# HALF WAVE AND FULL WAVE RECTIFIER CIRCUITS

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA KAMPUS SKUDAI JOHOR SKMM 2921 ELECTRIC LABORATORY EXPERIMENT-2 HALF WAVE AND FULL WAVE RECTIFIER CIRCUITS Prepared by: 1. Dr. Bambang Supriyo Approved by: Head of Department Name: Signature and Stamp: Signature and Stamp: Date: Date: 1

2 I. PRELIMINARY EXERCISE Important Note: You are required to do this BEFORE the lab session 1. Search in the various literature sources, at least five (5) sources, (book, journal, proceeding, conference paper or internet) and write short introduction, basic theory of diode, half wave rectifier circuit and 4-diode full wave rectifier circuit. 2. Describe how half wave rectifier circuit and 4-diode full wave rectifier work. 3. Write down relationship between peak, root mean square (rms) and average (DC) values of half wave and full wave rectified sinusoidal signal. 4. For load resistor and capacitor, write down average (DC) values of half wave and full wave rectified sinusoidal signal output related to both output frequency and peak-to-peak ripple voltage. 5. List down your literature sources and use as Reference in your Laboratory Short Report. 2

3 II. EXPERIMENT Half Wave and Full Wave Rectifier Circuits 1. Aims: a. To build a half wave and full wave rectifier circuits b. To measure and record their voltages and output curves. LAB SHEET-Experiment-2 c. To investigate the influence of load resistor and capacitor on the output voltage. 2. Equipments No. Quantity Item Code 1 1 Rastered socket panel Bridging plug Connecting lead, red, 25 cm Connecting lead, blue, 25 cm Connecting lead, red, 50 cm Connecting lead, blue, 50 cm Resistor 100 Ω 8 4 Diode BY Resistor 1 kω 10 1 Capacitor 100 uf / 40V 11 1 Capacitor 470 uf / 40V 12 1 Capacitor 1000 uf / 40V 13 2 Multimeter (Voltmeter) 14 1 AC Power Supply (12Vac, CT [0 V]) 15 1 Dual Channel Oscilloscope 16 2 Cable probe oscilloscope 3. Procedure Precaution: Make sure the AC power supply switch is turned off before starting the experiment. Initial set up: please make sure that the oscilloscope has been correctly set for amplitude, frequency and zero volt adjustments. Set the oscilloscope switches as follows: MODE : - CH1 (Channel 1) for single channel; DUAL for two channels VERTICAL : VOLTS/DIV = 5 V HORIZONTAL : TIME / DIV = 2 ms 3

4 Input Coupling : AC for AC measurement, GND for 0 V and DC for DC measurement. TRIGGER MODE : AUTO; TRIGGER SOURCE : CH1 a. Half Wave Rectifier Circuit with Load Resistor 1. Set up the experimental circuit as shown in Figure 1. AC POWER SUPPLY ON Power Switch OFF DC VOLTMETER (V DC ) CT 12 Vac COM V Diode OSCILLOSCOPE CH1 CH2 Resistor Figure Select 12 Vac and Center Tap (CT= 0 Vac) from the AC power supply as the input voltage. 3. Use Resistor 1 kω as a load resistor. 4. Check carefully to ensure that the circuit connection is correct. 5. Turn on the oscilloscope switch and the AC power supply switch. 6. Measure the output voltage across the output resistor using DC voltmeter (V DC ), and record in Table Draw the input and output voltage curves displayed on the Oscilloscope. 8. Record the input peak voltages (V PI ) and output peak voltages (V PO ) in Table Turn off the AC power supply switch and the oscilloscope switch. 4

5 b. Half Wave Rectifier Circuit with Load Resistor and Capacitor 1. Set up the experimental circuit as shown in Figure 2. LAB SHEET-Experiment-2 AC POWER SUPPLY ON Power Switch OFF DC VOLTMETER (V DC ) CT 12 Vac COM V Diode OSCILLOSCOPE Resistor Capacitor CH1 CH2 Figure Select 12 Vac and Center Tap (CT= 0 Vac) from the AC power supply as the input voltage. 3. Use Resistor of 1 kω as a load resistor and Capacitor of 100 uf as a load Capacitor. (Warning : beware of capacitor polarity. Make sure the positive pin is connected to the positive voltage of load resistor and the negative pin is connected to the lower voltage of load resistor [0 V]) 4. Check carefully to ensure that the circuit connection is correct. 5. Turn on the oscilloscope switch and the AC power supply switch. 6. Measure the output voltage across the output resistor using DC voltmeter (V DC ). 7. Draw output voltage curves displayed on the Oscilloscope. 8. Turn off the AC power supply switch 9. Repeat step (b.3) to (b.8) for Capacitor of 470 uf and 1000 uf, respectively, record in Tables 2. 5

6 10. Repeat step (b.3) to (b.8) for Resistor 100 Ω and Capacitor of 470 uf. Record in Table Repeat step (b.3) to (b.8) for Resistor 10 kω and Capacitor of 470 uf. Record in Table Turn off the oscilloscope switch c. Full Wave Rectifier Circuit with Load Resistor 1. Set up the experimental circuit as shown in Figure 3. AC POWER SUPPLY ON Power Switch OFF DC VOLTMETER (V DC ) CT 12 Vac COM V c OSCILLOSCOPE CH1 CH2 Resistor a b d Diode Figure Select 12 Vac and Center Tap (CT= 0 Vac) from the AC power supply as the input voltage. 3. Use Resistor 1 kω as a load resistor. 4. Check carefully to ensure that the circuit connection is correct. 5. Turn on the oscilloscope switch and the AC power supply switch. 6

7 6. Measure the output voltage across the output resistor using DC voltmeter (V DC ), and record in Table Connect the probe channel1 (CH1) to points a and b as shown in Figure 3, to obtain the input voltage curve. 8. Connect the probe channel1 (CH1) to points c and d as shown in Figure 3, to obtain the output voltage curve. 9. Draw the input and output voltage curves displayed on the Oscilloscope. 10. Record the input peak voltages (V PI ) and output peak voltages (V PO ) in Table Turn off the AC power supply switch and the oscilloscope switch d. Full Wave Rectifier Circuit with Load Resistor and Capacitor 1. Set up the experimental circuit as shown in Figure 4. AC POWER SUPPLY ON Power Switch OFF DC VOLTMETER (V DC ) CT 12 Vac COM V OSCILLOSCOPE CH1 CH2 Capacitor Resistor Diode Figure 4. 7

8 2. Select 12 Vac and Center Tap (CT= 0 Vac) from the AC power supply as the input voltage. 3. Use Resistor of 1 kω as a load resistor and Capacitor of 100 uf as a load Capacitor. (Warning : beware of capacitor polarity. Make sure the positive pin is connected to the positive voltage of load resistor and the negative pin is connected to the lower voltage of load resistor [0 V]) 4. Check carefully to ensure that the circuit connection is correct. 5. Turn on the oscilloscope switch and the AC power supply switch. 6. Measure the output voltage across the output resistor using DC voltmeter (V DC ), 7. Draw output voltage curves displayed on the Oscilloscope. 8. Turn off the AC power supply switch 9. Repeat step (d.3) to (d.8) for Capacitor of 470 uf and 1000 uf, respectively, record in Table Repeat step (d.3) to (d.8) for Resistor 100 Ω and Capacitor of 470 uf, record in Table Repeat step (d.3) to (d.8) for Resistor 10 kω and Capacitor of 470 uf, record in Table Turn off the oscilloscope switch. 8

### Lab 3 Rectifier Circuits

ECET 242 Electronic Circuits Lab 3 Rectifier Circuits Page 1 of 5 Name: Objective: Students successfully completing this lab exercise will accomplish the following objectives: 1. Learn how to construct

### Overview: The purpose of this experiment is to introduce diode rectifier circuits used in DC power supplies.

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 3 Diodes and Bridge Rectifiers Overview: The purpose of this experiment is to introduce diode

### Experiment 2 Diode Applications: Rectifiers

ECE 3550 - Practicum Fall 2007 Experiment 2 Diode Applications: Rectifiers Objectives 1. To investigate the characteristics of half-wave and full-wave rectifier circuits. 2. To recognize the usefulness

### ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEM 102 INTRODUCTION TO ELECTRICAL ENGINEERING EXPERIMENT 9: DIODES AND DC POWER SUPPLY OBJECTIVE: To observe how a diode functions

### EXPERIMENT 6 CLIPPING AND CLAMPING DIODE CIRCUITS

EXPERIMENT 6 CLIPPING AND CLAMPING DIODE CIRCUITS OBJECTIVES To understand the theory of operation of the clipping and clamping diode circuits. To design wave shapes that meet different circuits needs.

### Using an Oscilloscope

Using an Oscilloscope The oscilloscope is used to measure a voltage that changes in time. It has two probes, like a voltmeter. You put these probes on either side of the thing that you want to measure

### Figure 1: Multiple unsynchronized snapshots of the same sinusoidal signal.

1 Oscilloscope Guide Introduction An oscilloscope is a device used to observe and measure time-dependent electronic signals. It is essentially an enhanced voltmeter which displays a graph of potential

### Electrical Resonance

Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION

### Lab E1: Introduction to Circuits

E1.1 Lab E1: Introduction to Circuits The purpose of the this lab is to introduce you to some basic instrumentation used in electrical circuits. You will learn to use a DC power supply, a digital multimeter

### APPLICATION NOTE 29 Testing Capacitors with High DC Bias

APPLICATION NOTE 29 Testing Capacitors with High DC Bias This application note will describe the process of analysing the impedance of a capacitor when subjected to high DC bias voltages. This particular

### Diode Applications. As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off.

Diode Applications Diode Switching As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off. Voltage Rectifier A voltage rectifier is a circuit that converts an

### RC Circuits and The Oscilloscope Physics Lab X

Objective RC Circuits and The Oscilloscope Physics Lab X In this series of experiments, the time constant of an RC circuit will be measured experimentally and compared with the theoretical expression for

### PHYS 2426 Engineering Physics II (Revised July 7, 2011) AC CIRCUITS: RLC SERIES CIRCUIT

PHYS 2426 Engineering Physics II (Revised July 7, 2011) AC CIRCUITS: RLC SERIES CIRCUIT INTRODUCTION The objective of this experiment is to study the behavior of an RLC series circuit subject to an AC

### = V peak 2 = 0.707V peak

BASIC ELECTRONICS - RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard

### EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP

1 EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP Purpose: To demonstrate the relationship between the voltage and current of a capacitor. Theory: A capacitor is a linear circuit element whose

### Oscilloscope, Function Generator, and Voltage Division

1. Introduction Oscilloscope, Function Generator, and Voltage Division In this lab the student will learn to use the oscilloscope and function generator. The student will also verify the concept of voltage

### Analog Electronics. Module 1: Semiconductor Diodes

Analog Electronics s PREPARED BY Academic Services Unit August 2011 Applied Technology High Schools, 2011 s Module Objectives Upon successful completion of this module, students should be able to: 1. Identify

### ECEN 1400, Introduction to Analog and Digital Electronics

ECEN 1400, Introduction to Analog and Digital Electronics Lab 4: Power supply 1 INTRODUCTION This lab will span two lab periods. In this lab, you will create the power supply that transforms the AC wall

### Chapter 22 Further Electronics

hapter 22 Further Electronics washing machine has a delay on the door opening after a cycle of washing. Part of this circuit is shown below. s the cycle ends, switch S closes. t this stage the capacitor

### RC Circuits. The purpose of this lab is to understand how capacitors charge and discharge.

Department of Physics and Geology Purpose Circuits Physics 2402 The purpose of this lab is to understand how capacitors charge and discharge. Materials Decade Resistance Box (CENCO), 0.1 µf, 0.5µF, and

### The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering

The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering Final Design Report Dual Channel Stereo Amplifier By: Kristen Gunia Prepared

### Physics 2306 Experiment 7: Time-dependent Circuits, Part 1

Name ID number Date Lab CRN Lab partner Lab instructor Objectives Physics 2306 Experiment 7: Time-dependent Circuits, Part 1 To study the time dependent behavior of the voltage and current in circuits

### The RC Circuit. Pre-lab questions. Introduction. The RC Circuit

The RC Circuit Pre-lab questions 1. What is the meaning of the time constant, RC? 2. Show that RC has units of time. 3. Why isn t the time constant defined to be the time it takes the capacitor to become

### DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,

### AC CIRCUITS - CAPACITORS AND INDUCTORS

EXPRIMENT#8 AC CIRCUITS - CAPACITORS AND INDUCTORS NOTE: Two weeks are allocated for this experiment. Before performing this experiment, review the Proper Oscilloscope Use section of Experiment #7. Objective

### ELEC 435 ELECTRONICS I. Rectifier Circuits

ELEC 435 ELECTRONICS I Rectifier Circuits Common types of Transformers The Rectifier Rectification is the conversion of an alternating current to a pulsating direct current. Rectification occurs in both

### EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS

1 EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides

### EE 1202 Experiment #2 Resistor Circuits

EE 1202 Experiment #2 Resistor Circuits 1. ntroduction and Goals: Demonstrates the voltage-current relationships in DC and AC resistor circuits. Providing experience in using DC power supply, digital multimeter,

### University of Alberta Department of Electrical and Computer Engineering. EE 250 Laboratory Experiment #5 Diodes

University of Alberta Department of Electrical and Computer Engineering EE 250 Laboratory Experiment #5 Diodes Objective: To introduce basic diode concepts. Introduction: The diode is the most fundamental

### Pulse Width Modulation (PWM) LED Dimmer Circuit. Using a 555 Timer Chip

Pulse Width Modulation (PWM) LED Dimmer Circuit Using a 555 Timer Chip Goals of Experiment Demonstrate the operation of a simple PWM circuit that can be used to adjust the intensity of a green LED by varying

### Rectifier: It is a circuit which employs one or more diodes to convert ac voltage into pulsating dc voltage. We will consider the following circuits:

Rectifier: It is a circuit which employs one or more diodes to convert ac voltage into pulsating dc voltage. We will consider the following circuits: (i) Half wave rectifier. (ii) Full wave rectifier.

### The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a cathode ray oscilloscope.

The Oscilloscope Vision is the art of seeing things invisible. J. Swift (1667-1745) OBJECTIVE To learn to operate a cathode ray oscilloscope. THEORY The oscilloscope, or scope for short, is a device for

### ENGR 210 Lab 11 Frequency Response of Passive RC Filters

ENGR 210 Lab 11 Response of Passive RC Filters The objective of this lab is to introduce you to the frequency-dependent nature of the impedance of a capacitor and the impact of that frequency dependence

### Fundamentals of Signature Analysis

Fundamentals of Signature Analysis An In-depth Overview of Power-off Testing Using Analog Signature Analysis www.huntron.com 1 www.huntron.com 2 Table of Contents SECTION 1. INTRODUCTION... 7 PURPOSE...

### Digital Fundamentals

Digital Fundamentals Tenth Edition Floyd Chapter 1 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. All Rights Reserved Analog Quantities Most natural quantities that we see

### HIGH VOLTAGE POWER SUPPLY FOR ELECTRO-OPTICS APPLICATIONS

HIGH VOLTAGE POWER SUPPLY FOR ELECTRO-OPTICS APPLICATIONS A. R. Tamuri, N. Bidin & Y. M. Daud Laser Technology Laboratory, Physics Department Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai,

### LEP 4.4.07. Rectifier circuits

Related topics Half-wave rectifier, full-wave rectifier, Graetz rectifier, diode, Zener diode, avalanche effect, charging capacitor, ripple, r.m.s. value, internal resistance, smoothing factor, ripple

### LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier

LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER Full-wave Rectification: Bridge Rectifier For many electronic circuits, DC supply voltages are required but only AC voltages are available.

### Lab 1: The Digital Oscilloscope

PHYSICS 220 Physical Electronics Lab 1: The Digital Oscilloscope Object: To become familiar with the oscilloscope, a ubiquitous instrument for observing and measuring electronic signals. Apparatus: Tektronix

### AC Measurements Using the Oscilloscope and Multimeter by Mr. David Fritz

AC Measurements Using the Oscilloscope and Multimeter by Mr. David Fritz 1 Sine wave with a DC offset f = frequency in Hz A = DC offset voltage (average voltage) B = Sine amplitude Vpp = 2B Vmax = A +

### The Oscilloscope, the Signal Generator and Your Filter s Test Setup SGM 5/29/2013

The Oscilloscope, the Signal Generator and Your Filter s Test Setup SGM 5/29/2013 1. Oscilloscope A multimeter is an appropriate device to measure DC voltages, however, when a signal alternates at relatively

### Properties of electrical signals

DC Voltage Component (Average voltage) Properties of electrical signals v(t) = V DC + v ac (t) V DC is the voltage value displayed on a DC voltmeter Triangular waveform DC component Half-wave rectifier

### AC Direct Off-Line Power Supplies

AC Direct Off-Line Power Supplies r Introduction Many DC power supplies found in electronic systems, including those in this Tech School, rectify the 120 volts available at an electric outlet. The initial

### EE 320L Electronics I Laboratory. Laboratory Exercise #4 Diode and Power Supply Circuit

EE 320L Electronics I Laboratory Laboratory Exercise #4 Diode and Power Supply Circuit Department of Electrical and Computer Engineering University of Nevada, at Las Vegas Objective: The purpose of this

### Name Date Day/Time of Lab Partner(s) Lab TA

Name Date Day/Time of Lab Partner(s) Lab TA Objectives LAB 7: AC CIRCUITS To understand the behavior of resistors, capacitors, and inductors in AC Circuits To understand the physical basis of frequency-dependent

### Week (3) EXP (1) Zener diode

Week (3) EXP (1) Zener diode 1 Experiment procedure Circuit diagram The following circuit diagram is used for this experiment: Components The following components are used in this experiment: Parts Id

### High voltage power supply (1 to 20 KV)

High voltage power supply ( to 0 KV) Ammar Ahmed Khan, Muhammad Wasif, Muhammad Sabieh Anwar This documentation is divided into two parts, the first part provides a brief overview about the key features

### Part 2: Receiver and Demodulator

University of Pennsylvania Department of Electrical and Systems Engineering ESE06: Electrical Circuits and Systems II Lab Amplitude Modulated Radio Frequency Transmission System Mini-Project Part : Receiver

### The full wave rectifier consists of two diodes and a resister as shown in Figure

The Full-Wave Rectifier The full wave rectifier consists of two diodes and a resister as shown in Figure The transformer has a centre-tapped secondary winding. This secondary winding has a lead attached

### SERIES-PARALLEL DC CIRCUITS

Name: Date: Course and Section: Instructor: EXPERIMENT 1 SERIES-PARALLEL DC CIRCUITS OBJECTIVES 1. Test the theoretical analysis of series-parallel networks through direct measurements. 2. Improve skills

### Analog Electronics I. Laboratory

Analog Electronics I Laboratory Exercise 1 DC Power Supply Circuits Aim of the exercise The aim of this laboratory exercise is to become familiar with rectifying circuits and voltage stabilization techniques

### PSPICE tutorial: a simple DC circuit Getting started

PSPICE tutorial: a simple DC circuit We will learn some of the basic maneuvers of using the Cadence schematic capture program and PSPice engine through a simple example -- a diode rectifier circuit. The

### ENGINEERING COMMITTEE Interface Practices Subcommittee AMERICAN NATIONAL STANDARD ANSI/SCTE 46 2007. Test Method for AC to DC Power Supplies

ENGINEERING COMMITTEE Interface Practices Subcommittee AMERICAN NATIONAL STANDARD ANSI/SCTE 46 2007 Test Method for AC to DC Power Supplies NOTICE The Society of Cable Telecommunications Engineers (SCTE)

### Charge and Discharge of a Capacitor

Charge and Discharge of a Capacitor INTRODUCTION Capacitors 1 are devices that can store electric charge and energy. Capacitors have several uses, such as filters in DC power supplies and as energy storage

### Lab Report No.1 // Diodes: A Regulated DC Power Supply Omar X. Avelar Omar de la Mora Diego I. Romero

Instituto Tecnológico y de Estudios Superiores de Occidente (ITESO) Periférico Sur Manuel Gómez Morín 8585, Tlaquepaque, Jalisco, México, C.P. 45090 Analog Electronic Devices (ESI038 / SE047) Dr. Esteban

### Points Position Indicator (PPI1) for Points Motors with Common Ground

Points Position Indicator (PPI1) for Points Motors with Common Ground Monitors Points Action and Operates Leds on a Control Panel Monitors the brief positive operating voltage across points motors when

### Annex: VISIR Remote Laboratory

Open Learning Approach with Remote Experiments 518987-LLP-1-2011-1-ES-KA3-KA3MP Multilateral Projects UNIVERSITY OF DEUSTO Annex: VISIR Remote Laboratory OLAREX project report Olga Dziabenko, Unai Hernandez

### UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 5 - Gain-Bandwidth Product and Slew Rate Overview: In this laboratory the student will explore

### Electronic WorkBench tutorial

Electronic WorkBench tutorial Introduction Electronic WorkBench (EWB) is a simulation package for electronic circuits. It allows you to design and analyze circuits without using breadboards, real components

### RC Circuit (Power amplifier, Voltage Sensor)

Object: RC Circuit (Power amplifier, Voltage Sensor) To investigate how the voltage across a capacitor varies as it charges and to find its capacitive time constant. Apparatus: Science Workshop, Power

### Designing a Poor Man s Square Wave Signal Generator. EE-100 Lab: Designing a Poor Man s Square Wave Signal Generator - Theory

EE-100 Lab: - Theory 1. Objective The purpose of this laboratory is to introduce nonlinear circuit measurement and analysis. Your measurements will focus mainly on limiters and clamping amplifiers. During

### electronics fundamentals

electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA Lesson 1: Diodes and Applications Center-Tapped Full-wave Rectifier The center-tapped (CT) full-wave rectifier

### Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1

Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment

### MATERIALS. Multisim screen shots sent to TA.

Page 1/8 Revision 0 9-Jun-10 OBJECTIVES Learn new Multisim components and instruments. Conduct a Multisim transient analysis. Gain proficiency in the function generator and oscilloscope. MATERIALS Multisim

### Troubleshooting & Repairing Switch Mode Power Supplies

Troubleshooting & Repairing Switch Mode Power Supplies Brought to you by Jestine Yong http://www.powersupplyrepairguide.com Content Part I Introduction to SMPS 1. Introduction to Switch Mode Power Supplies

### College Physics II Lab 8: RC Circuits

INTODUTION ollege Physics II Lab 8: ircuits Peter olnick with Taner Edis Spring 2015 Introduction onsider the circuit shown. (onsult section 23.7 in your textbook.) If left for long enough, the charge

### Rectifier circuits & DC power supplies

Rectifier circuits & DC power supplies Goal: Generate the DC voltages needed for most electronics starting with the AC power that comes through the power line? 120 V RMS f = 60 Hz T = 1667 ms) = )sin How

### EE320L Electronics I. Laboratory. Laboratory Exercise #5. Clipping and Clamping Circuits. Angsuman Roy

EE320L Electronics I Laboratory Laboratory Exercise #5 Clipping and Clamping Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective: The purpose

### EET221 Worksheet #3: Diode Circuits and Specialty Diodes

EET221 Worksheet #3: Diode Circuits and Specialty Diodes Help for this worksheet may be found in Chapters 4 and 5 of the textbook. This is not the only place to find help. Don t be afraid to explore. Much

### Class #12: Experiment The Exponential Function in Circuits, Pt 1

Class #12: Experiment The Exponential Function in Circuits, Pt 1 Purpose: The objective of this experiment is to begin to become familiar with the properties and uses of the exponential function in circuits

### Single phase, uncontrolled rectification (conversion)

Single phase, uncontrolled rectification (conversion) J Charles Lee Doyle C12763425 29 October 2015 Abstract An experiment investigating full wave rectification, for the purposes of producing a steady

### MOSFETs: Discharging Filter Capacitors. 2008 Oregon State University ECE 322 Manual Page 51

SECTION FIVE MOSFETs: Discharging Filter Capacitors 2008 Oregon State University ECE 322 Manual Page 51 SECTION OVERVIEW You may have noticed that the power LED on your power supply stays on for a long

### ε: Voltage output of Signal Generator (also called the Source voltage or Applied

Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and

### Step Response of RC Circuits

Step Response of RC Circuits 1. OBJECTIVES...2 2. REFERENCE...2 3. CIRCUITS...2 4. COMPONENTS AND SPECIFICATIONS...3 QUANTITY...3 DESCRIPTION...3 COMMENTS...3 5. DISCUSSION...3 5.1 SOURCE RESISTANCE...3

### Objectives: Part 1: Build a simple power supply. CS99S Laboratory 1

CS99S Laboratory 1 Objectives: 1. Become familiar with the breadboard 2. Build a logic power supply 3. Use switches to make 1s and 0s 4. Use LEDs to observe 1s and 0s 5. Make a simple oscillator 6. Use

### MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START

Laboratory Section: Last Revised on December 15, 2014 Partners Names Grade EXPERIMENT 10 Electronic Circuits 0. Pre-Laboratory Work [2 pts] 1. How are you going to determine the capacitance of the unknown

### See Horenstein 4.3 and 4.4

EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes by Drs. A.V. Radun and K.D. Donohue (2/14/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated

### Q1. The graph below shows how a sinusoidal alternating voltage varies with time when connected across a resistor, R.

Q1. The graph below shows how a sinusoidal alternating voltage varies with time when connected across a resistor, R. (a) (i) State the peak-to-peak voltage. peak-to-peak voltage...v (1) (ii) State the

### Electricity & Electronics 5: Alternating Current and Voltage

Electricity & Electronics 5: lternating Current and Voltage lternating Current and Voltage IM This unit looks at several aspects of alternating current and voltage including measurement of frequency and

### The Oscilloscope and the Function Generator:

The Oscilloscope and the Function Generator: Some introductory exercises for students in the advanced labs Introduction So many of the experiments in the advanced labs make use of oscilloscopes and function

### PH 210 Electronics Laboratory I Instruction Manual

PH 210 Electronics Laboratory I Instruction Manual Index Page No General Instructions 2 Experiment 1 Common Emitter (CE) Amplifier 4 Experiment 2 Multistage amplifier: Cascade of two CE stages 7 Experiment

### LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common

### Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. 6.002 Electronic Circuits Spring 2007

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.002 Electronic Circuits Spring 2007 Lab 4: Audio Playback System Introduction In this lab, you will construct,

### Alternating Current RL Circuits

Alternating Current RL Circuits Objectives. To understand the voltage/current phase behavior of RL circuits under applied alternating current voltages, and. To understand the current amplitude behavior

### AMERICAN NATIONAL STANDARD

ENGINEERING COMMITTEE Interface Practice Subcommittee AMERICAN NATIONAL STANDARD ANSI/SCTE 46 2014 Test Method for AC to DC Outdoor Power Supplies NOTICE The Society of Cable Telecommunications Engineers

### Experiment1: Introduction to laboratory equipment and basic components.

Experiment1: Introduction to laboratory equipment and basic components. 1 OBJECTIVES. This experiment will provide exposure to the various test equipment to be used in subsequent experiments. A primary

### The R-C series circuit

School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 4 The C series circuit 1 Introduction Objectives To study the

### Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)

Diode Circuits Operating in the Reverse Breakdown region. (Zener Diode) In may applications, operation in the reverse breakdown region is highly desirable. The reverse breakdown voltage is relatively insensitive

### IDEAL INDUSTRIES, INC. TECHNICAL MANUAL MODEL: MODEL: Multimeter Service Information

IDEAL INDUSTRIES, INC. TECHNICAL MANUAL MODEL: 61-340 MODEL: 61-342 Multimeter Service Information The Service Information provides the following information: Precautions and safety information Specifications

### IDEAL INDUSTRIES, INC. TECHNICAL MANUAL MODELS: 61-763 61-765

IDEAL INDUSTRIES, INC. TECHNICAL MANUAL MODELS: 61-763 61-765 The Service Information provides the following information: Precautions and safety information Specifications Performance test procedure Calibration

### E X P E R I M E N T 7

E X P E R I M E N T 7 The RC Circuit Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics II, Exp 7: The RC Circuit Page

### Altoids Tin Headphone Amplifier Lab

Altoids Tin Headphone Amplifier Lab Michigan State University AEE/IEEE Step 1: Required Parts Table 1 shows a complete listing of the parts required to complete this project. Figure 1 shows a picture of

### Homework Assignment 03

Question 1 (2 points each unless noted otherwise) Homework Assignment 03 1. A 9-V dc power supply generates 10 W in a resistor. What peak-to-peak amplitude should an ac source have to generate the same

### Step Response of RC Circuits

Step esponse of ircuits 1. OBJETIVES...2 2. EFEENE...2 3. IUITS...2 4. OMPONENTS AND SPEIFIATIONS...3 QUANTITY...3 DESIPTION...3 OMMENTS...3 5. DISUSSION...3 5.1 SOUE ESISTANE...3 5.2 STEP ESPONSE AND

### Basic oscilloscope operation

asic oscilloscope operation This worksheet and all related files are licensed under the Creative Commons ttribution License, version.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/.0/,

### " = R # C. Create your sketch so that Q(t=τ) is sketched above the delineated tic mark. Your sketch. 1" e " t & (t) = Q max

Physics 241 Lab: Circuits DC Source http://bohr.physics.arizona.edu/~leone/ua/ua_spring_2010/phys241lab.html Name: Section 1: 1.1. Today you will investigate two similar circuits. The first circuit is

### THE MclNTOSH MC 2100 SOLID STATE STEREO POWER AMPLIFIER

THE MclNTOSH MC 2100 SOLID STATE STEREO POWER AMPLIFIER Price \$1.25 Your MC 2100 stereo amplifier will give you many years of pleasant and satisfactory performance. If you have any questions concerning

### RC & RL Transient Response

EE 2006 University of Minnesota Duluth ab 8 1. Introduction R & R Transient Response The student will analyze series R and R circuits. A step input will excite these respective circuits, producing a transient