradually raising the nose until it reaches stabilized flight. For dependability this is a good thing since a freeflight airplane has no pilot to control the angle of the tail to help the plane recover. However, the slowest sink rate will be achieved when both wings are flying at their most efficient Angle of Attack. This may not provide dynamic stability. So this is a very important area of experimentation to find a very slow sink rate, but still have some positive stability to help return it to stable flight. You will have to decide which is better for you, more or less Dynamic Stability. Your launch technique will be a large factor. If you are convinced that you can dependably launch your plane off of the balloon at the perfect Angle of Attack, you can get by with less stability (and less Decalage) to possibly get better performance. With every change in the Angle of Incidence of the wing to the fuselage, it may take a change in the Center of Gravity. There is a relationship where the greater the Decalage (set by moving the forward wing post up, or the rear post down) the further forward your Center of Gravity will have to be (set by moving the small piece of clay forward) or adding more clay to the nose. Generally, the farther to the rear the Center of Gravity is, the less the Decalage will be and the less stability you will have. A Stall occurs when the wing increases its Angle of Attack and the speed decreases so m uch that the w ing can t generate enough lift to keep the airplane flying. A S tall is actually the point w here the air m oving over the w ing becom es so turbulent that it can t create the low pressure necessary for lift. A Stall is one of the most important things to watch for in studying the glide. Remember, the higher the nose comes up (increased Angle of Attack), the slower the speed will be and these are exactly the conditions that lead to a Stall. When the wing stalls, the nose drops, which will now lead to increased speed and allow the wing to start flying again. If you have some dynamic stability adjusted in, it should recover to a stable flight or more likely, begin flying and gradually

4 bring its nose up enough to slow it down until it stalls again, where the cycle is repeated. Altitude is lost with each stall cycle and will hurt flight times. As mentioned before, if you are pushing the edge and have a very rear Center of Gravity (and a corresponding small degree of Decalage), you will have less stability and the airplane could drop much farther in a stall or possibly not recover at all and dive straight to the floor. To decrease the tendency to stall, either move the small piece of clay forward or move the forward wing post down (or the rear up). A tiny bit of buffeting (bounciness) that occurs just before a stall is generally OK and tells you that you are as slow as you can possibly be. This will probably be detected at a few places on its glide down (with very little loss in altitude) if you are near the optimum adjustment. When building the wings, the tips are raised to be higher that at the center. This is called Dihedral. The Dihedral allows the plane to be laterally stable (always keeping the wings level, top side up). If the airplane were to tilt to the left, the left wing would now generate more lift (being more parallel to the ground) than the right wing that would be pointed up at a greater angle, not allowing it to lift upward against gravity as well. This will cause the lift wing to rise while the right wing will come down until both wings are level. Another technique used in this airplane to enhance lateral stability is through the use of wing posts to raise the wing above the fuselage and allow the fuselage and ballast weight to act as a pendulum to keep it right side up. It is necessary to glide in a circle to stay within the boundaries and away from obstacles found in nearly all flying sites. Indoor modelers traditionally fly in a left circle though for your glider, either direction could work as well. Flying to the left could help to avoid collisions when flying with other modelers. There are two very effective ways to make you plane turn left and a blend of both seems to be the most effective. The Rudder can be slightly offset or curved with the rear edge to the left. However the other very low drag method is to tilt the Horizontal Stabilizer slightly to the right (the left side higher than the right). It looks rather unusual but allows the lift generated by the Horizontal Stabilizer to pull the tail slightly outward, causing the plane to turn left. More tilt, more turn. Generally, a larger circle will yield more efficiency (with lower overall drag), but any larger than about 30 can allow the plane to drift into obstacles by the end of the flight. A perfect launch will accelerate the airplane forward to its stable speed of flight at the Angle of Attack that it flys in stable flight. Faster, and the airplane could slightly nose up causing a stall which will cause the plane to drop downward as described above. Slower, and the plane will drop until it reaches its stable flying speed, but altitude and time aloft will be lost. In extreme situations where the Decalage is minimal and the Center of Gravity is aft, the plane may dive all the way to the ground and not recover. The best launch seems to be made by using a second launch string to rotate the balloon in the direction of flight, with the airplane resting on a cradle above the balloon to control the angle of the plane during launch.

5 Troubleshooting Problems If you have built your plane according to the directions and you find a peculiarity in the way that it flys, a close inspection should uncover the problem. It is very important that the two sides of the plane are balanced and symmetrical. When balancing the airplane s fuselage on the back of a knife blade, see if one side consistently drops down showing that it is heavier. If this is the case, either the heavy side will have to be lightened (once covered this is very difficult) or the light side needs to have weight added. A tiny speck of clay added to the very tip of the wing should bring it into balance. A more permanent fix is to add a little glue to the light wing tip until it balances. Check for any warps in either wing or in the horizontal stabilizer. One of the most puzzling situations can occur if the horizontal stabilizer is warped. Each wing should look like an exact duplicate of the other when looking from the front end. If one looks a little twisted it will definitely cause problems. A twist will cause the lift to change across that wing or stabilizer. Generally the effect on the flight is more pronounced when flying faster (speed dependant). If the twist is in a direction where the rear edge is lower, it will have increased lift on that side and will affect the turn (sometimes even making the plane turn the opposite direction than you planned) and the levelness of the wings in flight. A twist where the forward edge is lower will reduce the lift of that wing. Because of the leverage effect, the area near the tip is the most critical. Generally, the use of your fingertips to gently massage the effected spar into the proper shape will do the trick. In more severe cases, a small brush with acetone will soften up the glue joints to allow the pieces to gently be repositioned. In this case it would be a good idea to figure out a means to prop or weight the parts into the proper shape while the glue rehardens. Acetone (the major ingredient in fingernail polish remover that can also be used) is a very hot solvent and will readily melt plastic, however not the Mylar covering. Most often it is necessary to reapply the acetone several times to fully soften the model airplane cement joint because it evaporates so quickly. If your plane repeatedly stalls, either add clay to the nose (or move what you have forward) or slightly lower the front edge of the wing (either by moving the front wing post down or raising the rear). If it seems to fly too fast and hold its nose down, move a piece of the clay back or raise the front of the wing.

Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket.

Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket. Acceleration= Force OVER Mass Design Considerations for Water-Bottle Rockets The next few pages are provided to help in the design of your water-bottle rocket. Newton s First Law: Objects at rest will

More information

To provide insight into the physics of arrow flight and show how archers adapt their equipment to maximize effectiveness.

To provide insight into the physics of arrow flight and show how archers adapt their equipment to maximize effectiveness. The Science of Archery Godai Katsunaga Purpose To provide insight into the physics of arrow flight and show how archers adapt their equipment to maximize effectiveness. Archery Archery is one of the events

More information

The Paper Aeroplane Book

The Paper Aeroplane Book The Paper Aeroplane Book by Seymour Simon Illustrated by Byron Barton What makes paper aeroplanes soar and plummet, loop and glide? Why do they fly at all? This book will show you how to make them and

More information

High Alpha 3D Maneuvers

High Alpha 3D Maneuvers High Alpha 3D Maneuvers Harrier Pass Elevator Back Flip Parachute Whip Stalls Rolling Harrier 3D Rolling Turn 3D Knife Edge C-82 Rudder Warmup Note: Every flight mode and maneuver presented in this section

More information

Wright Brothers Flying Machine

Wright Brothers Flying Machine Original broadcast: November, 00 Wright Brothers Flying Machine Program Overview NOVA presents the story of Orville and Wilbur Wright, who invented the first powered airplane to achieve sustained, controlled

More information

FREEBIRD THE ORIGINAL D.I.Y. ORNITHOPTER! Tools and Glue. Required Materials

FREEBIRD THE ORIGINAL D.I.Y. ORNITHOPTER! Tools and Glue. Required Materials Do not try to make your ornithopter using "household materials". If you want it to fly, you have to build it right. FREEBIRD THE ORIGINAL D.I.Y. ORNITHOPTER! Wingspan: 16 inches Weight: 1/4 ounce The Ornithopter

More information

Micro. Pitts Special for the RFFS-100 by Chris O Riley

Micro. Pitts Special for the RFFS-100 by Chris O Riley Micro Pitts Special for the RFFS-100 by Chris O Riley F1 F2 F3 F4 1 2 3 4 All wood 1/32 inch sheet unless otherwise stated. F1 F2 F3 F4 Small balsa blocks for LG reinforcement Small balsa blocks for LG

More information

Flightlab Ground School 5. Longitudinal Static Stability

Flightlab Ground School 5. Longitudinal Static Stability Flightlab Ground School 5. Longitudinal Static Stability Copyright Flight Emergency & Advanced Maneuvers Training, Inc. dba Flightlab, 2009. All rights reserved. For Training Purposes Only Longitudinal

More information

Model Aircraft Design

Model Aircraft Design Model Aircraft Design A teaching series for secondary students Contents Introduction Learning Module 1 How do planes fly? Learning Module 2 How do pilots control planes? Learning Module 3 What will my

More information

Airplane/Glider Design Guidelines and Design Analysis Program

Airplane/Glider Design Guidelines and Design Analysis Program Airplane/Glider Design Guidelines and Design Analysis Program Ever have the urge to design your own plane but didn t feel secure enough with your usual TLAR (that looks about right) methods to invest all

More information

harbor cub Electric Remote Control Airplane Model 92906 assembly & Operating Instructions

harbor cub Electric Remote Control Airplane Model 92906 assembly & Operating Instructions harbor cub Electric Remote Control Airplane Model 92906 assembly & Operating Instructions IMPORTANT: If damage is caused due to a crash, your warranty is void. Visit our website at: http://www.harborfreight.com

More information

parts of an airplane Getting on an Airplane BOX Museum Aeronautics Research Mission Directorate in a Series

parts of an airplane Getting on an Airplane BOX Museum Aeronautics Research Mission Directorate in a Series National Aeronautics and Space Administration GRADES K-2 Aeronautics Research Mission Directorate Museum in a BOX Series www.nasa.gov parts of an airplane Getting on an Airplane MUSEUM IN A BOX Getting

More information

Aerodynamics of Flight

Aerodynamics of Flight Chapter 2 Aerodynamics of Flight Introduction This chapter presents aerodynamic fundamentals and principles as they apply to helicopters. The content relates to flight operations and performance of normal

More information

Science in. Wind WHAT S GOING ON? In the Terminal or in the Airplane. Try This:

Science in. Wind WHAT S GOING ON? In the Terminal or in the Airplane. Try This: Science in Your Airplane Seat Why are airplane wings shaped the way they are? What can pretzels tell you about flying? Instead of catching a nap or flipping through the in-flight magazine, do some experiments

More information

Lab 8 Notes Basic Aircraft Design Rules 6 Apr 06

Lab 8 Notes Basic Aircraft Design Rules 6 Apr 06 Lab 8 Notes Basic Aircraft Design Rules 6 Apr 06 Nomenclature x, y longitudinal, spanwise positions S reference area (wing area) b wing span c average wing chord ( = S/b ) AR wing aspect ratio C L lift

More information

Research question: How does the velocity of the balloon depend on how much air is pumped into the balloon?

Research question: How does the velocity of the balloon depend on how much air is pumped into the balloon? Katie Chang 3A For this balloon rocket experiment, we learned how to plan a controlled experiment that also deepened our understanding of the concepts of acceleration and force on an object. My partner

More information

How to increase Bat Speed & Bat Quickness / Acceleration

How to increase Bat Speed & Bat Quickness / Acceleration How to increase Bat Speed & Bat Quickness / Acceleration What is Bat Speed? Bat Speed: Bat speed is measured in miles per hour (MPH) and considers only the highest speed of the bat head (peak velocity)

More information

LEVEL I SKATING TECHNICAL. September 2007 Page 1

LEVEL I SKATING TECHNICAL. September 2007 Page 1 SKATING September 2007 Page 1 SKATING SKILLS The game of Ice Hockey is a fast-paced, complex, team sport, which demands quick thinking, fast reactions and special athletic skills. Skating is the most important

More information

2 Newton s First Law of Motion Inertia

2 Newton s First Law of Motion Inertia 2 Newton s First Law of Motion Inertia Conceptual Physics Instructor Manual, 11 th Edition SOLUTIONS TO CHAPTER 2 RANKING 1. C, B, A 2. C, A, B, D 3. a. B, A, C, D b. B, A, C, D 4. a. A=B=C (no force)

More information

Build and Fly the Fokker D- 8

Build and Fly the Fokker D- 8 Details are carefully carried out. Note movable controls The high wing gives it unusual stability Build and Fly the Fokker D- 8 Complete Data From Which You Can Build a Successful Model of a Famous German

More information

If you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ

If you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ Experiment 4 ormal and Frictional Forces Preparation Prepare for this week's quiz by reviewing last week's experiment Read this week's experiment and the section in your textbook dealing with normal forces

More information

The aerodynamic center

The aerodynamic center The aerodynamic center In this chapter, we re going to focus on the aerodynamic center, and its effect on the moment coefficient C m. 1 Force and moment coefficients 1.1 Aerodynamic forces Let s investigate

More information

Section 4: The Basics of Satellite Orbits

Section 4: The Basics of Satellite Orbits Section 4: The Basics of Satellite Orbits MOTION IN SPACE VS. MOTION IN THE ATMOSPHERE The motion of objects in the atmosphere differs in three important ways from the motion of objects in space. First,

More information

What did the Wright brothers invent?

What did the Wright brothers invent? What did the Wright brothers invent? The airplane, right? Well, not exactly. Page 1 of 15 The Wrights never claimed to have invented the airplane, or even the first airplane to fly. In their own words,

More information

Turn off all electronic devices

Turn off all electronic devices Balloons 1 Balloons 2 Observations about Balloons Balloons Balloons are held taut by the gases inside Some balloon float in air while others don t Hot-air balloons don t have to be sealed Helium balloons

More information

Rockets: Taking Off! Racing Balloon

Rockets: Taking Off! Racing Balloon Rockets: Taking Off! For every action there is an equal and opposite reaction. Rockets and Balloons What happens when you blow up a balloon then let it go? Does the balloon move through the air? Did you

More information

APPENDIX 3-B Airplane Upset Recovery Briefing. Briefing. Figure 3-B.1

APPENDIX 3-B Airplane Upset Recovery Briefing. Briefing. Figure 3-B.1 APPENDIX 3-B Airplane Upset Recovery Briefing Industry Solutions for Large Swept-Wing Turbofan Airplanes Typically Seating More Than 100 Passengers Briefing Figure 3-B.1 Revision 1_August 2004 Airplane

More information

TopSky DLG Installation Manual

TopSky DLG Installation Manual TopSky DLG Installation Manual Attention: Because after the compound materials solidify, there will be ammonia iris on the surface, which affect the bonding strength afterwards. Please polish with sandpaper

More information

Chapter 4: Newton s Laws: Explaining Motion

Chapter 4: Newton s Laws: Explaining Motion Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state

More information

30 minutes in class, 2 hours to make the first time

30 minutes in class, 2 hours to make the first time Asking questions and defining problems Developing and using models Planning and carrying out investigations 30 minutes in class, 2 hours to make the first time 3 12 x 24 x ¾ inch plywood boards 1 x 12

More information

LESSON 17: Balloon Rockets ESTIMATED TIME Setup: 5 10 minutes Procedure: 5 10 minutes

LESSON 17: Balloon Rockets ESTIMATED TIME Setup: 5 10 minutes Procedure: 5 10 minutes LESSON 17: Balloon Rockets ESTIMATED TIME Setup: 5 10 minutes Procedure: 5 10 minutes DESCRIPTION Apply the concepts of pressure and Newton s laws of motion to build simple rockets. OBJECTIVE This lesson

More information

DL50 Discus Launch Glider

DL50 Discus Launch Glider DL50 Discus Launch Glider DL50 Specifications Length: 39 in. (99 cm.) Wingspan: 50in. (127 cm.) Wing Area: 275in 2 (1774 cm 2 ) Weight: 8oz. (227 g.) Revision History Date Revision Notes/Comments 6/12/2004

More information

Get to Know Golf! John Dunigan

Get to Know Golf! John Dunigan Get to Know Golf! John Dunigan Get to Know Golf is an initiative designed to promote the understanding the laws that govern ball flight. This information will help golfers develop the most important skill

More information

Chapter 3 Student Reading

Chapter 3 Student Reading Chapter 3 Student Reading If you hold a solid piece of lead or iron in your hand, it feels heavy for its size. If you hold the same size piece of balsa wood or plastic, it feels light for its size. The

More information

rarecorvettes.com, joe@rarecorvettes.com, (831) 475-4442 Pacific Time Zone

rarecorvettes.com, joe@rarecorvettes.com, (831) 475-4442 Pacific Time Zone INTRODUCTION TO WHEEL ALIGNMENT A SHORT COURSE ON WHEEL ALIGNMENT, FRONT AND REAR PREPARED FOR THE N.C.R.S. NATIONAL CONVENTION JUNE 29 TO JULY 5, 2012 by: JOE CALCAGNO, RARE CORVETTES rarecorvettes.com,

More information

Bottle Rockets. Vanderbilt Student Volunteers for Science. Fall 2008

Bottle Rockets. Vanderbilt Student Volunteers for Science. Fall 2008 Bottle Rockets Vanderbilt Student Volunteers for Science Fall 2008 I. Introduction: History of Rockets Explain to the students that rockets are more than two thousand years old. Give the students a BRIEF

More information

Educator Guide to S LAR SYSTEM. 1875 El Prado, San Diego CA 92101 (619) 238-1233 www.rhfleet.org

Educator Guide to S LAR SYSTEM. 1875 El Prado, San Diego CA 92101 (619) 238-1233 www.rhfleet.org Educator Guide to S LAR SYSTEM 1875 El Prado, San Diego CA 92101 (619) 238-1233 www.rhfleet.org Pre-Visit Activity: Orbital Paths Materials: Plastic Plate Marble Scissors To Do: 1. Put the plate on a flat

More information

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

More information

Pushes and Pulls. TCAPS Created June 2010 by J. McCain

Pushes and Pulls. TCAPS Created June 2010 by J. McCain Pushes and Pulls K i n d e r g a r t e n S c i e n c e TCAPS Created June 2010 by J. McCain Table of Contents Science GLCEs incorporated in this Unit............... 2-3 Materials List.......................................

More information

Drag Downforce DRAfting

Drag Downforce DRAfting GRES 5 7 rag ownforce Rfting n erodynamics STEM Learning Guide There s more online! You can go to accelerationnation.com to create a custom profile, earn badges, and learn more about the Three s of Speed!

More information

High flyers: thinking like an engineer

High flyers: thinking like an engineer Engineering, Physics I TEACH High flyers: thinking like an engineer The glider built by the Wright brothers in 1902 was the first flying machine able to change direction in a controlled way. Designing

More information

T E A C H E R S N O T E S

T E A C H E R S N O T E S T E A C H E R S N O T E S Focus: Students explore air and its properties. They will also learn about the connection between air pressure and weather, forces that can be used for flight, how these forces

More information

Chapter 3 Falling Objects and Projectile Motion

Chapter 3 Falling Objects and Projectile Motion Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave

More information

TOTAL ENERGY COMPENSATION IN PRACTICE

TOTAL ENERGY COMPENSATION IN PRACTICE TOTAL ENERGY COMPENSATION IN PRACTICE by Rudolph Brozel ILEC GmbH Bayreuth, Germany, September 1985 Edited by Thomas Knauff, & Dave Nadler April, 2002 This article is copyright protected ILEC GmbH, all

More information

Wing Loading and its Effects

Wing Loading and its Effects www.performancedesigns.com I. Wing Loading Defined Wing Loading and its Effects A seminar by Performance Designs, Inc. Speaker: John LeBlanc Wing loading is a measurement of how much total weight is supported

More information

Instructions for Using the Watch Works Tool Kit to Change a Watch Battery

Instructions for Using the Watch Works Tool Kit to Change a Watch Battery Instructions for Using the Watch Works Tool Kit to Change a Watch Battery Click on this link http://www.allamericanwatches.com/site/626101/product/e2306-a to purchase the Watch Battery Replacement Tool

More information

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

More information

AIRCRAFT GENERAL www.theaviatornetwork.com GTM 1.1 2005 1-30-05 CONTENTS

AIRCRAFT GENERAL www.theaviatornetwork.com GTM 1.1 2005 1-30-05 CONTENTS www.theaviatornetwork.com GTM 1.1 CONTENTS INTRODUCTION... 1.2 GENERAL AIRPLANE... 1.2 Fuselage... 1.2 Wing... 1.2 Tail... 1.2 PROPELLER TIP CLEARANCE... 1.2 LANDING GEAR STRUT EXTENSION (NORMAL)... 1.2

More information

LAND LIKE A PRO. Jul 10, 2011 19 Comments by John Reid

LAND LIKE A PRO. Jul 10, 2011 19 Comments by John Reid LAND LIKE A PRO Jul 10, 2011 19 Comments by John Reid We ve all heard the old adage, Takeoffs are optional; landings are mandatory. Bringing a plane back to the ground safely is a pilot s top goal. Unfortunately,

More information

Test Bank - Chapter 3 Multiple Choice

Test Bank - Chapter 3 Multiple Choice Test Bank - Chapter 3 The questions in the test bank cover the concepts from the lessons in Chapter 3. Select questions from any of the categories that match the content you covered with students. The

More information

Review Chapters 2, 3, 4, 5

Review Chapters 2, 3, 4, 5 Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freely-falling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string

More information

98 Turbine Vulcan Build photos

98 Turbine Vulcan Build photos 98 Turbine Vulcan Build photos Just some of the useful tools needed plus a quality razor plane FUSELAGE Note: Fitting parts back to front is an easy mistake to make with this build, so mark all part with

More information

Katana Flight Characteristics and Frequently Asked Questions

Katana Flight Characteristics and Frequently Asked Questions Katana Flight Characteristics and Frequently Asked Questions Introduction Performance Designs Katana is a high-performance canopy designed for experienced canopy pilots. The Katana has been described as

More information

Introduction to RC Airplanes. RC Airplane Types - Trainers, Sport RC Planes, 3D Acrobat RC Airplanes, Jets & More

Introduction to RC Airplanes. RC Airplane Types - Trainers, Sport RC Planes, 3D Acrobat RC Airplanes, Jets & More Introduction to RC Airplanes RC Airplane Types - Trainers, Sport RC Planes, 3D Acrobat RC Airplanes, Jets & More RC Airplane Types RC airplanes come in a few distinct categories. Each category generally

More information

5-Minute Refresher: FRICTION

5-Minute Refresher: FRICTION 5-Minute Refresher: FRICTION Friction Key Ideas Friction is a force that occurs when two surfaces slide past one another. The force of friction opposes the motion of an object, causing moving objects to

More information

Assembly and Operating Manual Nano warbirds FW 190 Specification: *Length: 18 1/2"(470mm) *Wing Span: 21 7/10"(550mm)

Assembly and Operating Manual Nano warbirds FW 190 Specification: *Length: 18 1/2(470mm) *Wing Span: 21 7/10(550mm) Assembly and Operating Manual Nano warbirds FW 190 Specification: *Length: 18 1/2"(470mm) *Wing Span: 21 7/10"(550mm) *Flying Weight: 6 1/2 oz (185g) Dear customer, Congratulations on your choice of a

More information

English Language Arts Book 3

English Language Arts Book 3 English Language Arts Grade 6 Sample Test 2005 Name TIPS FOR TAKING THE SAMPLE TEST Here are some suggestions to help you do your best: Be sure to read carefully all the directions in the test book. Plan

More information

Amendment List Date Amended by Incorporated No Date 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 i

Amendment List Date Amended by Incorporated No Date 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 i No Amendment List Date Amended by Date Incorporated 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 i ACP 33 FLIGHT CONTENTS Volume 1... History of Flight Volume 2... Principles of Flight Volume 3... Propulsion

More information

What is a Mouse-Trap

What is a Mouse-Trap What is a Mouse-Trap Car and How does it Work? A mouse-trap car is a vehicle that is powered by the energy that can be stored in a wound up mouse-trap spring. The most basic design is as follows: a string

More information

Inclined Plane: Distance vs. Force

Inclined Plane: Distance vs. Force 1a Inclined Plane: Distance vs. Force Look at the inclined plane model you built for Card 2. It s a ramp, so it s easy to slide or roll things up and down it. As you noticed, it is a little more difficult

More information

III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument

III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument III. Applications of Force and Motion Concepts Concept Review Conflicting Contentions 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument Qualitative Reasoning 1. Dropping Balls 2. Spinning Bug

More information

Basic Rocket Stability

Basic Rocket Stability Basic Rocket Stability Adapted from Ed Bertchy s web site : http://www.azstarnet.com/%7eelb/rockets/ Model Rocket Stability: The Basics If you want to start scratch building your own rockets, it helps

More information

Biomechanical Analysis of the Deadlift (aka Spinal Mechanics for Lifters) Tony Leyland

Biomechanical Analysis of the Deadlift (aka Spinal Mechanics for Lifters) Tony Leyland Biomechanical Analysis of the Deadlift (aka Spinal Mechanics for Lifters) Tony Leyland Mechanical terminology The three directions in which forces are applied to human tissues are compression, tension,

More information

How To Understand General Relativity

How To Understand General Relativity Chapter S3 Spacetime and Gravity What are the major ideas of special relativity? Spacetime Special relativity showed that space and time are not absolute Instead they are inextricably linked in a four-dimensional

More information

Physics Section 3.2 Free Fall

Physics Section 3.2 Free Fall Physics Section 3.2 Free Fall Aristotle Aristotle taught that the substances making up the Earth were different from the substance making up the heavens. He also taught that dynamics (the branch of physics

More information

Design and Structural Analysis of the Ribs and Spars of Swept Back Wing

Design and Structural Analysis of the Ribs and Spars of Swept Back Wing Design and Structural Analysis of the Ribs and Spars of Swept Back Wing Mohamed Hamdan A 1, Nithiyakalyani S 2 1,2 Assistant Professor, Aeronautical Engineering & Srinivasan Engineering College, Perambalur,

More information

The Case for Mode 4 Transmitters, or, "How North America Got It Wrong", or, "How Most of the Planet Got It Wrong"

The Case for Mode 4 Transmitters, or, How North America Got It Wrong, or, How Most of the Planet Got It Wrong The Case for Mode 4 Transmitters, or, "How North America Got It Wrong", or, "How Most of the Planet Got It Wrong" Martin Newell October 2009 Updated October 2010 The great majority of RC pilots in North

More information

The Science of Flight

The Science of Flight The Science of Flight This resource pack is a collaborative effort between the Royal Air Force Museum, Cosford and St. Patrick s Catholic Primary School, Wellington. Supported by MLA West Midlands. CATHOLIC

More information

Range of Motion. A guide for you after spinal cord injury. Spinal Cord Injury Rehabilitation Program

Range of Motion. A guide for you after spinal cord injury. Spinal Cord Injury Rehabilitation Program Range of Motion A guide for you after spinal cord injury Spinal Cord Injury Rehabilitation Program This booklet has been written by the health care providers who provide care to people who have a spinal

More information

Advanced Blade Design

Advanced Blade Design Advanced Blade Design i n s t r u c t i o n s About KidWind The KidWind Project is a team of teachers, students, engineers, and practitioners exploring the science behind wind energy in classrooms around

More information

What is Camber, Castor and Toe?

What is Camber, Castor and Toe? What is Camber, Castor and Toe? Camber is probably the most familiar suspension term to owners. It is the angle of the wheels relative to the surface of the road, looking at the car from the front or rear.

More information

Printing Letters Correctly

Printing Letters Correctly Printing Letters Correctly The ball and stick method of teaching beginners to print has been proven to be the best. Letters formed this way are easier for small children to print, and this print is similar

More information

McCAULEY FULL FEATHERING CONSTANT SPEED PROPELLER GOVERNING SYSTEM. Professor Von Kliptip Answers Your Questions About The

McCAULEY FULL FEATHERING CONSTANT SPEED PROPELLER GOVERNING SYSTEM. Professor Von Kliptip Answers Your Questions About The Professor Von Kliptip Answers Your Questions About The McCAULEY FULL FEATHERING CONSTANT SPEED PROPELLER GOVERNING SYSTEM FOR COUNTERWEIGHTED PRESSURE-TO- DECREASE PITCH PROPELLERS ON RECIPROCATING ENGINES

More information

www.cornholesupplies.com

www.cornholesupplies.com www.cornholesupplies.com How To Build Regulation Cornhole Boards Home of the Original Cornhole Bags and Boards Supply List: 1-4' X 8' Piece of Plywood (pre sanded) 4-2" X 4" X 8' Studs (2 by 4s make sure

More information

Wing Design: Major Decisions. Wing Area / Wing Loading Span / Aspect Ratio Planform Shape Airfoils Flaps and Other High Lift Devices Twist

Wing Design: Major Decisions. Wing Area / Wing Loading Span / Aspect Ratio Planform Shape Airfoils Flaps and Other High Lift Devices Twist Wing Design: Major Decisions Wing Area / Wing Loading Span / Aspect Ratio Planform Shape Airfoils Flaps and Other High Lift Devices Twist Wing Design Parameters First Level Span Area Thickness Detail Design

More information

Physics and Model Rockets

Physics and Model Rockets Physics and Model Rockets A Teacher s Guide and Curriculum for Grades 8-11 Developed by Sylvia Nolte, Ed. D. Edited by Thomas E. Beach, Ph. D., Tim Van Milligan, A.E. and Ann Grimm EstesEducator.com educator@estesrockets.com

More information

Conditioning From Gym To Home To Gym

Conditioning From Gym To Home To Gym Page 1 of 6 Conditioning From Gym To Home To Gym by Vladimir Artemov, Olympic and World Champion and USA Gymnastics Women's National Clinician In the beginning, and throughout the training process, conditioning

More information

Range of Motion Exercises

Range of Motion Exercises Range of Motion Exercises Range of motion (ROM) exercises are done to preserve flexibility and mobility of the joints on which they are performed. These exercises reduce stiffness and will prevent or at

More information

Friction and Gravity. Friction. Section 2. The Causes of Friction

Friction and Gravity. Friction. Section 2. The Causes of Friction Section 2 Friction and Gravity What happens when you jump on a sled on the side of a snow-covered hill? Without actually doing this, you can predict that the sled will slide down the hill. Now think about

More information

The Mechanics of Arrow Flight 101 By Daniel Grundman Flex-Fletch

The Mechanics of Arrow Flight 101 By Daniel Grundman Flex-Fletch The Mechanics of Arrow Flight 101 By Daniel Grundman Flex-Fletch Thunk! The arrow you just released from your bow has hit its target. Or has it? Due to a number of factors, your arrow may or may not have

More information

Build Your Own Solar Car Teach build learn renewable Energy! Page 1 of 1

Build Your Own Solar Car Teach build learn renewable Energy! Page 1 of 1 Solar Car Teach build learn renewable Energy! Page 1 of 1 Background Not only is the sun a source of heat and light, it s a source of electricity too! Solar cells, also called photovoltaic cells, are used

More information

Chapter 6 Lateral static stability and control - 3 Lecture 21 Topics

Chapter 6 Lateral static stability and control - 3 Lecture 21 Topics Chapter 6 Lateral static stability and control - 3 Lecture 21 Topics 6.11 General discussions on control surface 6.11.1 Aerodynamic balancing 6.11.2 Set back hinge or over hang balance 6.11.3 Horn balanace

More information

The Effect of Dropping a Ball from Different Heights on the Number of Times the Ball Bounces

The Effect of Dropping a Ball from Different Heights on the Number of Times the Ball Bounces The Effect of Dropping a Ball from Different Heights on the Number of Times the Ball Bounces Or: How I Learned to Stop Worrying and Love the Ball Comment [DP1]: Titles, headings, and figure/table captions

More information

BUILDING INSTRUCTION SAL-DLG MINI-FIREWORKS. MINI-Fireworks building instruction May 2015. www.pcm.at 1

BUILDING INSTRUCTION SAL-DLG MINI-FIREWORKS. MINI-Fireworks building instruction May 2015. www.pcm.at 1 Wingspan [mm]: 950 Aspect ratio: 7,7 Wing area [dm2]: 11,7 Wing loading [g/dm²] : 12-13 Takeoff weight [g]: 155 (Mini-S), 165 (Mini-Q) Airfoil: AG03 mod 3-side-view version with ailerons BUILDING INSTRUCTION

More information

Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy

Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change

More information

Z-Truck (Vertical Moving) Z-truck Flag. Y-Truck (Horizontal Moving) FIGURE 1: VIEW OF THE Z-TRUCK. Flexshaft Assembly

Z-Truck (Vertical Moving) Z-truck Flag. Y-Truck (Horizontal Moving) FIGURE 1: VIEW OF THE Z-TRUCK. Flexshaft Assembly Replacing the Cover Micro-Switch To remove and replace the Cover Micro-Switch you will need the following tools: #2 Phillips screwdriver (magnetic tip preferred) #1 Phillips screwdriver (magnetic tip preferred)

More information

A proper warm-up is important before any athletic performance with the goal of preparing the athlete both mentally and physically for exercise and

A proper warm-up is important before any athletic performance with the goal of preparing the athlete both mentally and physically for exercise and A proper warm-up is important before any athletic performance with the goal of preparing the athlete both mentally and physically for exercise and competition. A warm-up is designed to prepare an athlete

More information

Lift vs. Gravity Questions:

Lift vs. Gravity Questions: LIFT vs GRAVITY Sir Isaac Newton, an English scientist, observed the force of gravity when he was sitting under a tree and an apple fell on his head! It is a strong force that pulls everything down toward

More information

Routine For: OT - General Guidelines/Energy Conservation (Caregiver)

Routine For: OT - General Guidelines/Energy Conservation (Caregiver) GENERAL GUIDELINES - 9 Tips for Exercise: Body Mechanics for Helper - To protect back, stay as upright as possible and keep head in line with trunk. - Always position yourself as close as possible to the

More information

Whole Hand Activities

Whole Hand Activities Activities Walk & Flip 5 Baton Twirl Rotate the pencil in, around and between all your fingers like it was a baton. 10 Walk your fingers up the pencil (your index will look like an inchworm climbing the

More information

Behavioral Animation Simulation of Flocking Birds

Behavioral Animation Simulation of Flocking Birds Behavioral Animation Simulation of Flocking Birds Autonomous characters determine their actions Simulating the paths of individuals in: flocks of birds, schools of fish, herds of animals crowd scenes 1.

More information

Quest for Speed. Discover Engineering. Youth Handouts

Quest for Speed. Discover Engineering. Youth Handouts Discover Engineering Youth Handouts Activity 1: Spooling Around Name: Date: Materials List Wooden spool Nail Flat washer Rubber bands Craft stick Nut Tape measure Calculator Masking tape Procedure 1. To

More information

Standing with legs slightly apart, inhale and expand chest and shoulders; exhale and draw in chest and shoulders.

Standing with legs slightly apart, inhale and expand chest and shoulders; exhale and draw in chest and shoulders. ILLUSTRATED EXERCISE #4 PAGE 1 2012 Bringing the Body to the Stage and Screen and Beyond by Annette Lust 1 Standing with legs slightly apart, inhale and expand chest and shoulders; exhale and draw in chest

More information

Simple Machines. Figure 2: Basic design for a mousetrap vehicle

Simple Machines. Figure 2: Basic design for a mousetrap vehicle Mousetrap Vehicles Figure 1: This sample mousetrap-powered vehicle has a large drive wheel and a small axle. The vehicle will move slowly and travel a long distance for each turn of the wheel. 1 People

More information

THE EFFECT OF BLADE ANGLE AND SIZE ON WIND TURBINE PERFORMANCE

THE EFFECT OF BLADE ANGLE AND SIZE ON WIND TURBINE PERFORMANCE THE EFFECT OF BLADE ANGLE AND SIZE ON WIND TURBINE PERFORMANCE Anish Bhattacharya, 8 th Grade, Unity Point School District 140 PURPOSE We have experienced a major fall in the economy in the recent past.

More information

Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion

Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

More information

TOF FUNDAMENTALS TUTORIAL

TOF FUNDAMENTALS TUTORIAL TOF FUNDAMENTALS TUTORIAL Presented By: JORDAN TOF PRODUCTS, INC. 990 Golden Gate Terrace Grass Valley, CA 95945 530-272-4580 / 530-272-2955 [fax] www.rmjordan.com [web] info@rmjordan.com [e-mail] This

More information

Suggested Activities Processes that Shape the Earth: Earth s Structure and Plate Tectonics

Suggested Activities Processes that Shape the Earth: Earth s Structure and Plate Tectonics Suggested Activities Processes that Shape the Earth: Earth s Structure and Plate Tectonics From Harcourt Science Teacher Ed. Source (Grade Level) Title Pages Concept Harcourt Science (4) The Layers of

More information

Plate Tectonics Web-Quest

Plate Tectonics Web-Quest Plate Tectonics Web-Quest Part I: Earth s Structure. Use the following link to find these answers: http://www.learner.org/interactives/dynamicearth/structure.html 1. Label the layers of Earth in the diagram

More information

4) Read and study the steps and illustrations first to get an overall picture of the project. Then come back and commence practice.

4) Read and study the steps and illustrations first to get an overall picture of the project. Then come back and commence practice. How to make a wire rosary Our Lady s Rosary Makers www.olrm.org Supplies Needed To make one wire rosary you need: Rosary Pliers 8 ft. of wire (we suggest wire no larger than 18 gauge and no smaller than

More information