CMPT 301 Artificial Intelligence Fall 2014 Homework #4

Size: px
Start display at page:

Download "CMPT 301 Artificial Intelligence Fall 2014 Homework #4"

Transcription

1 CMPT 301 Artificial Intelligence Fall 2014 Homework #4 75 Total Points Due Date: No Later than 5:30 PM on Monday, October 6, You may either hand-in this homework written or submit it to the drop box on Canvas. It is expected that you write neatly and legibly and that you provide support for all answers. 1. [10 points] Given a set of locations and distances between them, the Traveling Salesperson Problem (TSP) is to find a shortest tour that visits each location exactly once, and returns to the starting location. We would like to solve the TSP [this] using a greedy hill-climbing algorithm. Each state corresponds to a permutation of locations (a tour). The successor operator Successor(s) generates all neighboring states of s by swapping two locations. For example, if s = (A B C) is a tour, then (B A C), (C B A) and (A C B) are the three neighbors generated by Successor(s). We can set the evaluation function for a state to be the total distance of the tour where each pairwise distance is looked up from a distance matrix. Assume that ties in the evaluation function are broken randomly. (a) [2 points] If there are n locations, how many neighboring states does the Successor() function produce? Solution Because we are just swapping two locations out of a possible n locations, the number of neighboring states is ( ) n 2 (b) [3 points] If there are n locations, how many total states are possible? Solution This is a classic factorial example problem O(n!) (c) [5 points] Imagine you wish to hang posters that mention the incredible career opportunities for computer science majors and minors (especially those that have taken a course in Artificial Intelligence!) The buildings that must be visited are Malouf, Converse, Wellness, Eccles, and Shaw. The goal is to find a tour as short as possible. The distance matrix is as follows: M C W E S M C W E S

2 The student starts applying the hill-climbing algorithm from the initial state of (M E C S W ) (which is cost 3.9). (a) What is the next state reached by hill-climbing? (b) Will a global optimal solution be found by hill-climbing from this initial state, or will it get stuck at some local maxima? Solution From the starting state of (M E C S W ) there are ten possible tours where we exchange any 2 buildings: i. (E M C S W ) = 3.3 ii. (C E M S W ) = 3.3 iii. (S E C M W ) = 3.2 iv. (W E C S M) = 3.7 v. (M C E S W ) = 2.9 vi. (M S C E W ) = 3.7 vii. (M W C S E) = 3.4 viii. (M E S C W ) = 3.6 ix. (M E W S C) = 2.6 x. (M E C W S) = 3.9 The hill climbing algorithm will select (M E W S C) with a cost of 2.6 as the next state. The hill climbing algorithm will repeat, beginning from (M E W S C), and it will find the global optimal solution in one more step with the tour of (S E W M C) with a cost of 1.9. We don t actually know if this is a local or global maximum. In general, the algorithm repeats until the successors return higher costs (it has hit a maximum), or the same costs (it has hit a plateau.) If we knew ahead of time what the actual global maximum was, we could determine if we were at a local or global maximum. (But obviously in most searching situations we do not know what the maximum is!) The tsp.py Python script demonstrates how the solution is found using hill climbing. It is worthwhile looking through this code to determine how hill climbing operates. This program also generates a brute force listing of all tours, and shows what the optimal tour is. As the optimal tour from the brute force is also 1.9, we know the tour (S E W M C) is a global maximum. 2

3 2. [10 points] The Class Scheduling Problem is where there are a fixed number of professors and classrooms, a list of classes to be offered, and a list of possible time slots that classes may be offered. Each professor has a set of classes that he or she can teach. Consider the Class Scheduling Problem as a constraint satisfaction problem. In particular: (a) What are the variables? Solution Class, Classroom and Instructor. (b) What is the domain of each variable? Solution Class = { list of possible time slots } Instructor = { list of classes he or she is teaching } Classroom = { list of classes being taught } (c) What are the constraints? Solution They include (a) only one class can be in the same classroom at the same time, (b) an instructor can only teach one class at a time. 3. [10 points] Consider the problem of constructing (not solving) crossword puzzles where you fit words into a rectangular grid. The grid given as part of the problem specifies which squares are blank and which are shaded. Assume that a list of words (i.e. a dictionary) is provided and that the task is to fill in the blank squares by using subset of the list of words. Formulate this problem in two ways: (a) As a general search problem (using algorithms we went over in Chapters 3 and 4). Choose an appropriate search algorithm and specify its heuristic. Is it better to fill in blanks one letter at a time or one word at a time? Solution A simple idea is a depth-first search where each successor fills in a word in the puzzle with one of the words from the dictionary. A possible heuristic is assigning each word in the dictionary some level of difficulty (i.e. the word stochastic would be assigned a higher difficulty level than the word cat) and try to achieve a certain difficulty level for a particular puzzle. Given this approach, it is probably a better idea to fill blanks in one word at a time rather than one letter at a time. (b) As a constraint satisfaction problem. Should the variables be letters or words? Solution If we choose letters, a variable is each box in the puzzle and the constraints are the variables must combine to make a word in the dictionary. If strings of boxes are variables, the domain is the set of words from the dictionary with the constraint that the intersection of two words must have the same letter in the intersecting box. 3

4 4. [10 points] The diagram shown in Figure 1 represents a map of a country with 6 states. Each state must be colored in Red, Green, or Blue, such that no two adjacent states get the same color. We represent this as a constraint satisfaction problem with 6 variables (A, B, C, D, E, and F) each having the same domain of {Red, Blue, Green} of values. Use CSP-Backtracking with forward checking algorithm to assign each state a color according to the constraint that no two adjacent states are assigned the same color. Use the minimum-remaining-value MRV as a heuristic. Solution Since you were never asked which state to begin with, we ll choose the initial state alphabetically. The solution is trivial. A B C D E F Domain RGB RGB RGB RGB RGB RGB R GB GB RGB RGB GB G B RB RGB B B R RGB B R G B G B B Figure 1: Map. 5. Consider the 5-Queens problem as such: Variables: Q 1, Q 2, Q 3, Q 4, Q 5 (One variable per row of the chessboard.) Domains: {1, 2, 3, 4, 5} (The column in which a Queen is placed.) Constraints: i, j {1..5}, NON-THREATENING (Q i, Q j ) Solution Note Because chessboards are symmetric (i.e. N N) this works if we consider the variables as representing each row or each column on a chessboard. 4

5 (a) [5 points] Suppose we try the assignment Q 1 = 3. Run the forward checking algorithm and draw a map of the chessboard indicating the remaining domains for Q 2,...Q 5. Solution If we assign Q 1 = 3, the remaining domains are: Q 2 = {1, 5} Q 3 = {2, 4} Q 4 = {1, 2, 4, 5} Q 5 = {1, 2, 4, 5} (b) [10 points] Now run the AC-3 algorithm and draw a new map of the chessboard indicating the remaining domains for Q 2,...Q 5. Did AC-3 help? Solution When we run AC-3 we do not reduce the size of the domains for Q 2, Q 3, or Q 4. However, when we consider assigning Q 5 = 2, we see that the current domain of {2,4} for Q 3 = {2, 4} does not allow it, so we remove 2 from the domain of Q 5. The same thing occurs when we consider assigning Q 5 = 4. The resulting domains after running AC-3 are Q 2 = {1, 5} Q 3 = {2, 4} Q 4 = {1, 2, 4, 5} Q 5 = {1, 5} So yes, AC-3 did help because it reduced the domain of Q [10 points] The tree shown in Figure 2 begins with Max at the root. You may find it is easiest to answer these questions by redrawing the tree, illustrating the values being returned at each node, and in the case of α β pruning, showing which subtrees were pruned. (a) What is the value of Minimax at the root? Solution 2 is returned at the root. (b) Repeat the problem, but this time using α β pruning. Solution: Figure 3 7. [10 points] The tree shown in Figure 4 begins with Max at the root. You may find it is easiest to answer these questions by redrawing the tree, illustrating the values being returned at each node, and in the case of α β pruning, showing which subtrees were pruned. 5

6 Figure 2: Example of 2-ply Minimax tree. (a) What is the value of Minimax at the root? Solution: Figure 5 (b) Repeat the problem, but this time using α β pruning. Solution: Figure 6 6

7 Figure 3: Solution of 2-ply Minimax tree with α β pruning. Figure 4: Example of 3-ply Minimax tree. 7

8 Figure 5: Solution of 3-ply Minimax tree. Figure 6: Solution of 3-ply Minimax tree with α β pruning. 8

Smart Graphics: Methoden 3 Suche, Constraints

Smart Graphics: Methoden 3 Suche, Constraints Smart Graphics: Methoden 3 Suche, Constraints Vorlesung Smart Graphics LMU München Medieninformatik Butz/Boring Smart Graphics SS2007 Methoden: Suche 2 Folie 1 Themen heute Suchverfahren Hillclimbing Simulated

More information

Y. Xiang, Constraint Satisfaction Problems

Y. Xiang, Constraint Satisfaction Problems Constraint Satisfaction Problems Objectives Constraint satisfaction problems Backtracking Iterative improvement Constraint propagation Reference Russell & Norvig: Chapter 5. 1 Constraints Constraints are

More information

AI: A Modern Approach, Chpts. 3-4 Russell and Norvig

AI: A Modern Approach, Chpts. 3-4 Russell and Norvig AI: A Modern Approach, Chpts. 3-4 Russell and Norvig Sequential Decision Making in Robotics CS 599 Geoffrey Hollinger and Gaurav Sukhatme (Some slide content from Stuart Russell and HweeTou Ng) Spring,

More information

Pigeonhole Principle Solutions

Pigeonhole Principle Solutions Pigeonhole Principle Solutions 1. Show that if we take n + 1 numbers from the set {1, 2,..., 2n}, then some pair of numbers will have no factors in common. Solution: Note that consecutive numbers (such

More information

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique

More information

VISUAL ALGEBRA FOR COLLEGE STUDENTS. Laurie J. Burton Western Oregon University

VISUAL ALGEBRA FOR COLLEGE STUDENTS. Laurie J. Burton Western Oregon University VISUAL ALGEBRA FOR COLLEGE STUDENTS Laurie J. Burton Western Oregon University VISUAL ALGEBRA FOR COLLEGE STUDENTS TABLE OF CONTENTS Welcome and Introduction 1 Chapter 1: INTEGERS AND INTEGER OPERATIONS

More information

Introduction Solvability Rules Computer Solution Implementation. Connect Four. March 9, 2010. Connect Four

Introduction Solvability Rules Computer Solution Implementation. Connect Four. March 9, 2010. Connect Four March 9, 2010 is a tic-tac-toe like game in which two players drop discs into a 7x6 board. The first player to get four in a row (either vertically, horizontally, or diagonally) wins. The game was first

More information

Computer Science CS 4013/5013: Artificial Intelligence

Computer Science CS 4013/5013: Artificial Intelligence Computer Science CS 4013/5013: Artificial Intelligence Instructor: Dr. McGovern Spring 2013 1 Course Overview Imagine that you are traveling to San Francisco for work and a friend tells you that you absolutely

More information

Enumerating possible Sudoku grids

Enumerating possible Sudoku grids Enumerating possible Sudoku grids Bertram Felgenhauer Department of Computer Science TU Dresden 00 Dresden Germany bf@mail.inf.tu-dresden.de Frazer Jarvis Department of Pure Mathematics University of Sheffield,

More information

Sudoku puzzles and how to solve them

Sudoku puzzles and how to solve them Sudoku puzzles and how to solve them Andries E. Brouwer 2006-05-31 1 Sudoku Figure 1: Two puzzles the second one is difficult A Sudoku puzzle (of classical type ) consists of a 9-by-9 matrix partitioned

More information

CS91.543 MidTerm Exam 4/1/2004 Name: KEY. Page Max Score 1 18 2 11 3 30 4 15 5 45 6 20 Total 139

CS91.543 MidTerm Exam 4/1/2004 Name: KEY. Page Max Score 1 18 2 11 3 30 4 15 5 45 6 20 Total 139 CS91.543 MidTerm Exam 4/1/2004 Name: KEY Page Max Score 1 18 2 11 3 30 4 15 5 45 6 20 Total 139 % INTRODUCTION, AI HISTORY AND AGENTS 1. [4 pts. ea.] Briefly describe the following important AI programs.

More information

Factorizations: Searching for Factor Strings

Factorizations: Searching for Factor Strings " 1 Factorizations: Searching for Factor Strings Some numbers can be written as the product of several different pairs of factors. For example, can be written as 1, 0,, 0, and. It is also possible to write

More information

Kenken For Teachers. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 27, 2010. Abstract

Kenken For Teachers. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 27, 2010. Abstract Kenken For Teachers Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 7, 00 Abstract Kenken is a puzzle whose solution requires a combination of logic and simple arithmetic skills.

More information

1 Review of Least Squares Solutions to Overdetermined Systems

1 Review of Least Squares Solutions to Overdetermined Systems cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares

More information

PARALLELIZED SUDOKU SOLVING ALGORITHM USING OpenMP

PARALLELIZED SUDOKU SOLVING ALGORITHM USING OpenMP PARALLELIZED SUDOKU SOLVING ALGORITHM USING OpenMP Sruthi Sankar CSE 633: Parallel Algorithms Spring 2014 Professor: Dr. Russ Miller Sudoku: the puzzle A standard Sudoku puzzles contains 81 grids :9 rows

More information

Chapter 6: Graph Theory

Chapter 6: Graph Theory Chapter 6: Graph Theory Graph theory deals with routing and network problems and if it is possible to find a best route, whether that means the least expensive, least amount of time or the least distance.

More information

Design and Analysis of ACO algorithms for edge matching problems

Design and Analysis of ACO algorithms for edge matching problems Design and Analysis of ACO algorithms for edge matching problems Carl Martin Dissing Söderlind Kgs. Lyngby 2010 DTU Informatics Department of Informatics and Mathematical Modelling Technical University

More information

Schneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, 2013. p i.

Schneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, 2013. p i. New York, NY, USA: Basic Books, 2013. p i. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=2 New York, NY, USA: Basic Books, 2013. p ii. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=3 New

More information

Determining Degree Of Difficulty In Rogo, A TSP-based Paper Puzzle

Determining Degree Of Difficulty In Rogo, A TSP-based Paper Puzzle Determining Degree Of Difficulty In Rogo, A TSP-based Paper Puzzle Dr Nicola Petty, Dr Shane Dye Department of Management University of Canterbury New Zealand {shane.dye,nicola.petty}@canterbury.ac.nz

More information

each college c i C has a capacity q i - the maximum number of students it will admit

each college c i C has a capacity q i - the maximum number of students it will admit n colleges in a set C, m applicants in a set A, where m is much larger than n. each college c i C has a capacity q i - the maximum number of students it will admit each college c i has a strict order i

More information

Genetic Algorithms and Sudoku

Genetic Algorithms and Sudoku Genetic Algorithms and Sudoku Dr. John M. Weiss Department of Mathematics and Computer Science South Dakota School of Mines and Technology (SDSM&T) Rapid City, SD 57701-3995 john.weiss@sdsmt.edu MICS 2009

More information

Sudoku Madness. Team 3: Matt Crain, John Cheng, and Rabih Sallman

Sudoku Madness. Team 3: Matt Crain, John Cheng, and Rabih Sallman Sudoku Madness Team 3: Matt Crain, John Cheng, and Rabih Sallman I. Problem Description Standard Sudoku is a logic-based puzzle in which the user must fill a 9 x 9 board with the appropriate digits so

More information

Graph Theory Problems and Solutions

Graph Theory Problems and Solutions raph Theory Problems and Solutions Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is

More information

Informed search algorithms. Chapter 4, Sections 1 2 1

Informed search algorithms. Chapter 4, Sections 1 2 1 Informed search algorithms Chapter 4, Sections 1 2 Chapter 4, Sections 1 2 1 Outline Best-first search A search Heuristics Chapter 4, Sections 1 2 2 Review: Tree search function Tree-Search( problem, fringe)

More information

An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015

An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015 An Introduction to Data Mining for Wind Power Management Spring 2015 Big Data World Every minute: Google receives over 4 million search queries Facebook users share almost 2.5 million pieces of content

More information

Search methods motivation 1

Search methods motivation 1 Suppose you are an independent software developer, and your software package Windows Defeater R, widely available on sourceforge under a GNU GPL license, is getting an international attention and acclaim.

More information

M. Sugumaran / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3), 2011, 1001-1006

M. Sugumaran / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3), 2011, 1001-1006 A Design of Centralized Meeting Scheduler with Distance Metrics M. Sugumaran Department of Computer Science and Engineering,Pondicherry Engineering College, Puducherry, India. Abstract Meeting scheduling

More information

vii TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK

vii TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK vii TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS LIST OF SYMBOLS LIST OF APPENDICES

More information

PERMUTATIONS AND COMBINATIONS

PERMUTATIONS AND COMBINATIONS PERMUTATIONS AND COMBINATIONS Mathematics for Elementary Teachers: A Conceptual Approach New Material for the Eighth Edition Albert B. Bennett, Jr., Laurie J. Burton and L. Ted Nelson Math 212 Extra Credit

More information

Product Geometric Crossover for the Sudoku Puzzle

Product Geometric Crossover for the Sudoku Puzzle Product Geometric Crossover for the Sudoku Puzzle Alberto Moraglio Dept. of Computer Science University of Essex, UK amoragn@essex.ac.uk Julian Togelius Dept. of Computer Science University of Essex, UK

More information

Measuring the Performance of an Agent

Measuring the Performance of an Agent 25 Measuring the Performance of an Agent The rational agent that we are aiming at should be successful in the task it is performing To assess the success we need to have a performance measure What is rational

More information

A search based Sudoku solver

A search based Sudoku solver A search based Sudoku solver Tristan Cazenave Labo IA Dept. Informatique Université Paris 8, 93526, Saint-Denis, France, cazenave@ai.univ-paris8.fr Abstract. Sudoku is a popular puzzle. In this paper we

More information

6. Cholesky factorization

6. Cholesky factorization 6. Cholesky factorization EE103 (Fall 2011-12) triangular matrices forward and backward substitution the Cholesky factorization solving Ax = b with A positive definite inverse of a positive definite matrix

More information

Analysis of Micromouse Maze Solving Algorithms

Analysis of Micromouse Maze Solving Algorithms 1 Analysis of Micromouse Maze Solving Algorithms David M. Willardson ECE 557: Learning from Data, Spring 2001 Abstract This project involves a simulation of a mouse that is to find its way through a maze.

More information

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming

More information

Permutation Groups. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles April 2, 2003

Permutation Groups. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles April 2, 2003 Permutation Groups Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles April 2, 2003 Abstract This paper describes permutations (rearrangements of objects): how to combine them, and how

More information

Chess Algorithms Theory and Practice. Rune Djurhuus Chess Grandmaster runed@ifi.uio.no / runedj@microsoft.com October 3, 2012

Chess Algorithms Theory and Practice. Rune Djurhuus Chess Grandmaster runed@ifi.uio.no / runedj@microsoft.com October 3, 2012 Chess Algorithms Theory and Practice Rune Djurhuus Chess Grandmaster runed@ifi.uio.no / runedj@microsoft.com October 3, 2012 1 Content Complexity of a chess game History of computer chess Search trees

More information

Data Mining: A Preprocessing Engine

Data Mining: A Preprocessing Engine Journal of Computer Science 2 (9): 735-739, 2006 ISSN 1549-3636 2005 Science Publications Data Mining: A Preprocessing Engine Luai Al Shalabi, Zyad Shaaban and Basel Kasasbeh Applied Science University,

More information

Ant Colony Optimization and Constraint Programming

Ant Colony Optimization and Constraint Programming Ant Colony Optimization and Constraint Programming Christine Solnon Series Editor Narendra Jussien WILEY Table of Contents Foreword Acknowledgements xi xiii Chapter 1. Introduction 1 1.1. Overview of the

More information

OA3-10 Patterns in Addition Tables

OA3-10 Patterns in Addition Tables OA3-10 Patterns in Addition Tables Pages 60 63 Standards: 3.OA.D.9 Goals: Students will identify and describe various patterns in addition tables. Prior Knowledge Required: Can add two numbers within 20

More information

Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Module No. # 01 Lecture No. # 05 Classic Cryptosystems (Refer Slide Time: 00:42)

More information

A Systematic Approach to Model-Guided Empirical Search for Memory Hierarchy Optimization

A Systematic Approach to Model-Guided Empirical Search for Memory Hierarchy Optimization A Systematic Approach to Model-Guided Empirical Search for Memory Hierarchy Optimization Chun Chen, Jacqueline Chame, Mary Hall, and Kristina Lerman University of Southern California/Information Sciences

More information

6.099, Spring Semester, 2006 Assignment for Week 13 1

6.099, Spring Semester, 2006 Assignment for Week 13 1 6.099, Spring Semester, 2006 Assignment for Week 13 1 MASSACHVSETTS INSTITVTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.099 Introduction to EECS I Spring Semester, 2006

More information

Math 202-0 Quizzes Winter 2009

Math 202-0 Quizzes Winter 2009 Quiz : Basic Probability Ten Scrabble tiles are placed in a bag Four of the tiles have the letter printed on them, and there are two tiles each with the letters B, C and D on them (a) Suppose one tile

More information

Guessing Game: NP-Complete?

Guessing Game: NP-Complete? Guessing Game: NP-Complete? 1. LONGEST-PATH: Given a graph G = (V, E), does there exists a simple path of length at least k edges? YES 2. SHORTEST-PATH: Given a graph G = (V, E), does there exists a simple

More information

New binary representation in Genetic Algorithms for solving TSP by mapping permutations to a list of ordered numbers

New binary representation in Genetic Algorithms for solving TSP by mapping permutations to a list of ordered numbers Proceedings of the 5th WSEAS Int Conf on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 0-, 006 363 New binary representation in Genetic Algorithms for solving

More information

SUPPLY CHAIN OPTIMIZATION MODELS IN THE AREA OF OPERATION

SUPPLY CHAIN OPTIMIZATION MODELS IN THE AREA OF OPERATION SUPPLY CHAIN OPTIMIZATION MODELS IN THE AREA OF OPERATION Tomáš DVOŘÁK, Martin VLKOVSKÝ Abstract: Main idea of this paper is to choose both suitable and applicable operations research methods for military

More information

(b) You draw two balls from an urn and track the colors. When you start, it contains three blue balls and one red ball.

(b) You draw two balls from an urn and track the colors. When you start, it contains three blue balls and one red ball. Examples for Chapter 3 Probability Math 1040-1 Section 3.1 1. Draw a tree diagram for each of the following situations. State the size of the sample space. (a) You flip a coin three times. (b) You draw

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

More information

Dynamic Programming. Lecture 11. 11.1 Overview. 11.2 Introduction

Dynamic Programming. Lecture 11. 11.1 Overview. 11.2 Introduction Lecture 11 Dynamic Programming 11.1 Overview Dynamic Programming is a powerful technique that allows one to solve many different types of problems in time O(n 2 ) or O(n 3 ) for which a naive approach

More information

MATHEMATICS Y3 Using and applying mathematics 3810 Solve mathematical puzzles and investigate. Equipment MathSphere www.mathsphere.co.

MATHEMATICS Y3 Using and applying mathematics 3810 Solve mathematical puzzles and investigate. Equipment MathSphere www.mathsphere.co. MATHEMATICS Y3 Using and applying mathematics 3810 Solve mathematical puzzles and investigate. Equipment Paper, pencil, ruler Dice, number cards, buttons/counters, boxes etc MathSphere 3810 Solve mathematical

More information

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite ALGEBRA Pupils should be taught to: Generate and describe sequences As outcomes, Year 7 pupils should, for example: Use, read and write, spelling correctly: sequence, term, nth term, consecutive, rule,

More information

Solutions for Review Problems for Exam 2 Math 1040 1 1. You roll two fair dice. (a) Draw a tree diagram for this experiment.

Solutions for Review Problems for Exam 2 Math 1040 1 1. You roll two fair dice. (a) Draw a tree diagram for this experiment. Solutions for Review Problems for Exam 2 Math 1040 1 1. You roll two fair dice. (a) Draw a tree diagram for this experiment. 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2

More information

Unit 4 DECISION ANALYSIS. Lesson 37. Decision Theory and Decision Trees. Learning objectives:

Unit 4 DECISION ANALYSIS. Lesson 37. Decision Theory and Decision Trees. Learning objectives: Unit 4 DECISION ANALYSIS Lesson 37 Learning objectives: To learn how to use decision trees. To structure complex decision making problems. To analyze the above problems. To find out limitations & advantages

More information

CMPSCI611: Approximating MAX-CUT Lecture 20

CMPSCI611: Approximating MAX-CUT Lecture 20 CMPSCI611: Approximating MAX-CUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NP-hard problems. Today we consider MAX-CUT, which we proved to

More information

Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows

Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows TECHNISCHE UNIVERSITEIT EINDHOVEN Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows Lloyd A. Fasting May 2014 Supervisors: dr. M. Firat dr.ir. M.A.A. Boon J. van Twist MSc. Contents

More information

Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data

Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data CMPE 59H Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data Term Project Report Fatma Güney, Kübra Kalkan 1/15/2013 Keywords: Non-linear

More information

Optimization in ICT and Physical Systems

Optimization in ICT and Physical Systems 27. OKTOBER 2010 in ICT and Physical Systems @ Aarhus University, Course outline, formal stuff Prerequisite Lectures Homework Textbook, Homepage and CampusNet, http://kurser.iha.dk/ee-ict-master/tiopti/

More information

1 Combinations, Permutations, and Elementary Probability

1 Combinations, Permutations, and Elementary Probability 1 Combinations, Permutations, and Elementary Probability Roughly speaking, Permutations are ways of grouping things where the order is important. Combinations are ways of grouping things where the order

More information

Lesson #13 Congruence, Symmetry and Transformations: Translations, Reflections, and Rotations

Lesson #13 Congruence, Symmetry and Transformations: Translations, Reflections, and Rotations Math Buddies -Grade 4 13-1 Lesson #13 Congruence, Symmetry and Transformations: Translations, Reflections, and Rotations Goal: Identify congruent and noncongruent figures Recognize the congruence of plane

More information

Reductions & NP-completeness as part of Foundations of Computer Science undergraduate course

Reductions & NP-completeness as part of Foundations of Computer Science undergraduate course Reductions & NP-completeness as part of Foundations of Computer Science undergraduate course Alex Angelopoulos, NTUA January 22, 2015 Outline Alex Angelopoulos (NTUA) FoCS: Reductions & NP-completeness-

More information

Tessellations. Practice 1 Identifying Tessellations. In each tessellation, color the repeated shape. Example

Tessellations. Practice 1 Identifying Tessellations. In each tessellation, color the repeated shape. Example Name: Chapter Date: Practice 1 Identifying In each tessellation, color the repeated shape. Example 1. 2. 3. Lesson 14.1 Identifying 133 Is each pattern a tessellation of a single repeated shape? Write

More information

CHOOSING THE BEST HEURISTIC FOR A NP-PROBLEM

CHOOSING THE BEST HEURISTIC FOR A NP-PROBLEM CHOOSING THE BEST HEURISTIC FOR A NP-PROBLEM Thesis submitted in partial fulfillment of the requirements for the award of Degree of Master of Engineering in Computer Science and Engineering Thapar University,

More information

Session 6 Number Theory

Session 6 Number Theory Key Terms in This Session Session 6 Number Theory Previously Introduced counting numbers factor factor tree prime number New in This Session composite number greatest common factor least common multiple

More information

EXAM. Exam #3. Math 1430, Spring 2002. April 21, 2001 ANSWERS

EXAM. Exam #3. Math 1430, Spring 2002. April 21, 2001 ANSWERS EXAM Exam #3 Math 1430, Spring 2002 April 21, 2001 ANSWERS i 60 pts. Problem 1. A city has two newspapers, the Gazette and the Journal. In a survey of 1, 200 residents, 500 read the Journal, 700 read the

More information

Complexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar

Complexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Complexity Theory IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Outline Goals Computation of Problems Concepts and Definitions Complexity Classes and Problems Polynomial Time Reductions Examples

More information

Course Outline Department of Computing Science Faculty of Science. COMP 3710-3 Applied Artificial Intelligence (3,1,0) Fall 2015

Course Outline Department of Computing Science Faculty of Science. COMP 3710-3 Applied Artificial Intelligence (3,1,0) Fall 2015 Course Outline Department of Computing Science Faculty of Science COMP 710 - Applied Artificial Intelligence (,1,0) Fall 2015 Instructor: Office: Phone/Voice Mail: E-Mail: Course Description : Students

More information

Green = 0,255,0 (Target Color for E.L. Gray Construction) CIELAB RGB Simulation Result for E.L. Gray Match (43,215,35) Equal Luminance Gray for Green

Green = 0,255,0 (Target Color for E.L. Gray Construction) CIELAB RGB Simulation Result for E.L. Gray Match (43,215,35) Equal Luminance Gray for Green Red = 255,0,0 (Target Color for E.L. Gray Construction) CIELAB RGB Simulation Result for E.L. Gray Match (184,27,26) Equal Luminance Gray for Red = 255,0,0 (147,147,147) Mean of Observer Matches to Red=255

More information

Gamesman: A Graphical Game Analysis System

Gamesman: A Graphical Game Analysis System Gamesman: A Graphical Game Analysis System Dan Garcia Abstract We present Gamesman, a graphical system for implementing, learning, analyzing and playing small finite two-person

More information

Full and Complete Binary Trees

Full and Complete Binary Trees Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full

More information

Hoover High School Math League. Counting and Probability

Hoover High School Math League. Counting and Probability Hoover High School Math League Counting and Probability Problems. At a sandwich shop there are 2 kinds of bread, 5 kinds of cold cuts, 3 kinds of cheese, and 2 kinds of dressing. How many different sandwiches

More information

Lesson Plans for (9 th Grade Main Lesson) Possibility & Probability (including Permutations and Combinations)

Lesson Plans for (9 th Grade Main Lesson) Possibility & Probability (including Permutations and Combinations) Lesson Plans for (9 th Grade Main Lesson) Possibility & Probability (including Permutations and Combinations) Note: At my school, there is only room for one math main lesson block in ninth grade. Therefore,

More information

DIRECTIONS FOR SOLVING THE 5x5x5 (Professor) CUBE

DIRECTIONS FOR SOLVING THE 5x5x5 (Professor) CUBE DIRECTIONS FOR SOLVING THE 5x5x5 (Professor) CUBE These instructions can be used to solve a 5x5x5 cube, also known as the professor cube due to its difficulty. These directions are a graphical version

More information

ARTIFICIAL INTELLIGENCE METHODS IN EARLY MANUFACTURING TIME ESTIMATION

ARTIFICIAL INTELLIGENCE METHODS IN EARLY MANUFACTURING TIME ESTIMATION 1 ARTIFICIAL INTELLIGENCE METHODS IN EARLY MANUFACTURING TIME ESTIMATION B. Mikó PhD, Z-Form Tool Manufacturing and Application Ltd H-1082. Budapest, Asztalos S. u 4. Tel: (1) 477 1016, e-mail: miko@manuf.bme.hu

More information

Ready, Set, Go! Math Games for Serious Minds

Ready, Set, Go! Math Games for Serious Minds Math Games with Cards and Dice presented at NAGC November, 2013 Ready, Set, Go! Math Games for Serious Minds Rande McCreight Lincoln Public Schools Lincoln, Nebraska Math Games with Cards Close to 20 -

More information

Binary Search Trees. Data in each node. Larger than the data in its left child Smaller than the data in its right child

Binary Search Trees. Data in each node. Larger than the data in its left child Smaller than the data in its right child Binary Search Trees Data in each node Larger than the data in its left child Smaller than the data in its right child FIGURE 11-6 Arbitrary binary tree FIGURE 11-7 Binary search tree Data Structures Using

More information

2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8]

2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8] Code No: R05220502 Set No. 1 1. (a) Describe the performance analysis in detail. (b) Show that f 1 (n)+f 2 (n) = 0(max(g 1 (n), g 2 (n)) where f 1 (n) = 0(g 1 (n)) and f 2 (n) = 0(g 2 (n)). [8+8] 2. (a)

More information

A Quick Guide to Constructing an SPSS Code Book Prepared by Amina Jabbar, Centre for Research on Inner City Health

A Quick Guide to Constructing an SPSS Code Book Prepared by Amina Jabbar, Centre for Research on Inner City Health A Quick Guide to Constructing an SPSS Code Book Prepared by Amina Jabbar, Centre for Research on Inner City Health 1. To begin, double click on SPSS icon. The icon will probably look something like this

More information

MATRIX MULTIPLICATION

MATRIX MULTIPLICATION CURRICULUM INSPIRATIONS: www.maa.org/ci INNOVATIVE CURRICULUM ONLINE EXPERIENCES: www.gdaymath.com TANTON TIDBITS: www.jamestanton.com MATH FOR AMERICA_DC: www.mathforamerica.org/dc TANTON S TAKE ON MATRIX

More information

SAP Business Intelligence ( BI ) Financial and Budget Reporting. 7.0 Edition. (Best Seller At Least 43 copies Sold)

SAP Business Intelligence ( BI ) Financial and Budget Reporting. 7.0 Edition. (Best Seller At Least 43 copies Sold) SAP Business Intelligence ( BI ) Financial and Budget Reporting 7.0 Edition (Best Seller At Least 43 copies Sold) November 2011 Table of Contents Log In... 3 Initial Variable Screen... 5 Multiple / Single

More information

How To Solve The Social Studies Test

How To Solve The Social Studies Test Math 00 Homework #0 Solutions. Section.: ab. For each map below, determine the number of southerly paths from point to point. Solution: We just have to use the same process as we did in building Pascal

More information

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

More information

Chess Algorithms Theory and Practice. Rune Djurhuus Chess Grandmaster runed@ifi.uio.no / runedj@microsoft.com September 23, 2014

Chess Algorithms Theory and Practice. Rune Djurhuus Chess Grandmaster runed@ifi.uio.no / runedj@microsoft.com September 23, 2014 Chess Algorithms Theory and Practice Rune Djurhuus Chess Grandmaster runed@ifi.uio.no / runedj@microsoft.com September 23, 2014 1 Content Complexity of a chess game Solving chess, is it a myth? History

More information

Classification/Decision Trees (II)

Classification/Decision Trees (II) Classification/Decision Trees (II) Department of Statistics The Pennsylvania State University Email: jiali@stat.psu.edu Right Sized Trees Let the expected misclassification rate of a tree T be R (T ).

More information

Math 408, Actuarial Statistics I, Spring 2008. Solutions to combinatorial problems

Math 408, Actuarial Statistics I, Spring 2008. Solutions to combinatorial problems , Spring 2008 Word counting problems 1. Find the number of possible character passwords under the following restrictions: Note there are 26 letters in the alphabet. a All characters must be lower case

More information

IE 680 Special Topics in Production Systems: Networks, Routing and Logistics*

IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY) *Lecture notes from Network Flows by Ahuja, Magnanti

More information

Efficient Data Structures for Decision Diagrams

Efficient Data Structures for Decision Diagrams Artificial Intelligence Laboratory Efficient Data Structures for Decision Diagrams Master Thesis Nacereddine Ouaret Professor: Supervisors: Boi Faltings Thomas Léauté Radoslaw Szymanek Contents Introduction...

More information

HSI BASED COLOUR IMAGE EQUALIZATION USING ITERATIVE n th ROOT AND n th POWER

HSI BASED COLOUR IMAGE EQUALIZATION USING ITERATIVE n th ROOT AND n th POWER HSI BASED COLOUR IMAGE EQUALIZATION USING ITERATIVE n th ROOT AND n th POWER Gholamreza Anbarjafari icv Group, IMS Lab, Institute of Technology, University of Tartu, Tartu 50411, Estonia sjafari@ut.ee

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

Module1. x 1000. y 800.

Module1. x 1000. y 800. Module1 1 Welcome to the first module of the course. It is indeed an exciting event to share with you the subject that has lot to offer both from theoretical side and practical aspects. To begin with,

More information

Game Theory 1. Introduction

Game Theory 1. Introduction Game Theory 1. Introduction Dmitry Potapov CERN What is Game Theory? Game theory is about interactions among agents that are self-interested I ll use agent and player synonymously Self-interested: Each

More information

Integrated System Modeling for Handling Big Data in Electric Utility Systems

Integrated System Modeling for Handling Big Data in Electric Utility Systems Integrated System Modeling for Handling Big Data in Electric Utility Systems Stephanie Hamilton Brookhaven National Laboratory Robert Broadwater EDD dew@edd-us.com 1 Finding Good Solutions for the Hard

More information

Chapter 7: Products and quotients

Chapter 7: Products and quotients Chapter 7: Products and quotients Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 7: Products

More information

How To Understand And Solve A Linear Programming Problem

How To Understand And Solve A Linear Programming Problem At the end of the lesson, you should be able to: Chapter 2: Systems of Linear Equations and Matrices: 2.1: Solutions of Linear Systems by the Echelon Method Define linear systems, unique solution, inconsistent,

More information

Microsoft Word 2010 Basics

Microsoft Word 2010 Basics Microsoft Word 2010 Basics 1. Start Word if the Word 2007 icon is not on the desktop: a. Click Start>Programs>Microsoft Office>Microsoft Word 2007 b. The Ribbon- seen across the top of Microsoft Word.

More information

VEHICLE ROUTING PROBLEM

VEHICLE ROUTING PROBLEM VEHICLE ROUTING PROBLEM Readings: E&M 0 Topics: versus TSP Solution methods Decision support systems for Relationship between TSP and Vehicle routing problem () is similar to the Traveling salesman problem

More information

10/13/11 Solution: Minimax with Alpha-Beta Pruning and Progressive Deepening

10/13/11 Solution: Minimax with Alpha-Beta Pruning and Progressive Deepening 10/1/11 Solution: Minimax with Alpha-Beta Pruning and Progressive Deepening When answering the question in Parts C.1 and C. below, assume you have already applied minimax with alpha-beta pruning and progressive

More information

Web Data Extraction: 1 o Semestre 2007/2008

Web Data Extraction: 1 o Semestre 2007/2008 Web Data : Given Slides baseados nos slides oficiais do livro Web Data Mining c Bing Liu, Springer, December, 2006. Departamento de Engenharia Informática Instituto Superior Técnico 1 o Semestre 2007/2008

More information

One pile, two pile, three piles

One pile, two pile, three piles CHAPTER 4 One pile, two pile, three piles 1. One pile Rules: One pile is a two-player game. Place a small handful of stones in the middle. At every turn, the player decided whether to take one, two, or

More information

An Introduction to Number Theory Prime Numbers and Their Applications.

An Introduction to Number Theory Prime Numbers and Their Applications. East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations 8-2006 An Introduction to Number Theory Prime Numbers and Their Applications. Crystal

More information