Chess Algorithms Theory and Practice. Rune Djurhuus Chess Grandmaster / September 23, 2014

Save this PDF as:

Size: px
Start display at page:

Download "Chess Algorithms Theory and Practice. Rune Djurhuus Chess Grandmaster runed@ifi.uio.no / runedj@microsoft.com September 23, 2014"

Transcription

1 Chess Algorithms Theory and Practice Rune Djurhuus Chess Grandmaster / September 23,

2 Content Complexity of a chess game Solving chess, is it a myth? History of computer chess Search trees and position evaluation Minimax: The basic search algorithm Negamax: «Simplified» minimax Node explosion Pruning techniques: Alpha-Beta pruning Analyze the best move first Killer-move heuristics Zero-move heuristics Iterative deeper depth-first search (IDDFS) Search tree extensions Transposition tables (position cache) Other challenges Endgame tablebases Demo 2

3 Complexity of a Chess Game 20 possible start moves, 20 possible replies, etc. 400 possible positions after 2 ply (half moves) positions after 4 ply 7 13 positions after 10 ply (5 White moves and 5 Black moves) Exponential explosion! Approximately 40 legal moves in a typical position There exists about possible chess games 3

4 Solving Chess, is it a myth? Chess Complexity Space The estimated number of possible chess games is Claude E. Shannon 1 followed by 120 zeroes!!! The estimated number of reachable chess positions is Shirish Chinchalkar, 1996 Modern GPU s performs flops If we assume one million GPUs with 10 flops per position we can calculate positions per second It will take us years to solve chess Assuming Moore s law works in the future Todays top supercomputers delivers flops Assuming 100 operations per position yields positions per second Doing retrograde analysis on supercomputers for 4 months we can calculate positions. When will Moore s law allow us to reach positions? Answer: in 128 years, or around year 2142! 4

5 History of Computer Chess Chess is a good fit for computers: Clearly defined rules Game of complete information Easy to evaluate (judge) positions Search tree is not too small or too big 1950: Programming a Computer for Playing Chess (Claude Shannon) 1951: First chess playing program (on paper) (Alan Turing) 1958: First computer program that can play a complete chess game 1981: Cray Blitz wins a tournament in Mississippi and achieves master rating 1989: Deep Thought loses 0-2 against World Champion Garry Kasparov 1996: Deep Blue wins a game against Kasparov, but loses match : Upgraded Dee Blue wins against Kasparov 2005: Hydra destroys GM Michael Adams : World Champion Vladimir Kramnik looses 2-4 against Deep Fritz (PC chess engine) 5

6 Search Trees and Position Evaluation Search trees (nodes are positions, edges are legal chess moves) Leaf nodes are end positions which needs to be evaluated (judged) A simple judger: Check mate? If not, count material Nodes are marked with a numeric evaluation value 6

7 Minimax: The Basic Search Algorithm Minimax: Assume that both White and Black plays the best moves. We maximizes White s score Perform a depth-first search and evaluate the leaf nodes Choose child node with highest value if it is White to move Choose child node with lowest value if it is Black to move Branching factor is 40 in a typical chess position White Black White Black White ply = 0 ply = 1 ply = 2 ply = 3 ply = 4 7

8 NegaMax Simplified Minimax Minimax int maxi( int depth ) { if ( depth == 0 ) return evaluate(); int max = -oo; for ( all moves) { score = mini( depth - 1 ); if( score > max ) max = score; } return max; } int mini( int depth ) { if ( depth == 0 ) return -evaluate(); int min = +oo; for ( all moves) { score = maxi( depth - 1 ); if( score < min ) min = score; } return min; } NegaMax max(a, b) == -min(-a, -b) int negamax( int depth ) { if ( depth == 0 ) return evaluate(); int max = -oo; for ( all moves) { score = -negamax( depth - 1 ); if( score > max ) max = score; } return max; } 8

9 Node explosion A typical middle-game position has 40 legal moves. Depth Node count Time at 10M nodes / s s s s s s min 49,6 s h 33 min 4 s 10 M nodes per second (nps) is realistic for modern chess engines Modern engines routinely reach depths ply at tournament play But they only have a few minutes per move, so they should be able to go only 5-6 ply deep How do they then get to depth 20 so easily? d 14 h 2 min 40 s 9

10 Pruning Techniques The complexity of searching d ply ahead is O(b*b* *b) = O(b d ) With a branching factor (b) of 40 it is crucial to be able to prune the search tree 10

11 Alpha-Beta Pruning Position is so good for White (or Black) that the opponent with best play will not enter the variation that gives the position. Use previous known max and min values to limit the search tree Alpha value: White is guaranteed this score or better (start value: - ) Beta value: Black is guaranteed this score or less (start value: + ) If Alpha is higher than Beta, then the position will never occur assuming best play If search tree below is evaluated left to right, then we can skip the greyedout sub trees Regardless of what values we get for the grey nodes, they will not influence the root node score White Black White Black White ply = 0 ply = 1 ply = 2 ply = 3 ply = 4 11

12 Analyze the Best Move First Even with alpha-beta pruning, if we always start with the worst move, we still get O(b*b*..*b) = O(b d ) If we always start with the best move (also recursive) it can be shown that complexity is O(b*1*b*1*b*1 ) = O(b d/2 ) = O( b d ) We can double the search depth without using more resources Conclusion: It is very important to try to start with the strongest moves first 12

13 Killer-Move Heuristics Killer-move heuristics is based on the assumption that a strong move which gave a large pruning of a sub tree, might also be a strong move in other nodes in the search tree Therefore we start with the killer moves in order to maximize search tree pruning 13

14 Zero-Move Heuristics Alpha-Beta cutoff: The position is so good for White (or Black) that the opponent with best play will avoid the variation resulting in that position Zero-Move heuristics is based on the fact that in most positions it is an advantage to be the first player to move Let the player (e.g. White) who has just made a move, play another move (two moves in a row), and perform a shallower (2-3 ply less) and therefore cheaper search from that position If the shallower search gives a cutoff value (e.g. bad score for White), it means that most likely the search tree can be pruned at this position without performing a deeper search, since two moves in a row did not help Very effective pruning technique! Cavecats: Check and endgames (where a player can be in trekktvang every move worsens the position) 14

15 Iterative Deeper Depth-First Search (IDDFS) Since it is so important to evaluate the best move first, it might be worthwhile to execute a shallower search first and then use the resulting alpha/beta cutoff values as start values for a deeper search Since the majority of search nodes are on the lowest level in a balanced search tree, it is relatively cheap to do an extra shallower search 15

16 Search Tree Extensions PC programs today can compute ply ahead (Deep Blue computed 12 ply against Kasparov in 1997, Hydra (64 nodes with FPGAs) computed at least 18 ply) It is important to extend the search in leaf nodes that are unstable Good search extensions includes all moves that gives check or captures a piece The longest search extensions are typically double the average length of the search tree! 16

17 Transposition Table Same position will commonly occur from different move orders All chess engines therefore has a transposition table (position cache) Implemented using a hash table with chess position as key Doesn t have to evaluate large sub trees over and over again Chess engines typically uses half of available memory to hash table proves how important it is 17

18 Other challenges Move generator (hardware / software) Hydra (64 nodes Xeon cluster, FPGA chips) computed 200 millions positions per second, approximately the same as Deep Blue (on older ASIC chip sets) Hydra computes 18 ply ahead while Deep Blue only managed 12 (Hydra prunes search tree better) Fritz 13 chess engine (single processor/core) manages 2.3 mill moves/second on my laptop and computes 15+ ply Efficient data structure for a chess board (0x88, bitboards) Opening library suited for a chess computer Position evaluation: Traditionally chess computers has done deep searches with a simple evaluation function But one of the best PC chess engines today, Rybka, sacrifices search depth for a complex position evaluation and better search heuristics 18

19 Endgame Tablebases Chess engines plays endgames with 3-7 pieces left on the board perfectly by looking up best move in huge tables These endgame databases are called Tablebases Retrograde analyses: Tablebases are generated by starting with final positions (check mate, steal mate or insufficient mating material (e.g. king vs. king)) and then compute backwards until all nodes in search tree are marked as win, draw or loose Using complex compression algorithms (Eugene Nalimov) All 3-5 piece endgames and some 6 piece endgames are stored in just 21 GB 19

20 Lomonosov Tablebases All 7 piece endgames (except 6 pieces vs a lone king) calculated for the first time in 2013 on the Lomonosov supercomputer in Moscow State University. Took 6 months to generate Needed 140 TB of storage Longest forced mate: White to mate in 545 moves! See 20

21 Demo Demo: ChessBase with chess engine Deep Rybka 4, Houdini 4, Komodo 8 and Fritz 13 Best open source UCI chess engine (and may be best overall): Stockfish (stockfishchess.org) 21

22 Thank you Presenter: Rune Djurhuus Contact: Version: Autumn

Chess Algorithms Theory and Practice. Rune Djurhuus Chess Grandmaster runed@ifi.uio.no / runedj@microsoft.com October 3, 2012

Chess Algorithms Theory and Practice Rune Djurhuus Chess Grandmaster runed@ifi.uio.no / runedj@microsoft.com October 3, 2012 1 Content Complexity of a chess game History of computer chess Search trees

AI and computer game playing. Artificial Intelligence. Partial game tree for Tic-Tac-Toe. Game tree search. Minimax Algorithm

AI and computer game playing Artificial Intelligence Introduction to game-playing search imax algorithm, evaluation functions, alpha-beta pruning, advanced techniques Game playing (especially chess and

Artificial Intelligence in Chess

Artificial Intelligence in Chess IA in Chess is quite complex Even the fastest computer cannot solve the chess game (cannot analyze every possible situation) There are many ways of reducing the need of

Artificial Intelligence Adversarial Search

Artificial Intelligence Adversarial Search Andrea Torsello Games Vs. Planning Problems In many problems you re are pitted against an opponent certain operators are beyond your control: you cannot control

COMP-424: Artificial intelligence. Lecture 7: Game Playing

COMP 424 - Artificial Intelligence Lecture 7: Game Playing Instructor: Joelle Pineau (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp424 Unless otherwise noted, all material posted

Game-Playing & Adversarial Search MiniMax, Search Cut-off, Heuristic Evaluation

Game-Playing & Adversarial Search MiniMax, Search Cut-off, Heuristic Evaluation This lecture topic: Game-Playing & Adversarial Search (MiniMax, Search Cut-off, Heuristic Evaluation) Read Chapter 5.1-5.2,

Adversarial Search and Game- Playing. C H A P T E R 5 C M P T 3 1 0 : S u m m e r 2 0 1 1 O l i v e r S c h u l t e

Adversarial Search and Game- Playing C H A P T E R 5 C M P T 3 1 0 : S u m m e r 2 0 1 1 O l i v e r S c h u l t e Environment Type Discussed In this Lecture 2 Fully Observable yes Turn-taking: Semi-dynamic

Techniques to Parallelize Chess Matthew Guidry, Charles McClendon

Techniques to Parallelize Chess Matthew Guidry, Charles McClendon Abstract Computer chess has, over the years, served as a metric for showing the progress of computer science. It was a momentous occasion

13. *-Minimax. Introduction. Stochastic Games. Deep Search!? Perfect information deterministic games? Imperfect information games?

13. *-Minimax Introduction Perfect information deterministic games? Lots of success Imperfect information games? Hard because of missing information Subject of active research Bridge, poker Non-deterministic/stochastic

Game playing. Chapter 6. Chapter 6 1

Game playing Chapter 6 Chapter 6 1 Outline Games Perfect play minimax decisions α β pruning Resource limits and approximate evaluation Games of chance Games of imperfect information Chapter 6 2 Games vs.

Game Playing in the Real World. Next time: Knowledge Representation Reading: Chapter 7.1-7.3

Game Playing in the Real World Next time: Knowledge Representation Reading: Chapter 7.1-7.3 1 What matters? Speed? Knowledge? Intelligence? (And what counts as intelligence?) Human vs. machine characteristics

Computer Simulation (2) Game Playing

Computer Simulation (2) Game Playing Different Types of Games How many players? One Two Element of chance? Deterministic Nondeterministic Outcome Zero sum (what one player wins, the other loses) Non-zero

Knowledge engineering in chess programming- Evaluation of a chess position-criteria and procedure

Knowledge engineering in chess programming- Evaluation of a chess position-criteria and procedure malugu_satyajit@yahoo.com vidyuth_koniki@yahoo.co.in Authors: M.Satyajit ¾ Cse-A Gitam K.B.N.Vidyuth ¾

AI in Computer Chess. Colin Frayn, CERCIA

AI in Computer Chess Colin Frayn, CERCIA History of Computer Chess The Turk Baron Wolfgang von Kempelen Early 19 th Century First real algorithm Turing (1947) 1948 UNIVAC was supposedly unbeatable! 1952

FIRST EXPERIMENTAL RESULTS OF PROBCUT APPLIED TO CHESS

FIRST EXPERIMENTAL RESULTS OF PROBCUT APPLIED TO CHESS A.X. Jiang Department of Computer Science, University of British Columbia, Vancouver, Canada albertjiang@yahoo.com M. Buro Department of Computing

Implementing a Computer Player for Abalone using Alpha-Beta and Monte-Carlo Search

Master Thesis Implementing a Computer Player for Abalone using Alpha-Beta and Monte-Carlo Search Pascal Chorus Master Thesis DKE 09-13 Thesis submitted in partial fulfillment of the requirements for the

CS188 Spring 2011 Section 3: Game Trees

CS188 Spring 2011 Section 3: Game Trees 1 Warm-Up: Column-Row You have a 3x3 matrix of values like the one below. In a somewhat boring game, player A first selects a row, and then player B selects a column.

Learning to play chess using TD(λ)-learning with database games

Learning to play chess using TD(λ)-learning with database games Henk Mannen & Marco Wiering Cognitive Artificial Intelligence University of Utrecht henk.mannen@phil.uu.nl & marco@cs.uu.nl Abstract In this

Implementation of a Chess Playing Artificial. Intelligence. Sean Stanek.

Implementation of a Chess Playing Artificial Intelligence Sean Stanek vulture@cs.iastate.edu Overview Chess has always been a hobby of mine, and so have computers. In general, I like creating computer

Building Chess Endgame Databases for Positions with many Pieces using A-priori Information

Building Chess Endgame Databases for Positions with many Pieces using A-priori Information Eiko Bleicher Lehrstuhl Mathematische Optimierung Fakultät Mathematik und Informatik Friedrich-Schiller-Universität

Acknowledgements I would like to thank both Dr. Carsten Furhmann, and Dr. Daniel Richardson for providing me with wonderful supervision throughout my

Abstract Game orientated application programming interfaces (API), built using Java, are intended to ease the development of Java games, on multiple platforms. Existing Java game APIs, tend to focus on

Alpha-Beta with Sibling Prediction Pruning in Chess

Alpha-Beta with Sibling Prediction Pruning in Chess Jeroen W.T. Carolus Masters thesis Computer Science Supervisor: Prof. dr. Paul Klint Faculteit der Natuurwetenschappen, Wiskunde en Informatica University

Parallelizing a Simple Chess Program

Parallelizing a Simple Chess Program Brian Greskamp ECE412, Fall 2003 E-mail: greskamp@crhc.uiuc.edu Abstract In a closely watched match in 1997, the parallel chess supercomputer Deep Blue defeated then

Evolutionary Tuning of Chess Playing Software

Evolutionary Tuning of Chess Playing Software JONAH SCHREIBER AND PHILIP BRAMSTÅNG Degree Project in Engineering Physics, First Level at CSC Supervisor: Johan Boye Examiner: Mårten Olsson Abstract In

INTRODUCTION 4 1 OVERALL LOOK ON CHESS PROGRAMMING 8

Table of contents INTRODUCTION 4 AIM OF THE WORK 4 LAYOUT 4 RANGE OF THE WORK 5 RESEARCH PROBLEM 5 RESEARCH QUESTIONS 6 METHODS AND TOOLS 6 1 OVERALL LOOK ON CHESS PROGRAMMING 8 1.1 THE VERY BEGINNING

Lecture 2. Uninformed search

Lecture 2 Uninformed search " Reference: Preparing for week 1 Reading: Chapters 1 and 2.1, 2.2, 2.5, 3.1, 3.2, 3.3, 3.4, 3.5 Assignment 1 has now been posted on the course LEARN site Uses MATLAB (a tutorial

Script for How to Win a Chinese Chess Game

Script for How to Win a Chinese Chess Game Jinzhong Niu April 25, 2004 1 Presentation Set Up Chinese chess is played on a 10 9 board, on which either player has 16 pieces. Pieces are located at the intersections

Laboratory work in AI: First steps in Poker Playing Agents and Opponent Modeling

Laboratory work in AI: First steps in Poker Playing Agents and Opponent Modeling Avram Golbert 01574669 agolbert@gmail.com Abstract: While Artificial Intelligence research has shown great success in deterministic

State Space Problem Definition

Blind Search State Space Problem Definition One widely used way to describe problems is by listing or describing all possible states. Solving a problem means moving through the state space from a start

Written by Yury Markushin Tuesday, 01 November :54 - Last Updated Wednesday, 02 November :55

Today I will do a review of one of the strongest free chess programs available for android smartphones: Droid Fish. This program does not have any fancy things like a high texture wooden board or special

ECM3401 Literature Review. A History of Computer Chess

ECM3401 Literature Review A History of Computer Chess Ben Keen November 2009 Abstract This paper provides a look into the rich history of computer chess, ranging from the mid-1940s to present day. It gives

Tactical Analysis Board Games

DM842 Computer Game Programming: AI Lecture 9 Tactical Analysis Board Games Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. Tactical Pathfinding

Measuring the Performance of an Agent

25 Measuring the Performance of an Agent The rational agent that we are aiming at should be successful in the task it is performing To assess the success we need to have a performance measure What is rational

Balanced Trees Part One

Balanced Trees Part One Balanced Trees Balanced trees are surprisingly versatile data structures. Many programming languages ship with a balanced tree library. C++: std::map / std::set Java: TreeMap /

Using Heuristic-Search Based Engines for Estimating Human Skill at Chess

Using Heuristic-Search Based Engines for Estimating Human Skill at Chess 71 Using Heuristic-Search Based Engines for Estimating Human Skill at Chess Matej Guid 1 Ivan Bratko 1 Ljubljana, Slovenia ABSTRACT

Generalized Widening

Generalized Widening Tristan Cazenave Abstract. We present a new threat based search algorithm that outperforms other threat based search algorithms and selective knowledge-based for open life and death

Fuzzified Algorithm for Game Tree Search with Statistical and Analytical Evaluation

Scientific Papers, University of Latvia, 2011. Vol. 770 Computer Science and Information Technologies 90 111 P. Fuzzified Algorithm for Game Tree Search with Statistical and Analytical Evaluation Dmitrijs

Chess Tempo User Guide. Chess Tempo

Chess Tempo User Guide Chess Tempo Chess Tempo User Guide Chess Tempo Copyright 2012 Chess Tempo Table of Contents 1. Introduction... 1 The Chess Tempo Board... 1 Piece Movement... 1 Navigation Buttons...

(Refer Slide Time: 01:35)

Artificial Intelligence Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture - 6 Informed Search -2 Today we start our 6 th lecture. This

The Cross-Platform Implementation

The Cross-Platform Implementation Of Draughts Game Valery Kirkizh State University of Aerospace Instrumentation Saint-Petersburg, Russia Introduction Age-old Russian game Draughts; Cross-platform implementation,

Master Chess Computer

Cat. No. 60-2217 OWNER S MANUAL Please read before using this equipment. Master Chess Computer FEATURES Your RadioShack Master Chess Computer is one of the most versatile chess computers available. With

The relationship of a trees to a graph is very important in solving many problems in Maths and Computer Science

Trees Mathematically speaking trees are a special class of a graph. The relationship of a trees to a graph is very important in solving many problems in Maths and Computer Science However, in computer

BEST-REPLY SEARCH IN MULTI-PLAYER CHESS. Markus Esser. Master Thesis 12-13

BEST-REPLY SEARCH IN MULTI-PLAYER CHESS Markus Esser Master Thesis 12-13 Thesis submitted in partial fulfilment of the requirements for the degree of Master of Science of Artificial Intelligence at the

Human-like Chess Playing Program Petro Gordiievych

Human-like Chess Playing Program Petro Gordiievych What is the different between computer and human way to play chess? While current computers search for millions of positions a second, people hardly ever

A Brief Survey of Chess AI: Strategy and Implementation Mark S. Montoya University of New Mexico CS 427 Fall 2012

A Brief Survey of Chess AI: Strategy and Implementation Mark S. Montoya University of New Mexico CS 427 Fall 2012 Introduction Chess AI seems to be a less popular area of research since the 1997 defeat

CS91.543 MidTerm Exam 4/1/2004 Name: KEY. Page Max Score 1 18 2 11 3 30 4 15 5 45 6 20 Total 139

CS91.543 MidTerm Exam 4/1/2004 Name: KEY Page Max Score 1 18 2 11 3 30 4 15 5 45 6 20 Total 139 % INTRODUCTION, AI HISTORY AND AGENTS 1. [4 pts. ea.] Briefly describe the following important AI programs.

Roulette Wheel Selection Game Player

Macalester College DigitalCommons@Macalester College Honors Projects Mathematics, Statistics, and Computer Science 5-1-2013 Roulette Wheel Selection Game Player Scott Tong Macalester College, stong101@gmail.com

Learning: An Effective Approach in Endgame Chess Board Evaluation

Sixth International Conference on Machine Learning and Applications Learning: An Effective Approach in Endgame Chess Board Evaluation Mehdi Samadi, Zohreh Azimifar, Mansour Zolghadri Jahromi Department

The Design and Realization of Connect-six Computer Game Software Xinyang Wang 1, a, Xiali Li 1, a, Rui Wu 1, a, Hailong Xie 1, a

International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII 2015) The Design and Realization of Connect-six Computer Game Software Xinyang Wang 1, a, Xiali Li 1, a,

An Analysis of UCT in Multi-Player Games

An Analysis of UCT in Multi-Player Games Nathan R. Sturtevant Department of Computing Science, University of Alberta, Edmonton, AB, Canada, T6G 2E8 nathanst@cs.ualberta.ca Abstract. The UCT algorithm has

YourTurnMyTurn.com: chess rules. Jan Willem Schoonhoven Copyright 2016 YourTurnMyTurn.com

YourTurnMyTurn.com: chess rules Jan Willem Schoonhoven Copyright 2016 YourTurnMyTurn.com Inhoud Chess rules...1 The object of chess...1 The board...1 Moves...1 Captures...1 Movement of the different pieces...2

What is Artificial Intelligence?

Introduction to Artificial Intelligence What is Artificial Intelligence? One definition: AI is the study of how to make computers do things that people generally do better Many approaches and issues, e.g.:

The History Heuristic and. Alpha-Beta Search Enhancements in Practice. Jonathan Schaeffer

The History Heuristic and Alpha-Beta Search Enhancements in Practice Jonathan Schaeffer Abstract - Many enhancements to the alpha-beta algorithm have been proposed to help reduce the size of minimax trees.

Created by Peter McOwan and Paul Curzon of Queen Mary, University of London with support

Winning games: the perfect tictac-toe player Created by Peter McOwan and Paul Curzon of Queen Mary, University of London with support from EPSRC and Google Winning games: the perfect tic-tac-toe player

Computer Chinese Chess

Computer Chinese Chess Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 Abstract An introduction to problems and opportunities in Computer Chinese Chess. Open game Middle game

The Taxman Game. Robert K. Moniot September 5, 2003

The Taxman Game Robert K. Moniot September 5, 2003 1 Introduction Want to know how to beat the taxman? Legally, that is? Read on, and we will explore this cute little mathematical game. The taxman game

LECTURE 10: GAMES IN EXTENSIVE FORM

LECTURE 10: GAMES IN EXTENSIVE FORM Sequential Move Games 2 so far, we have only dealt with simultaneous games (players make the decisions at the same time, or simply without knowing what the action of

Creating a NL Texas Hold em Bot

Creating a NL Texas Hold em Bot Introduction Poker is an easy game to learn by very tough to master. One of the things that is hard to do is controlling emotions. Due to frustration, many have made the

arxiv: v1 [cs.ai] 9 Dec 2011

An information theoretic analysis of decision in computer chess arxiv:1112.2144v1 [cs.ai] 9 Dec 2011 Alexandru Godescu, ETH Zurich December 13, 2011 Abstract The basis of the method proposed in this article

How can I practice a specific opening?

How can I practice a specific opening?... 1 How do the levels work and how do they differ?... 1 When and why do new levels become available?... 2 When and why do new category levels become available?...

IMPLEMENTING A COMPUTER PLAYER FOR CARCASSONNE. Cathleen Heyden

IMPLEMENTING A COMPUTER PLAYER FOR CARCASSONNE Master Thesis DKE 09-15 Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science of Artificial Intelligence at the

The scenario: Initial state Target (Goal) states A set of intermediate states A set of operations that move the agent from one state to another.

CmSc310 Artificial Intelligence Solving Problems by Searching - Uninformed Search 1. Introduction All AI tasks involve searching. General idea: You know where you are (initial state) and where you want

Keywords-Chess gameregistration, Profile management, Rational rose, Activities management.

Volume 5, Issue 2, February 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Online Chess

Artificial Intelligence Lecture 2

Artificial Intelligence Lecture 2 Representation From AI admirers to AI programmers. Step 1: Represent the problem so that it is computerfriendly. Step 2: Code the problem in a programming language. Step

FROM CHESS NOVICE TO ADVANCED PLAYER

FROM CHESS NOVICE TO ADVANCED PLAYER IN 7 DAYS By Mato Jelic Chess essentials in combination with advanced strategies CONTENTS ABOUT CHESS HOW CHESS PIECES MOVE ALGEBRAIC CHESS NOTATION SPECIAL MOVES QUICK

Mastering Quoridor. Lisa Glendenning THESIS. Submitted in Partial Fulfillment of the Requirements for the Degree of

Mastering Quoridor by Lisa Glendenning THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science Computer Science The University of New Mexico Albuquerque, New Mexico

Computer Chess Programs (Panel)

Computer Chess Programs (Panel) Chairman: Benjamin Mittman, Northwestern University, Evanston, III. Panelists: Gary J. Boos, University of Minnesota, Minneapolis, Minn. Dennis W. Cooper, Bell Telephone

Load Balancing. Load Balancing 1 / 24

Load Balancing Backtracking, branch & bound and alpha-beta pruning: how to assign work to idle processes without much communication? Additionally for alpha-beta pruning: implementing the young-brothers-wait

Instructor material for Chess Game Pairing Exercise

Instructor material for Required Materials Chess board and pieces (one per 4 students) Timers (optional) Diagram of an in-progress chess game(s) (attached) Introduce the Exercise Pair programming is generally

Problem Solving and Search 2. Problem Solving and Search. Let s have Holiday in Romania. What is the Problem? Is there more?

Let s have Holiday in Romania On holiday in Romania; currently in Arad. 2 Problem Solving and Search Flight leaves tomorrow from Bucharest at 1:00. Let s configure this to be an AI problem. 1 2 What is

Lecture 10: Regression Trees

Lecture 10: Regression Trees 36-350: Data Mining October 11, 2006 Reading: Textbook, sections 5.2 and 10.5. The next three lectures are going to be about a particular kind of nonlinear predictive model,

Learning a Multi-Player Chess Game with TreeStrap

Learning a Multi-layer Chess Game with TreeStrap Abstract We train an evaluation function for a multi-player Chess variant board game called Duchess, which is played between two teams of two or three players,

Saving a lost game (resources to save a game) By Mohammad Zaki Uddin (Presented at Annex Chess Club on 14/11/2011)

Saving a lost game (resources to save a game) By Mohammad Zaki Uddin (Presented at Annex Chess Club on 14/11/2011) When you find yourself in a seemingly lost position in a game, there is always a way to

Artificial Intelligence Search I

Content: Search I Artificial Intelligence Search I Lecture 3 Introduction Knowledge, Problem Types and Problem Formulation Search Strategies General Search Problem 4 Criteria for Evaluating Search Strategies

10/13/11 Solution: Minimax with Alpha-Beta Pruning and Progressive Deepening

10/1/11 Solution: Minimax with Alpha-Beta Pruning and Progressive Deepening When answering the question in Parts C.1 and C. below, assume you have already applied minimax with alpha-beta pruning and progressive

foundations of artificial intelligence acting humanly: Searle s Chinese Room acting humanly: Turing Test

cis20.2 design and implementation of software applications 2 spring 2010 lecture # IV.1 introduction to intelligent systems AI is the science of making machines do things that would require intelligence

HPC Trends for Addison Snell

HPC Trends for 2015 Addison Snell addison@intersect360.com A New Era in HPC Supercomputing for U.S. Industry Report by U.S. Council on Competitiveness Justifications for new levels of supercomputing for

A Knowledge-based Approach of Connect-Four

A Knowledge-based Approach of Connect-Four The Game is Solved: White Wins Victor Allis Department of Mathematics and Computer Science Vrije Universiteit Amsterdam, The Netherlands Masters Thesis, October

Monte-Carlo Methods. Timo Nolle

Monte-Carlo Methods Timo Nolle Outline Minimax Expected Outcome Monte-Carlo Monte-Carlo Simulation Monte-Carlo Tree Search UCT AMAF RAVE MC-RAVE UCT-RAVE Playing Games Go, Bridge, Scrabble Problems with

How to Play Chess. The next diagram shows how the pieces are placed at the beginning of a game.

How to Play Chess Setup The players sit facing each other with the board between them. The board consists of 64 alternating colored squares. Regardless of the actual colors, the dark squares are named

Search methods motivation 1

Suppose you are an independent software developer, and your software package Windows Defeater R, widely available on sourceforge under a GNU GPL license, is getting an international attention and acclaim.

573 Intelligent Systems

Sri Lanka Institute of Information Technology 3ed July, 2005 Course Outline Course Information Course Outline Reading Material Course Setup Intelligent agents. Agent types, agent environments and characteristics.

Important USCF Rules - 6th Edition USCF Rulebook and Changes (Updated 10/12/ Changes are indicated in red)

Important USCF Rules - 6th Edition USCF Rulebook and Changes (Updated 10/12/2015 - Changes are indicated in red) Article 5: The Chess Clock 5E and 5F: Standard timer for sudden death The standard timer

Algorithms and Data Structures

Algorithms and Data Structures CMPSC 465 LECTURES 20-21 Priority Queues and Binary Heaps Adam Smith S. Raskhodnikova and A. Smith. Based on slides by C. Leiserson and E. Demaine. 1 Trees Rooted Tree: collection

10. Machine Learning in Games

Machine Learning and Data Mining 10. Machine Learning in Games Luc De Raedt Thanks to Johannes Fuernkranz for his slides Contents Game playing What can machine learning do? What is (still) hard? Various

CHESS PROGRAM OVERVIEW & WORKBOOK

CHESS PROGRAM OVERVIEW & WORKBOOK MERIT BADGE UNIVERSITY OVERLAND TRAILS COUNCIL TABLE OF CONTENTS PROGRAM OVERVIEW MERIT BADGE REQUIREMENTS (Post-Class REQUIREMENTS IN BOLD BLUE UNDERLINED ITALICS) WORKBOOK

Problems, Problem Spaces and Search

Problems, Problem Spaces and Search Contents Defining the problem as a State Space Search Production Systems Control Strategies Breadth First Search Depth First Search Heuristic Search Problem Characteristics

Sense Making in an IOT World: Sensor Data Analysis with Deep Learning

Sense Making in an IOT World: Sensor Data Analysis with Deep Learning Natalia Vassilieva, PhD Senior Research Manager GTC 2016 Deep learning proof points as of today Vision Speech Text Other Search & information

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2015

ECON 459 Game Theory Lecture Notes Auctions Luca Anderlini Spring 2015 These notes have been used before. If you can still spot any errors or have any suggestions for improvement, please let me know. 1

*-Minimax Performance in Backgammon

*-Minimax Performance in Backgammon Thomas Hauk, Michael Buro, and Jonathan Schaeffer Department of Computing Science University of Alberta Edmonton, Alberta, Canada T6G 2E8 {hauk,mburo,jonathan}cs.ualberta.ca

Deriving Concepts and Strategies from Chess Tablebases

Deriving Concepts and Strategies from Chess Tablebases Matej Guid, Martin Možina, Aleksander Sadikov, and Ivan Bratko Artificial Intelligence Laboratory, Faculty of Computer and Information Science, University

Artificial Intelligence

Artificial Intelligence " Artificial Intelligence" Lecturer: Phạm Bảo Sơn Email: sonpb@vnu.edu.vn Consultations: via email or after lecture. Course website: www.uet.vnu.edu.vn/~sonpb/ai AI 2016 2 Readings"

A Lock-free Multithreaded Monte-Carlo Tree Search Algorithm

A Lock-free Multithreaded Monte-Carlo Tree Search Algorithm Markus Enzenberger and Martin Müller Department of Computing Science, University of Alberta Corresponding author: mmueller@cs.ualberta.ca Abstract.

Introduction to Artificial Intelligence (G51IAI) Dr Rong Qu. Blind Searches - Introduction

Introduction to Artificial Intelligence (G51IAI) Dr Rong u Blind Searches - Introduction Aim of This Section (2 hours) Introduce the blind searches on search tree Specifically, the general search pseudo-code

BASIC RULES OF CHESS

BASIC RULES OF CHESS Introduction Chess is a game of strategy believed to have been invented more then 00 years ago in India. It is a game for two players, one with the light pieces and one with the dark

How I won the Chess Ratings: Elo vs the rest of the world Competition

How I won the Chess Ratings: Elo vs the rest of the world Competition Yannis Sismanis November 2010 Abstract This article discusses in detail the rating system that won the kaggle competition Chess Ratings:

Learning Example. Machine learning and our focus. Another Example. An example: data (loan application) The data and the goal

Learning Example Chapter 18: Learning from Examples 22c:145 An emergency room in a hospital measures 17 variables (e.g., blood pressure, age, etc) of newly admitted patients. A decision is needed: whether

CMPT 301 Artificial Intelligence Fall 2014 Homework #4

CMPT 301 Artificial Intelligence Fall 2014 Homework #4 75 Total Points Due Date: No Later than 5:30 PM on Monday, October 6, 2014. You may either hand-in this homework written or submit it to the drop