Coal. Conversion of Solar Energy into Electrical and Thermal Energy. Introduction

Size: px
Start display at page:

Download "Coal. Conversion of Solar Energy into Electrical and Thermal Energy. Introduction"

Transcription

1 Conversion of Solar Energy into Electrical and Thermal Energy Perry LI and Moe MOMAYEZ NSF GK 12 Project Faculty Advisors for Solar Energy College of Engineering, University of Arizona Introduction Energy is essential to our lives on the Earth. It makes cars go and makes machines run. When you feel warm, you are feeling heat energy. When you see things, it is because of the energy called light. Today, the world gets more than 80 percent of its energy from fossil fuels (coal, oil, and natural gas). In the United States, this figure is even higher. More than 85 percent of energy in the United States comes from these sources. We cook our food and heat/cool our homes using fossil fuels. Burning fossil fuels, however, causes problems. Current technology does not allow complete and clean burning of coal and oil, which releases potentially harmful substances into the air. These substances have been shown to cause pollution and contribute to the climate change. Many scientists believe that unless we decrease our use of all three fuels, great damage could be done to Earth. In addition, fossil fuels reserves are limited. In time, we will need to replace them with other sources of energy. It is likely that in the future, we will still use coal, oil, and natural gas, but we will need to rely less on these fuels and more on renewable sources of energy, such as solar energy. Coal Figure 1: Fossil Fuels Figure 2: Renewable Energy

2 The Sun is the biggest source of energy in our lives. The Sun gives off enormous amounts of heat and light in all directions. Solar energy drives the winds. It also powers the currents in the ocean (the movement of ocean waters). In fact, solar energy makes life on Earth possible: sunlight provides the energy the plants need to convert carbon dioxide into organic compounds and releasing oxygen as a waste product in a process called photosynthesis. Many life species on Earth depend on photosynthesis directly as a source of energy or indirectly as a source of food. It is estimated that the amount of energy stored by photosynthesis is about 100 terawatts, more than six times the amount energy used by all the countries combined (in 2008 the world used 16 terawatts of energy). Sunlight is also used to produce electricity in two basic ways. One uses solar cells, which convert sunlight directly into electricity. This approach is called photovoltaic. (Photo means light, and voltaic refers to electricity.) Solar cells are often called photovoltaic cells, or PV cells, for short. The other approach to making electricity is called thermal. (Thermal comes from a Greek word meaning heat ). Solar thermal power systems use the Sun s heat to run a machine that generates electricity. Objective This short course and associated projects will focus on solar energy, how solar energy is converted into electrical energy and thermal energy, as well as how thermal energy is converted into electrical energy, which is the most widely used form of energy in our lives. To convert sunlight directly into electricity, solar or PV cells made of materials known as semiconductors are used. How semiconductors convert light into electricity will be discussed. When solar thermal energy is converted into electrical energy, water is typically used as a working substance in a solar thermal power plant. Why water is needed and how much is needed will also be discussed in this course. Physics of Solar Radiation Essence of Solar Radiation According to the laws of physics, any object whose temperature is above zero degree Kelvin will emit electromagnetic radiation, which is one of the five fundamental forms of energy. The higher the temperature of the object, the higher the energy it emits. The Sun has a huge mass and the fusion reaction in it creates tremendous amount of energy with measured surface temperatures of about 6000 ºK. Because of its high surface temperature, the Sun emits electromagnetic radiation into the universe. As a planet close to the sun, the Earth receives vast amounts of sun s radiation. The Sun s energy reaches the earth in the form of electromagnetic radiation. In other words, the Sun s light or radiation is essentially a waveform that carries energy. The visible light at different wavelengths has different colors and therefore carries different amounts of energy. In addition to the visible light, solar radiation also contains ultraviolet and infrared radiation. The energy distribution of solar radiation in the entire spectrum of wavelengths is shown in the following figure. 2

3 Figure 3: Energy Carried by Radiation at Different Wavelength Direct Conversion of Solar Energy into Electrical Energy Sunlight is energy carried by phonons which behave both as a waveform and particles (with no mass). When the energy of phonons is trapped by special types of materials such as silicon (with impurities) used in solar panel, it will excite electrons in the material and set them into motion, creating an electric current. There are different materials that can generate electric currents when hit by the sunlight. Properties and features of power generation using solar panels will be discussed separately. Conversion of Solar Energy into Thermal Energy When sunlight hits the surface of regular materials, phonons will excite the molecules at the surface and will force them to vibrate at a high rate causing the surface temperature of the material to rise. This is the process by which solar radiation is converted into heat. The absorption property of a material is an important factor that controls the amount of energy that the material can trap. When considering the visible light absorption, color is an important factor. We know that black surfaces absorb the maximum amount of visible light. If an object absorbs radiation a hundred percent, then it is called a black body, which is a specific term used in radiation heat transfer. One can make a physical black body by making a cavity in an object. If light is shone into the cavity, most of the energy is reflected around and absorbed by the surface material inside the cavity. 3

4 Figure 4: Examples of black body based on physically structured cavities Conversion of Solar Thermal Energy into Electrical Energy Solar thermal energy can be directly used for heating, drying and other processes requiring heat. Solar thermal energy can also be converted into electrical power in a thermal power plant, in the same manner as how heat from fuel combustion is converted into electrical power in a regular coal fired power plant (heat from the fuel combustion is used to generate steam and steam is used to propel and rotate turbines connected to generators). Figure 5: Concentrating Sunlight to Generate High Temperature Heat 4

5 Issues related to the use of thermal energy to generate electricity in a thermal power plant will be discussed in this course. In general, a thermal power plant needs high temperatures and cooling devices (also called heat sinks; ask why and find the answer). In general, the higher the temperature at which the power plant operates relative to the ambient temperature, the more efficient the rate of energy conversion becomes. Water is usually used in cooling devices which creates a challenge with respect to water availability in hot, arid and semi arid environments. Role of Water in Converting Solar Thermal into Electrical Energy Learn principles of thermal power generation with and without water cooling. Learn basic principles of internal combustion engines such as Rankine cycle and Stirling engines (to be provided by Energy and Fuel Cell Laboratory.) Figure 6: Typical Solar Thermal Power Plant 5

6 Projects Solar Energy Collection and Storage 1. Survey of daily hours of sunlight Active learning: Google information and in class discussion 2. Test power (Current and Voltage) generation and calibration of solar panels Measure and plot I V curves to determine the power output and efficiency (see page 7). 3. Conduct experiments to determine the effects of environmental elements (dust and moisture) on the power generation of PV modules. 4. Use tracking systems to maximize power production. 5. Solar stove (from Energy and Fuel Cell Laboratory) to study principle of using optical devices (parabolic troughs, or lenses) to concentrate sunlight. Scope: Material and tools needed: Issues to investigate: Prototyping and fabrication: Through this project, students will learn how optical devices work to concentrate light to a focus point and how the heat is transferred and used for heating, drying, and power generation. Parabolic dish reflector; Fresnel lenses, heat receiving plate, bearing, shaft, a sundial, supplies such like bolts, nuts, metal pieces for holding and fastening. How sunlight is focused and used safely? How sunlight is tracked and focused all the time in the day? How heat is carried away? What temperatures are needed to cook food? Build a prototype solar heat collector and test temperature variation in the day. 6. Make holes and cavities and black the surfaces of an object and to measure the temperatures of the object and compare with other objects that are not black and have no cavities. 7. Thermal energy storage The significance of solar thermal energy storage for extended power generation and flexibility. 8. Other energy storage technologies Battery Compressed air Hydrogen Pumped water 6

7 Power and Efficiency of Solar Panels Learning Outcome After measuring current and voltage, students are able to determine the true power output and efficiency of a solar panel. Lesson Overview In this lesson students determine output, maximum power point, and efficiency of solar panels. They also: measure a solar panel output as a function of the electrical load (resistance) connected to it plot the power output and create a performance graph for the panel use a solar panel to process energy and information into a more useful form plot solar panel output current versus radiation to obtain a calibration curve for their panel measure the efficiency of the panel Materials Solar panel Assortment of power resistors or an adjustable power resistor capable of handling the power Digital multimeter or data logger / DAS capable of handling the voltage and current Digital Solar Meter (Pyranometer) Teaching Demonstrate how to connect the multimeter to the solar panel leads and how each power resistor is connected to the panel and the voltage is measured with the meter, as shown in the drawing on the next page. Show the students how the meter is also used to measure the open circuit voltage and the short circuit current. The table on the next page shows the data from a set of measurement on 3 solar panels connected in series. In this example power resistors of 100, 50, 25 and 3 ohms were used. The current through each resistor is calculated by dividing the measured voltage by the resistance. The power is calculated by multiplying the voltage times the current. Tell the students to note that no power is generated when the open circuit voltage and short circuit current is measured. A better view of the data is obtained by plotting a graph of the voltage versus current. The output of the solar panel on the next page shows a characteristic behavior that is common to all solar panels. The maximum power is generated at the operating point which forms the 'knee' in the curve. In this case, this is at approximately 20 watts, corresponding to a load resistance of 25 ohms. The maximum power point is where the product of current and voltage is a maximum. Expressed graphically, the maximum power point it where the largest area rectangle can be formed beneath the curve. The efficiency of the solar panel is expressed as the ratio of maximum output to the input power as measured by the Pyranometer. The output and input power values may be expressed in watts (W), watts per meter (W/m), watts hour (Wh) or watts hour per meter (Wh/m). 7

8 Resistance (ohms) Voltage (V) Current (A) Power (W) W=V x A A=V/resistance Example: Resistance (Ohms) Voltage (V) Current (A) Power (W) Open Circuit Short Circuit

Renewable Solar. Solar Basics. Energy from the Sun. Solar Energy Can Be Used for Heat and Electricity

Renewable Solar. Solar Basics. Energy from the Sun. Solar Energy Can Be Used for Heat and Electricity Renewable Solar Solar Basics Energy from the Sun The sun has produced energy for billions of years. Solar energy is the sun s rays (solar radiation) that reach the Earth. This energy can be converted into

More information

MCQ - ENERGY and CLIMATE

MCQ - ENERGY and CLIMATE 1 MCQ - ENERGY and CLIMATE 1. The volume of a given mass of water at a temperature of T 1 is V 1. The volume increases to V 2 at temperature T 2. The coefficient of volume expansion of water may be calculated

More information

ENERGY PRODUCING SYSTEMS

ENERGY PRODUCING SYSTEMS ENERGY PRODUCING SYSTEMS SOLAR POWER INTRODUCTION Energy from the sun falls on our planet on a daily basis. The warmth of the sun creates conditions on earth conducive to life. The weather patterns that

More information

Solar power Availability of solar energy

Solar power Availability of solar energy Solar Energy Solar Energy is radiant energy produced in the sun as a result of nuclear fusion reactions. It is transmitted to the earth through space by electromagnetic radiation in quanta of energy called

More information

Renewable Energy. Lab. FCJJ 40 - Horizon Energy Box. Goals. Background

Renewable Energy. Lab. FCJJ 40 - Horizon Energy Box. Goals. Background Goals ᄏᄏ ᄏᄏ ᄏᄏ Assemble and experiment with different types of renewable energy generators Understand the advantages and disadvantages of different generators Make calculations based on data Background

More information

Manure The input to the system, this is produced as waste once animals have consumed plant products.

Manure The input to the system, this is produced as waste once animals have consumed plant products. Resources for Energy System Diagram Activity Labels for Anaerobic digestion poster cut apart and distribute to students Manure The input to the system, this is produced as waste once animals have consumed

More information

SOLAR CELLS From light to electricity

SOLAR CELLS From light to electricity SOLAR CELLS From light to electricity Solar Impulse uses nothing but light to power its motors. The effect of light on the material in solar panels allows them to produce the electricity that is needed

More information

KS3 Renewable Energy. EcoStyle.co.uk. Introductory Presentation

KS3 Renewable Energy. EcoStyle.co.uk. Introductory Presentation Introductory Presentation Energy Energy is a vital to our way of life. Here are a some examples of where energy is used: Homes: central heating, powering electrical appliances, and heating water Public

More information

KS2 Renewable Energy. EcoStyle.co.uk. Introductory Presentation

KS2 Renewable Energy. EcoStyle.co.uk. Introductory Presentation Introductory Presentation Energy Energy is a vital to our way of life. Here are a some examples of where energy is used: Homes: central heating, powering electrical appliances, and heating water Public

More information

Sustainable Living Student Worksheets

Sustainable Living Student Worksheets Sustainable Living Student Worksheets Stage 4 Design & Technology FW4DT1 Name: Introduction Renewable Versus Non-renewable Energy The Sun is a Primary Source of Energy Almost all the energy needed to keep

More information

Student Worksheets Energy for a Cleaner Environment

Student Worksheets Energy for a Cleaner Environment Student Worksheets Energy for a Cleaner Environment Stage 4 Science FW4S1 Name: Introduction Renewable Versus Non-renewable Energy The Sun is a Primary Source of Energy Almost all the energy needed to

More information

Can you imagine life without lights, fans, cars, computers and television, or of fetching water from the well or river? This is what life would have

Can you imagine life without lights, fans, cars, computers and television, or of fetching water from the well or river? This is what life would have Can you imagine life without lights, fans, cars, computers and television, or of fetching water from the well or river? This is what life would have been like had man not discovered the uses of energy.

More information

FOR KIDS INSIDE. HOW solar power. panels! AND MORE!

FOR KIDS INSIDE. HOW solar power. panels! AND MORE! solar POWER E D U C A T I O N A L I N F O R M A T I O N FOR KIDS INSIDE HOW solar power WORKS ALL ABOUT solar panels! YOUR QUESTIONS ANSWERED games, ACTIVITIES AND MORE! harnessing the energy solar energy

More information

Abstract. emails: ronderby@earthlink.net, splazzara@aol.com, phone: 860-429-6508, fax: 860-429-4456

Abstract. emails: ronderby@earthlink.net, splazzara@aol.com, phone: 860-429-6508, fax: 860-429-4456 SOLAR THERMAL POWER PLANT WITH THERMAL STORAGE Ronald C. Derby, President Samuel P. Lazzara, Chief Technical Officer Cenicom Solar Energy LLC * Abstract TM employs 88 parabolic mirrors (concentrating dishes)

More information

Student Worksheets. Stage 4 Geography FW4G1. Name: FutureWorld 2015 FW4G1

Student Worksheets. Stage 4 Geography FW4G1. Name: FutureWorld 2015 FW4G1 Student Worksheets Stage 4 Geography FW4G1 Name: Introduction Renewable Versus Non-renewable Energy The Sun is a Primary Source of Energy Almost all the energy needed to keep life on Earth going comes

More information

Catching the Sun The Physics of Solar Energy

Catching the Sun The Physics of Solar Energy VEA Bringing Learning to Life Program Support Notes Junior Middle Secondary Catching the Sun The Physics of Solar Energy 18 mins Teacher Notes by Amanda Bianco, B.Sc.Ed. Produced by VEA Pty Ltd Commissioning

More information

Energy Pathways in Earth s Atmosphere

Energy Pathways in Earth s Atmosphere BRSP - 10 Page 1 Solar radiation reaching Earth s atmosphere includes a wide spectrum of wavelengths. In addition to visible light there is radiation of higher energy and shorter wavelength called ultraviolet

More information

Sustainable Design Student Worksheets Stage 4/5 Design & Technology FW45DT2. Name: FutureWorld 2015 FW45DT2

Sustainable Design Student Worksheets Stage 4/5 Design & Technology FW45DT2. Name: FutureWorld 2015 FW45DT2 Sustainable Design Student Worksheets Stage 4/5 Design & Technology FW45DT2 Name: Introduction Renewable Versus Non-renewable Energy The Sun is a Primary Source of Energy Almost all the energy needed to

More information

Energy Quiz. Questions:

Energy Quiz. Questions: Energy Quiz Want to have some fun and learn at the same time. This is not a test. You don t have to pass it and it won t give you a grade. It will just help you learn or find out how much you remember

More information

Forms of Energy: Multiple Transformations : Teacher Notes

Forms of Energy: Multiple Transformations : Teacher Notes Forms of Energy: Multiple Transformations : Teacher Notes Introduction The focus of the investigation is to further define energy and realize that chains of energy transformations can occur. The VoltageCurrent,

More information

Earth s Atmosphere. Energy Transfer in the Atmosphere. 3. All the energy from the Sun reaches Earth s surface.

Earth s Atmosphere. Energy Transfer in the Atmosphere. 3. All the energy from the Sun reaches Earth s surface. CHAPTER 12 LESSON 2 Earth s Atmosphere Energy Transfer in the Atmosphere Key Concepts How does energy transfer from the Sun to Earth and to the atmosphere? How are air circulation patterns within the atmosphere

More information

Solar Photovoltaic Glossary

Solar Photovoltaic Glossary Solar Photovoltaic Glossary Alternating Current (AC) - The flow of electricity that constantly changes direction between positive and negative sides. Almost all power produced by electric utilities in

More information

Energy Tutorial: Energy and Sustainability. Non-renewable and renewable resources

Energy Tutorial: Energy and Sustainability. Non-renewable and renewable resources Energy Tutorial: Energy and Sustainability Non-renewable and renewable resources Provided by Sponsored by INTRODUCTION We use energy for everything we do, whether it is heating our homes, cooking a meal,

More information

Manufacturing Energy A look at how people create and use energy. EDUCATIONAL IN NATURE page 1 of 7

Manufacturing Energy A look at how people create and use energy. EDUCATIONAL IN NATURE  page 1 of 7 Manufacturing Energy A look at how people create and use energy EDUCATIONAL IN NATURE page 1 of 7 Energy Energy is everywhere in nature in the light of the sun, in the wind, in the forest, in falling water

More information

Heat Transfer: Radiation

Heat Transfer: Radiation Heat Transfer: Radiation Heat transfer occurs by three mechanisms: conduction, convection, and radiation. We have discussed conduction in the past two lessons. In this lesson, we will discuss radiation.

More information

Science Tutorial TEK 6.9C: Energy Forms & Conversions

Science Tutorial TEK 6.9C: Energy Forms & Conversions Name: Teacher: Pd. Date: Science Tutorial TEK 6.9C: Energy Forms & Conversions TEK 6.9C: Demonstrate energy transformations such as energy in a flashlight battery changes from chemical energy to electrical

More information

Consider How can you collect solar energy for use in your school? What are other alternatives?

Consider How can you collect solar energy for use in your school? What are other alternatives? 5 a 5 Energy Sources a - Energy from the sun Purpose To explore sourcing our energy from the sun Key concepts Solar energy is a natural and renewable resource Heat energy from the sun can be used to heat

More information

Solar Energy Systems

Solar Energy Systems Solar Energy Systems Energy Needs Today s global demand for energy is approximately 15 terawatts and is growing rapidly Much of the U.S. energy needs are now satisfied from petroleum (heating, cooling,

More information

ENERGY SOURCES. reflect

ENERGY SOURCES. reflect reflect Imagine a car that could travel more than 200 miles using only one gallon of gas. Does this seem like a car of the future? Automakers are in the process of producing such an automobile. (In fact,

More information

Energy and Energy Transformations Test Review

Energy and Energy Transformations Test Review Energy and Energy Transformations Test Review Completion: 1. Mass 13. Kinetic 2. Four 14. thermal 3. Kinetic 15. Thermal energy (heat) 4. Electromagnetic/Radiant 16. Thermal energy (heat) 5. Thermal 17.

More information

ENERGY PROJECT. YOUR MISSION: To choose the best sites for four renewable energy projects. REASONS FOR CHOOSING THE LOCATION

ENERGY PROJECT. YOUR MISSION: To choose the best sites for four renewable energy projects. REASONS FOR CHOOSING THE LOCATION ENERGY PROJECTS NAME: You have just started working for an energy company. The company wants to use more natural resources to produce electricity. Why? It wants to help the UK reach a more balanced energy

More information

Station #1 Interpreting Infographs

Station #1 Interpreting Infographs Energy Resources Stations Activity Page # 1 Station #1 Interpreting Infographs 1. Identify and explain each of the energy sources (5) illustrated in the infograph. 2. What do the white and black circles

More information

Activity 1: 2 butter cartons, scissors, cling film, thermometer, water, a sunny spot and a shady spot.

Activity 1: 2 butter cartons, scissors, cling film, thermometer, water, a sunny spot and a shady spot. Equipment: Activity 1: 2 butter cartons, scissors, cling film, thermometer, water, a sunny spot and a shady spot. Activity 2: 3 thermometers, black paper, white paper Suggested Class Level: 3rd 6th Preparation:

More information

Sustainable Energy Sources By: Sue Peterson

Sustainable Energy Sources By: Sue Peterson www.k5learning.com Objective sight words (consumption, terrain, integral, orbit, originated, contemporary, remote); concepts (sustainable, renewable, photovoltaics, gasification) Vocabulary consumption

More information

Module 7 Forms of energy generation

Module 7 Forms of energy generation INTRODUCTION In rich countries like Australia, our standard of living is dependent on easily available energy. Every time you catch a bus, turn on a light or watch television energy is being used up. Over

More information

Global Warming and Greenhouse Gases Reading Assignment

Global Warming and Greenhouse Gases Reading Assignment What is global warming? Global Warming and Greenhouse Gases Imagine you live in a timber shack in Alaska. It's chilly up there, so you build yourself a huge log fire and pile on all the wood you can find.

More information

Section 15.1 Energy and Its Forms (pages 446 452)

Section 15.1 Energy and Its Forms (pages 446 452) Section 15.1 and Its Forms (pages 446 452) This section describes how energy and work are related. It defines kinetic energy and potential energy, and gives examples for calculating these forms of energy.

More information

Solar energy and power

Solar energy and power Solar energy and power Solar Basics Energy from the Sun The sun has produced energy for billions of years. Solar energy is the sun s rays (solar radiation) that reach the Earth. This energy can be converted

More information

SAMPLE EXIT EXAM PART 2

SAMPLE EXIT EXAM PART 2 This is a test of your ability to understand an academic lecture. The lecture you will hear has two parts. In the first part, you will first study the outline of the whole lecture and then the list of

More information

KidWind Solar Thermal Kit

KidWind Solar Thermal Kit KidWind Solar Thermal Kit Parts Included: 25 ft. Clear Tubing Black Plastic Box Plexiglas lid for plastic box 2 Containers 2V/400MA Solar Panel Electric Water Pump 2 Thermometers 2 Sets of Test Leads,

More information

PHYSICAL WORLD. Heat & Energy GOD S DESIGN. 4th Edition Debbie & Richard Lawrence

PHYSICAL WORLD. Heat & Energy GOD S DESIGN. 4th Edition Debbie & Richard Lawrence PHYSICAL WORLD Heat & Energy GOD S DESIGN 4th Edition Debbie & Richard Lawrence God s Design for the Physical World is a complete physical science curriculum for grades 3 8. The books in this series are

More information

5-Minute Refresher: RENEWABLE ENERGY

5-Minute Refresher: RENEWABLE ENERGY 5-Minute Refresher: RENEWABLE ENERGY Renewable Energy Key Ideas Renewable energy is a source of energy that can be used and replenished naturally in a relatively short period of time. Non renewable energy

More information

lecture 3: The greenhouse effect

lecture 3: The greenhouse effect lecture 3: The greenhouse effect Concepts from Lecture 2 Temperature Scales Forms of Heat Transfer Electromagnetic Spectrum Planck Law Stefan-Boltzmann Law Inverse Square Law Reflectivity or Albedo Solar

More information

Energy Transfer in the Atmosphere

Energy Transfer in the Atmosphere Energy Transfer in the Atmosphere Essential Questions How does energy transfer from the sun to Earth and the atmosphere? How are air circulation patterns with the atmosphere created? Vocabulary Radiation:

More information

Energy Transformations

Energy Transformations Energy Transformations Concept Sheet Energy Transformations PS.6: The student will investigate and understand states and forms of energy and how energy is transferred and transformed. 1. Energy is the

More information

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics

More information

Energy. Table of Contents

Energy. Table of Contents Table of Contents 0. Unit Challenge 1. Types of 2. Potential and Kinetic 3. Conduction, Convection, and Radiation 4. How Heat is Transferred 5. Specific Heat 6. Electricity 7. Waves 8. Technology of Transformation

More information

Chapter 2 Faraday s Miracle

Chapter 2 Faraday s Miracle Chapter 2 Faraday s Miracle In this chapter we discuss how electricity generators work. Michael Faraday was the father of electricity generation. Almost 200 years ago, he discovered electromagnetic induction.

More information

Types of Energy. What is Energy? Forms of Energy

Types of Energy. What is Energy? Forms of Energy Types of Energy What is Energy? Energy is all around us. But what, exactly, is energy? Energy makes change possible. We use it to do things for us. It helps us heat our homes and move our cars. It allows

More information

Solar power for sustainable energy

Solar power for sustainable energy Solar power for sustainable energy Prepared by: Ahmed Al Busaidi, Oman Water Society Antonio Palacios, Inabensa Oman Eng. Narineh Simonian, Inabensa Oman Index 1 Introduction to Solar technology and different

More information

Multiple Choice Identify the choice that best completes the statement or answers the question.

Multiple Choice Identify the choice that best completes the statement or answers the question. Test 2 f14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Carbon cycles through the Earth system. During photosynthesis, carbon is a. released from wood

More information

ch 15 practice test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

ch 15 practice test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. ch 15 practice test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Work is a transfer of a. energy. c. mass. b. force. d. motion. 2. What

More information

photovoltaic cell Evaluation copy

photovoltaic cell Evaluation copy Photovoltaic Cells Computer 25 Energy produced by the sun is called solar energy. It is produced during nuclear reactions that take place throughout the volume of the sun. The energy travels to Earth in

More information

Solar energy is available as long as the sun shines, but its intensity depends on weather conditions and geographic

Solar energy is available as long as the sun shines, but its intensity depends on weather conditions and geographic Solar Energy What is Solar Energy? The radiation from the sun gives our planet heat and light. All living things need energy from the sun to survive. More energy from sunlight strikes the earth in one

More information

28.3 Mechanical Systems

28.3 Mechanical Systems Most mechanical systems such as automobiles, simple and complex machines, and power generators contain many moving parts that are in contact with each other. In addition, some of these mechanical systems

More information

SOLAR ENERGY. Solar energy is energy produced by the light and heat of the sun. The greatest use

SOLAR ENERGY. Solar energy is energy produced by the light and heat of the sun. The greatest use IDS 102 21 January 2006 SOLAR ENERGY Solar energy is energy produced by the light and heat of the sun. The greatest use of this is the light the sun provides to plants which intern is energy for animals

More information

In science, energy is the ability to do work. Work is done when a force causes an

In science, energy is the ability to do work. Work is done when a force causes an What is energy? In science, energy is the ability to do work. Work is done when a force causes an object to move in the direction of the force. Energy is expressed in units of joules (J). A joule is calculated

More information

Heating the Atmosphere. Dr. Michael J Passow

Heating the Atmosphere. Dr. Michael J Passow Heating the Atmosphere Dr. Michael J Passow Heat vs. Temperature Heat refers to energy transferred from one object to another Temperature measures the average kinetic energy in a substance. When heat energy

More information

MAKING SENSE OF ENERGY Electromagnetic Waves

MAKING SENSE OF ENERGY Electromagnetic Waves Adapted from State of Delaware TOE Unit MAKING SENSE OF ENERGY Electromagnetic Waves GOALS: In this Part of the unit you will Learn about electromagnetic waves, how they are grouped, and how each group

More information

T E A C H E R S N O T E S

T E A C H E R S N O T E S T E A C H E R S N O T E S Focus: Students explore energy: its sources, forms, and transformations. Students also consider the benefits of energy-efficient technologies and energy conservation. Learning

More information

Solar Energy Lesson Plans

Solar Energy Lesson Plans Solar Energy Lesson Plans Photo: Dickinson College, PA www.dickinson.edu 2009 EFMR Monitoring Group, Inc. 4100 Hillsdale Road, Harrisburg, PA 17112 www.efmr.org 1 Solar Energy Lesson Plans 2009 EFMR Monitoring

More information

Electrical Efficiency of a Solar Cell

Electrical Efficiency of a Solar Cell Undergraduate Journal of Mathematical Modeling: One + Two Volume 6 2016 Issue 2 Article 1 Electrical Efficiency of a Solar Cell Johnnie Cairns University of South Florida Advisors: Arcadii Grinshpan, Mathematics

More information

Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb.

Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb. Name: Class: Date: ID: A PS Chapter 13 Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. In all cooling

More information

Testing and Performance of the Convex Lens Concentrating Solar Power Panel Prototype

Testing and Performance of the Convex Lens Concentrating Solar Power Panel Prototype Testing and Performance of the Convex Lens Concentrating Solar Power Panel Prototype Ankit S. Gujrathi 1, Prof. Dilip Gehlot 2 1 M.tech (2 nd Year), 2 Assistant Professor, Department of Mechanical Engg.,

More information

Renewable Energy Sources

Renewable Energy Sources Renewable Energy Sources D. Elango Assistant Professor in Civil Engg. Hindustan College of Engg. Chennai 603 103 Introduction The increase in energy consumption particularly in the past several decades

More information

Green Heating. Pupil Research Brief. Teachers Notes. Syllabus Coverage Subject Knowledge and Understanding. Route through the Brief UPIL ESEARCHER

Green Heating. Pupil Research Brief. Teachers Notes. Syllabus Coverage Subject Knowledge and Understanding. Route through the Brief UPIL ESEARCHER R P UPIL ESEARCHER Green Heating I NITIATIVE Pupil Research Brief Teachers Notes Syllabus Coverage Subject Knowledge and Understanding all types of electromagnetic radiation form a continuous spectrum

More information

EE 206 Electric Energy Engineering

EE 206 Electric Energy Engineering Chapter 1: Review Lecturer: Dr Ibrahim Rida Electrical Engineering Department University of Hail First Semester (112) 2011/12 1.2. ENERGY SOURCES Energy resources are the various materials that contain

More information

Module 2.2. Heat transfer mechanisms

Module 2.2. Heat transfer mechanisms Module 2.2 Heat transfer mechanisms Learning Outcomes On successful completion of this module learners will be able to - Describe the 1 st and 2 nd laws of thermodynamics. - Describe heat transfer mechanisms.

More information

GETTING TO THE CORE: THE LINK BETWEEN TEMPERATURE AND CARBON DIOXIDE

GETTING TO THE CORE: THE LINK BETWEEN TEMPERATURE AND CARBON DIOXIDE DESCRIPTION This lesson plan gives students first-hand experience in analyzing the link between atmospheric temperatures and carbon dioxide ( ) s by looking at ice core data spanning hundreds of thousands

More information

Today. Kirchoff s Laws. Emission and Absorption. Stellar Spectra & Composition

Today. Kirchoff s Laws. Emission and Absorption. Stellar Spectra & Composition Today Kirchoff s Laws Emission and Absorption Stellar Spectra & Composition 1 Three basic types of spectra Continuous Spectrum Intensity Emission Line Spectrum Absorption Line Spectrum Wavelength Spectra

More information

FAM CARIBBEAN GROUP JSC

FAM CARIBBEAN GROUP JSC JSC WE BUILD ACCORDIN CONDITIONS, YOUR REQUIREMENTS AND EUROPEAN STANDARDS JSC FAM CARIBBEAN GROUP - CO-OWNER PRODUCERS & BROKER * HELPS YOU TO BUILD * GIVES YOU COUNSEL * HELPS YOU FIND FINANCIAL SOLUTIONS

More information

Climate Change: A Theme to Teach Across the Science Disciplines

Climate Change: A Theme to Teach Across the Science Disciplines Climate Change: A Theme to Teach Across the Science Disciplines Sunshine State Stards & Benchmarks that Help Students Underst Climate Change K-2 Compare describe changing patterns in nature that repeat

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 2 The Solar Panel (Photovoltaic Panel) EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the operation of the silicon photovoltaic (PV) cell. You will be introduced

More information

H O Y L A N D E WE BUILD ACCORDIN CONDITIONS, YOUR REQUIREMENTS AND EUROPEAN STANDARDS

H O Y L A N D E WE BUILD ACCORDIN CONDITIONS, YOUR REQUIREMENTS AND EUROPEAN STANDARDS WE BUILD ACCORDIN CONDITIONS, YOUR REQUIREMENTS AND EUROPEAN STANDARDS JSC HOYLANDE - CO-OWNER PRODUCERS & BROKER * HELPS YOU TO BUILD * GIVES YOU COUNSEL * HELPS YOU FIND FINANCIAL SOLUTIONS * OFFERING

More information

SUBJECT CLASSIFICATIONS FOR ENERGY. 1 Heat Transfer and Heat Pumps Heating/cooling Systems Heat Pumps Heat Convection

SUBJECT CLASSIFICATIONS FOR ENERGY. 1 Heat Transfer and Heat Pumps Heating/cooling Systems Heat Pumps Heat Convection SUBJECT CLASSIFICATIONS FOR ENERGY 1 Heat Transfer and Heat Pumps 1.010 Heating/cooling Systems 1.020 Heat Pumps 1.030 Heat Convection 1.040 Thermal Energy Storage 1.060 Absorption and Adsorption Machines

More information

Master of Science Program (M.Sc.) in Renewable Energy Engineering in Qassim University

Master of Science Program (M.Sc.) in Renewable Energy Engineering in Qassim University Master of Science Program (M.Sc.) in Renewable Energy Engineering in Qassim University Introduction: The world is facing the reality that the global energy demand is increasing significantly over the coming

More information

SPQ Module 3 Solar Power

SPQ Module 3 Solar Power SPQ Module 3 Solar Power The sun is the source of all life on earth. Yet we sometimes forget how central it is to our every activity. We stumble through our daily routine worrying about the mundane tribulations

More information

8.2 Cells and Energy. What is photosynthesis? Photosynthesis takes place in the chloroplasts. CHAPTER 8. Solar cells and chloroplasts

8.2 Cells and Energy. What is photosynthesis? Photosynthesis takes place in the chloroplasts. CHAPTER 8. Solar cells and chloroplasts CHAPTER 8 CELL PROCESSES 8.2 Cells and Energy To stay alive, you need a constant supply of energy. You need energy to move, think, grow, and even sleep. Where does that energy come from? It all starts

More information

04/06/2015. Energy Wind Power, Solar Power Ocean Power

04/06/2015. Energy Wind Power, Solar Power Ocean Power 04/06/05 3 4 Energy Wind Power, Solar Power Ocean Power History of Wind Power Scientist believe the first windmills used for work was created in China 000 years ago First historical reference was found

More information

Energy Transformation and Flow

Energy Transformation and Flow LESSON 2 Energy Transformation and Flow Overview In this lesson students will observe two demonstrations in which energy is not lost, but rather transformed/converted from one form to another. Students

More information

Energy: renewable sources of energy. Renewable Energy Sources

Energy: renewable sources of energy. Renewable Energy Sources Energy: renewable sources of energy Energy Sources 1 It is technically and economically feasible to phase out net greenhouse gas (GHG) emissions almost entirely by 2050. A report by energy consulting firm

More information

Sciences Experiences and outcomes

Sciences Experiences and outcomes Sciences Experiences and outcomes The sciences framework provides a range of different contexts for learning which draw on important aspects of everyday life and work. Learning in the sciences will enable

More information

Energy transfers - sankey diagrams and efficiency

Energy transfers - sankey diagrams and efficiency Energy transfers - sankey diagrams and efficiency 6 minutes 6 marks Page of 44 Q. Power stations are usually not very efficient. A lot of energy is wasted as thermal energy. The diagrams show the percentage

More information

Physics PH1FP. (Jun15PH1FP01) General Certificate of Secondary Education Foundation Tier June 2015. Unit Physics P1. Unit Physics P1 TOTAL

Physics PH1FP. (Jun15PH1FP01) General Certificate of Secondary Education Foundation Tier June 2015. Unit Physics P1. Unit Physics P1 TOTAL Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Question Mark Science A Unit Physics P1 Physics Unit Physics P1 Friday 12 June 2015 General

More information

Solar Matters III Teacher Page

Solar Matters III Teacher Page Solar Matters III Teacher Page Solar Powered System - 2 Student Objective Given a photovoltaic system will be able to name the component parts and describe their function in the PV system. will be able

More information

EARTH S ATMOSPHERE AND ITS SEASONS

EARTH S ATMOSPHERE AND ITS SEASONS EARTH S ATMOSPHERE AND ITS SEASONS Provided by Tasa Graphic Arts, Inc. for Earthʼs Atmosphere and Its Seasons CD-ROM http://www.tasagraphicarts.com/progeas.html 1.The Importance of Weather (wx) The U.S.

More information

ESCI-61 Introduction to Photovoltaic Technology. Solar Radiation. Ridha Hamidi, Ph.D.

ESCI-61 Introduction to Photovoltaic Technology. Solar Radiation. Ridha Hamidi, Ph.D. 1 ESCI-61 Introduction to Photovoltaic Technology Solar Radiation Ridha Hamidi, Ph.D. 2 The Sun The Sun is a perpetual source of energy It has produced energy for about 4.6 billions of years, and it is

More information

Name Class Date. You do twice as much work. b. You lift two identical books one meter above the ground.

Name Class Date. You do twice as much work. b. You lift two identical books one meter above the ground. Exercises 9.1 Work (pages 145 146) 1. Circle the letter next to the correct mathematical equation for work. work = force distance work = distance force c. work = force distance d. work = force distance

More information

Solar Solutions Copyright, The Environmental Center 2013

Solar Solutions Copyright, The Environmental Center 2013 Solar Solutions Copyright, The Environmental Center 2013 Subject: Science Grades: 4-8 Length: 30-60 minutes Focus: Renewable Energy, Solar Energy Rationale: We depend on energy for every aspect of our

More information

Dr. Muhammad Asif Hanif, Department of Chemistry, University of Agriculture, Faisalabad, Pakistan

Dr. Muhammad Asif Hanif, Department of Chemistry, University of Agriculture, Faisalabad, Pakistan Incoming solar energy is largely in the visible region of the spectrum. The shorter wavelength blue solar light is scattered relatively more strongly by molecules and particles in the upper atmosphere,

More information

Section 9.4 Electric Power Generation

Section 9.4 Electric Power Generation Low-pressure steam return Shaft Insulators Power lines High-pressure steam inlet Turbine blade Steam turbines AC generator Magnetic rotor Stationary armature Section 9.4 Electric Power Generation So far

More information

Advancing Green Energy. Enbridge a leader in renewable energy

Advancing Green Energy. Enbridge a leader in renewable energy Advancing Green Energy Enbridge a leader in renewable energy The following presentation has been prepared by Enbridge Inc. ( Enbridge ). This presentation has been prepared for informational use only and

More information

Conventional Energy Sources

Conventional Energy Sources 9.2 Conventional Energy Sources Key Question: What benefits and problems come with common sources of energy? Hints The word plant here is not the kind that grows out of the ground. In this section, plants

More information

Chapter 04: Atmosphere and Surface Energy Balance. Energy Essentials Energy Balance in the Troposphere Energy Balance at Earth s Surface

Chapter 04: Atmosphere and Surface Energy Balance. Energy Essentials Energy Balance in the Troposphere Energy Balance at Earth s Surface Chapter 04: Atmosphere and Surface Energy Balance Energy Essentials Energy Balance in the Troposphere Energy Balance at Earth s Surface Energy Essentials Energy Pathways and Principles Energy Pathways

More information

Emission and absorption spectra

Emission and absorption spectra Emission and absorption spectra Emission spectra You have learnt previously about the structure of an atom. The electrons surrounding the atomic nucleus are arranged in a series of levels of increasing

More information

The Nature of Electromagnetic Radiation

The Nature of Electromagnetic Radiation II The Nature of Electromagnetic Radiation The Sun s energy has traveled across space as electromagnetic radiation, and that is the form in which it arrives on Earth. It is this radiation that determines

More information

New Energy Alternatives

New Energy Alternatives New Energy Alternatives New Renewables Commonly referred to as new because: not used on a wide scale technologies that are still in development believed that they will play a large role in the future Chapter

More information

Chapter 2: Forms of Energy

Chapter 2: Forms of Energy Chapter 2: Forms of Energy Goals of Period 2 Section 2.1: To describe the forms of energy Section 2.2: To illustrate conversions from one form of energy to another Section 2.3 To describe energy storage

More information

What is Solar? The word solar is derived from the Latin word sol (the sun, the Roman sun god) and refers to things and methods that relate to the sun.

What is Solar? The word solar is derived from the Latin word sol (the sun, the Roman sun god) and refers to things and methods that relate to the sun. What is Solar? The word solar is derived from the Latin word sol (the sun, the Roman sun god) and refers to things and methods that relate to the sun. What is the solar industry? The solar industry is

More information

THE MILITARY AND THE RENEWABLES PART I. FOREWORD

THE MILITARY AND THE RENEWABLES PART I. FOREWORD THE MILITARY AND THE RENEWABLES PART I. FOREWORD This article is a part of a series which examines the possibilities of implementing renewable energy technologies in support of the military force. Starting

More information