ADVANCED ENCRYPTION STANDARD (AES)

Size: px
Start display at page:

Download "ADVANCED ENCRYPTION STANDARD (AES)"

Transcription

1 ADVANCED ENCRYPTION STANDARD (AES) Tran Song Dat Phuc Department of Computer Science and Engineering Seoul National University of Science and Technology

2 Outline AES History AES Operations Advanced Encryption Standard (AES) AES Implementation Security of AES Summary

3 AES History: - A replacement of DES was needed -> key size to small - Triple-DES is a solution, but slow and small block - AES Competition started in 1997 by NIST:. Single block cipher. Available royalty-free worldwide. Have a public and flexible design. 128-bits block data. 128/192/256-bits key (based on round numbers)

4 AES - Rijndael design was selected as AES Cipher in Design by Vincent Rijmen and Joan Daemen. Issued as FIPS PUB 197 standard in Simplicity. Support 128-bits block, 128/192/256-bits key. Resistant against known attack. Speed and code compactness on many CPU s

5 AES Operations In AES, all operations are performed on 8-bit bytes, so it operates on the finite field GF(2 8 ), which can be presented as a polynomial b(x) with binary coefficient b {0,1}: b 7 x 7 + b 6 x 6 + b 5 x 5 + b 4 x 4 + b 3 x 3 + b 2 x 2 + b 1 x + b 0 Addition of two bytes in AES is defined as the bitwise XOR operation.

6 AES Operations Multiplication in AES is defined as multiplication in the finite field GF(2 8 ) of with the irreducible polynomial of degree 8. AES irreducible polynomial: m(x) = x 8 + x 4 + x 3 + x + 1

7 AES (Advance Encryption Standard) AES is a symmetric block cipher. - The same key is used to encrypt and decrypt the message (128/192/256-bits key) - The plaintext and cipher-text are the same size (128-bits block)

8 AES Block AES has a block size of 128-bits(16bytes) called state

9 AES Key

10 AES Key

11 AES Multiple Rounds First and last round are different

12 AES Round Stage

13 AES Structure

14 AES Encryption With 128-bits (16bytes), AES views data block as 4-by-4 table of bytes.

15 AddRoundKey Transformation At each round, the state array is combined with a similarly sized array of subkey material.

16 AddRoundKey Transformation

17 Key Expansion Use to create round key for each round. If the number of round is, the key-expansion creates N r bit round keys from one single 128-bit cipher key. The key expansion creates round keys word by word, where a word is an array of four bytes (4 x N r +1) w 0, w 1, w 2,, w 4(Nr +1) - 1 with 128-bits key (10 rounds, 44 words, ), 192-bits key (12 rounds, 52 words) and 256-bits key (14 rounds, 60 words).

18 Key Expansion Round Words Pre-round w 0 w 1 w 2 w 3 1 w 4 w 5 w 6 w 7 2 w 8 w 9 w 10 w 11 N r w 4Nr w 4Nr+1 w 4Nr+2 w 4Nr+3

19 Key Expansion

20 Key Expansion

21 Key Expansion RCon Constants Round Constant ( RCon ) 1 ( ) 16 2 ( ) 16 3 ( ) 16 4 ( ) 16 5 ( ) 16 6 ( ) 16 7 ( ) 16 8 ( ) 16 9 (1B ) ( ) 16

22 Key Expansion

23 Key Expansion Round Value of t First word Second word Third word Fourth word W 00 = 2475A2B3 W 01 = W 02 = 31E21200 W 03 = 13AA AD20177D W 04 = 8955B5CE W 05 = BD20E346 W 06 = 8CC2F146 W 07 = 9F68A5C DB W 08 = CE53CD15 W 09 = 73732E53 W 10 = FFB1DF15 W 11 = 60D97AD4 9 0A5E4F61 W 36 = E43FE3BF W 37 = 0EC1FCF4 W 38 = 21A35A12 W 39 = F940C FC6CD99 W 40 = DBF92E26 W 041 = D538D2D2 W 42 = F49B88C0 W 43 = 0DDB4F40

24 Key Expansion

25 SubBytes Transformation Each byte of the array transformed by the S-box, provide confusion for cipher. This takes 8-bits input and returns 8-bits output. Only one S-box(16x16 bytes) is used throughout AES cipher, contains a permutation of all bits values.

26 SubBytes Transformation

27 SubBytes Transformation SubBytes Transformation using the S-Boxes Table : State AddRoundKey

28 SubBytes Transformation SubBytes Transformation using the GF(2 8 ) Field : - AES defines the transformation algebraically using the GF(2 8 ) field with the irreducible polynomials : (x 8 + x 4 + x 3 + x + 1) as the modulus. - The multiplicative inverse of byte (as an 8-bit binary string) is found in GF(2 8 ). - The inverted byte is interpreted as a column matrix with the least bit at the top and the most bit at the bottom. - This column matrix is multiplied by a constant square matrix, X, and the result is added with a constant column matrix, Y, to give a new byte.

29 SubBytes Transformation SubBytes Process

30 SubBytes Transformation Ex: with byte 53 is transformed by SubBytes routine - 53 in binary is , can be denoted in the finite field GF(2 8 ) as polynomial : x 6 + x 4 + x Multiplicative inverse of a byte in GF(2 8 ) with polynomial : x 8 + x 4 + x 3 + x + 1 as modulus - Multiplicative inverse algorithm: remainder[1] := f(x) auxiliary[1] := 0 remainder[2] := a(x) auxiliary[2] := 1 i := 2 while remainder[i] > 1 i := i + 1 remainder[i] := remainder(remainder[i-2] / remainder[i-1]) quotient[i] := quotient(remainder[i-2] / remainder[i-1]) auxiliary[i] := -quotient[i] * auxiliary[i-1] + auxiliary[i-2] inverse := auxiliary[i]

31 SubBytes Transformation i Remainder[i] Quotient[i] Auxiliary[i] 1 x 8 + x 4 + x 3 + x x 6 + x 4 + x x 2 x x x + 1 x 4 + x 2 x 6 + x 4 + x 4 + x x + 1 x 7 + x 6 + x 3 + x 2 + x 2 + x x The multiplicative inverse of byte 53 is CA. x 7 + x 6 + x 3 + x = (CA in Hex)

32 SubBytes Transformation - Multiply the inverted byte with the matrix X. - An easier way to view the matrix multiplication is as polynomial multiplication. Row 1 = = N 0 + N 4 + N 5 + N 6 + N = 0 Row 2 = = N 0 + N 1 + N 5 + N 6 + N = 1 Row 3 = = N 0 + N 1 + N 2 + N 6 + N = 1 Row 4 = = N 0 + N 1 + N 2 + N 3 + N = 1 Row 5 = = N 0 + N 1 + N 2 + N 3 + N = 0 Row 6 = = N 1 + N 2 + N 3 + N 4 + N = 0 Row 7 = = N 2 + N 3 + N 4 + N 5 + N = 0 Row 8 = = N 3 + N 4 + N 5 + N 6 + N = 1 - The result of multiplication is the vector :

33 SubBytes Transformation

34 ShiftRows Transformation

35 ShiftRows Transformation Before After

36 MixColumns Transformation ShiftRows and MixColumns provide confusion for cipher. Each column of the array is mixed together. Each byte is replaced by a value dependent on all 4 bytes of column.

37 MixColumns Transformation

38 MixColumns Transformation

39 MixColumns Transformation

40 MixColumns Transformation

41 MixColumns Transformation. {02. 63} : 02 = (in Binary), be denoted in GF(2 8 ) as the polynomial : x 63 = (in Binary), in GF(2 8 ) as the polynomial : x 6 + x 5 + x + 1 {02. 63} = x(x 6 + x 5 + x + 1) = x 7 + x 6 + x 2 + x. {03. F2} : 03 = = x + 1 F2 = = x 7 + x 6 + x 5 + x 4 + x {03. F2} = (x + 1)(x 7 + x 6 + x 5 + x 4 + x) = x 8 + x 7 + x 6 + x 5 + x 2 + x 7 + x 6 + x 5 + x 4 + x = (x 8 + x 4 + x 2 + x) mod (x 8 + x 4 + x 3 + x + 1)

42 MixColumns Transformation x 8 + x 4 + x 2 + x x 8 + x 4 + x 3 + x + 1 x 8 + x 4 + x 3 + x x 3 + x {03. F2} = x 3 + x {01. 7D} = x 6 + x 5 + x 4 + x 3 + x {01. D4} = x 7 + x 6 + x 4 + x 2. P 0 = {02. 63} + {03. F2} + {01. 7D} + {01. D4} = x 7 + x 6 + x 2 + x + x 3 + x x 6 + x 5 + x 4 + x 3 + x x 7 + x 6 + x 4 + x 2 = x 6 + x 5 + x = = 62 (in Hex)

43 MixColumns Transformation

44 MixColumns Transformation

45 MixColumns Transformation

46 MixColumns Transformation

47 Decryption with AES Decryption do operations similar to encryption process, in reverse order. Use InvSubBytes, InvShiftRows, InvMixColumns replace to SubBytes, ShiftRows and MixColumns.

48 Decryption with AES S-box S -1 [.] of InvSubBytes.

49 Decryption with AES InvSubBytes Process

50 Decryption with AES Matrix M -1 of InvMixColumns. M -1 = 0E 0B 0D E 0B 0D 0D 09 0E 0B 0B 0D 09 0E

51 AES Implementation

52 AES Implementation

53 AES Implementation The Avalanche Effect: - A change in one bit of either the plaintext or the key should produce a change in many bits of the ciphertext.

54 AES Implementation

55 AES Implementation

56 AES Security AES was designed after DES. Most of the known attacks on DES were already tested on AES. Brute-Force Attack: - AES is definitely more secure than DES due to the larger-size key. Statistical Attacks: - Numerous tests have failed to do statistical analysis of the cipher-text. Differential and Linear Attacks: - There are no differential and linear attacks on AES as yet.

57 AES Security Differential Cryptanalysis: - Study of how differences in input affect differences in output. - Can greatly reduced due to high number of rounds. Linear Cryptanalysis: - Study of correlations between input and output. - S-Box and MixColumns are designed to frustrate Linear Analysis.

58 Summary The Advanced Encryption Standard (AES) is a symmetric-key block cipher published in AES was given to improve DES weaknesses as well as create stronger block cipher design. AES uses 128-bits length as input, with 128, 192, 256-bits key size to produce 128-bits output. AES showed its advantage to secure against most known attacks (brute-force, statistical, differential and linear cryptanalysis).

Modern Block Cipher Standards (AES) Debdeep Mukhopadhyay

Modern Block Cipher Standards (AES) Debdeep Mukhopadhyay Modern Block Cipher Standards (AES) Debdeep Mukhopadhyay Assistant Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur INDIA -721302 Objectives Introduction

More information

Enhancing Advanced Encryption Standard S-Box Generation Based on Round Key

Enhancing Advanced Encryption Standard S-Box Generation Based on Round Key Enhancing Advanced Encryption Standard S-Box Generation Based on Round Key Julia Juremi Ramlan Mahmod Salasiah Sulaiman Jazrin Ramli Faculty of Computer Science and Information Technology, Universiti Putra

More information

The Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) The Advanced Encryption Standard (AES) All of the cryptographic algorithms we have looked at so far have some problem. The earlier ciphers can be broken with ease on modern computation systems. The DES

More information

The Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) The Advanced Encryption Standard (AES) Conception - Why A New Cipher? Conception - Why A New Cipher? DES had outlived its usefulness Vulnerabilities were becoming known 56-bit key was too small Too slow

More information

The Advanced Encryption Standard: Four Years On

The Advanced Encryption Standard: Four Years On The Advanced Encryption Standard: Four Years On Matt Robshaw Reader in Information Security Information Security Group Royal Holloway University of London September 21, 2004 The State of the AES 1 The

More information

Cryptography and Network Security. Prof. D. Mukhopadhyay. Department of Computer Science and Engineering. Indian Institute of Technology, Kharagpur

Cryptography and Network Security. Prof. D. Mukhopadhyay. Department of Computer Science and Engineering. Indian Institute of Technology, Kharagpur Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 12 Block Cipher Standards

More information

Rijndael Encryption implementation on different platforms, with emphasis on performance

Rijndael Encryption implementation on different platforms, with emphasis on performance Rijndael Encryption implementation on different platforms, with emphasis on performance KAFUUMA JOHN SSENYONJO Bsc (Hons) Computer Software Theory University of Bath May 2005 Rijndael Encryption implementation

More information

IJESRT. [Padama, 2(5): May, 2013] ISSN: 2277-9655

IJESRT. [Padama, 2(5): May, 2013] ISSN: 2277-9655 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Design and Verification of VLSI Based AES Crypto Core Processor Using Verilog HDL Dr.K.Padama Priya *1, N. Deepthi Priya 2 *1,2

More information

SeChat: An AES Encrypted Chat

SeChat: An AES Encrypted Chat Name: Luis Miguel Cortés Peña GTID: 901 67 6476 GTG: gtg683t SeChat: An AES Encrypted Chat Abstract With the advancement in computer technology, it is now possible to break DES 56 bit key in a meaningful

More information

Design and Verification of Area-Optimized AES Based on FPGA Using Verilog HDL

Design and Verification of Area-Optimized AES Based on FPGA Using Verilog HDL Design and Verification of Area-Optimized AES Based on FPGA Using Verilog HDL 1 N. Radhika, 2 Obili Ramesh, 3 Priyadarshini, 3 Asst.Profosser, 1,2 M.Tech ( Digital Systems & Computer Electronics), 1,2,3,

More information

Efficient Software Implementation of AES on 32-bit Platforms

Efficient Software Implementation of AES on 32-bit Platforms Efficient Software Implementation of AES on 32-bit Platforms Guido Bertoni, Luca Breveglieri Politecnico di Milano, Milano - Italy Pasqualina Lilli Lilli Fragneto AST-LAB of ST Microelectronics, Agrate

More information

CSCE 465 Computer & Network Security

CSCE 465 Computer & Network Security CSCE 465 Computer & Network Security Instructor: Dr. Guofei Gu http://courses.cse.tamu.edu/guofei/csce465/ Secret Key Cryptography (I) 1 Introductory Remarks Roadmap Feistel Cipher DES AES Introduction

More information

Implementation of Full -Parallelism AES Encryption and Decryption

Implementation of Full -Parallelism AES Encryption and Decryption Implementation of Full -Parallelism AES Encryption and Decryption M.Anto Merline M.E-Commuication Systems, ECE Department K.Ramakrishnan College of Engineering-Samayapuram, Trichy. Abstract-Advanced Encryption

More information

FPGA IMPLEMENTATION OF AN AES PROCESSOR

FPGA IMPLEMENTATION OF AN AES PROCESSOR FPGA IMPLEMENTATION OF AN AES PROCESSOR Kazi Shabbir Ahmed, Md. Liakot Ali, Mohammad Bozlul Karim and S.M. Tofayel Ahmad Institute of Information and Communication Technology Bangladesh University of Engineering

More information

Secret File Sharing Techniques using AES algorithm. C. Navya Latha 200201066 Garima Agarwal 200305032 Anila Kumar GVN 200305002

Secret File Sharing Techniques using AES algorithm. C. Navya Latha 200201066 Garima Agarwal 200305032 Anila Kumar GVN 200305002 Secret File Sharing Techniques using AES algorithm C. Navya Latha 200201066 Garima Agarwal 200305032 Anila Kumar GVN 200305002 1. Feature Overview The Advanced Encryption Standard (AES) feature adds support

More information

Advanced Encryption Standard by Example. 1.0 Preface. 2.0 Terminology. Written By: Adam Berent V.1.7

Advanced Encryption Standard by Example. 1.0 Preface. 2.0 Terminology. Written By: Adam Berent V.1.7 Written By: Adam Berent Advanced Encryption Standard by Example V.1.7 1.0 Preface The following document provides a detailed and easy to understand explanation of the implementation of the AES (RIJNDAEL)

More information

Advanced Encryption Standard by Example. 1.0 Preface. 2.0 Terminology. Written By: Adam Berent V.1.5

Advanced Encryption Standard by Example. 1.0 Preface. 2.0 Terminology. Written By: Adam Berent V.1.5 Written By: Adam Berent Advanced Encryption Standard by Example V.1.5 1.0 Preface The following document provides a detailed and easy to understand explanation of the implementation of the AES (RIJNDAEL)

More information

Survey on Enhancing Cloud Data Security using EAP with Rijndael Encryption Algorithm

Survey on Enhancing Cloud Data Security using EAP with Rijndael Encryption Algorithm Global Journal of Computer Science and Technology Software & Data Engineering Volume 13 Issue 5 Version 1.0 Year 2013 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

Network Security. Chapter 3 Symmetric Cryptography. Symmetric Encryption. Modes of Encryption. Symmetric Block Ciphers - Modes of Encryption ECB (1)

Network Security. Chapter 3 Symmetric Cryptography. Symmetric Encryption. Modes of Encryption. Symmetric Block Ciphers - Modes of Encryption ECB (1) Chair for Network Architectures and Services Department of Informatics TU München Prof. Carle Network Security Chapter 3 Symmetric Cryptography General Description Modes of ion Data ion Standard (DES)

More information

Intel Advanced Encryption Standard (AES) New Instructions Set

Intel Advanced Encryption Standard (AES) New Instructions Set White Paper Shay Gueron Mobility Group, Israel Development Center Intel Corporation Intel Advanced Encryption Standard (AES) New Instructions Set Intel AES New Instructions are a set of instructions available

More information

Design and Implementation of Asymmetric Cryptography Using AES Algorithm

Design and Implementation of Asymmetric Cryptography Using AES Algorithm Design and Implementation of Asymmetric Cryptography Using AES Algorithm Madhuri B. Shinde Student, Electronics & Telecommunication Department, Matoshri College of Engineering and Research Centre, Nashik,

More information

Cryptography and Network Security

Cryptography and Network Security Cryptography and Network Security Spring 2012 http://users.abo.fi/ipetre/crypto/ Lecture 3: Block ciphers and DES Ion Petre Department of IT, Åbo Akademi University January 17, 2012 1 Data Encryption Standard

More information

Note on naming. Note on naming

Note on naming. Note on naming Joan Daemen Vincent Rijmen Note on naming Rijndael 1. Introduction Note on naming After the selection of Rijndael as the AES, it was decided to change the names of some of its component functions in order

More information

Lecture 8: AES: The Advanced Encryption Standard. Lecture Notes on Computer and Network Security. by Avi Kak (kak@purdue.edu)

Lecture 8: AES: The Advanced Encryption Standard. Lecture Notes on Computer and Network Security. by Avi Kak (kak@purdue.edu) Lecture 8: AES: The Advanced Encryption Standard Lecture Notes on Computer and Network Security by Avi Kak (kak@purdue.edu) May 1, 2015 12:14 Noon c 2015 Avinash Kak, Purdue University Goals: To review

More information

White Paper. Shay Gueron Intel Architecture Group, Israel Development Center Intel Corporation

White Paper. Shay Gueron Intel Architecture Group, Israel Development Center Intel Corporation White Paper Shay Gueron Intel Architecture Group, Israel Development Center Intel Corporation Intel Advanced Encryption Standard (AES) New Instructions Set Intel AES New Instructions are a set of instructions

More information

A Secure Software Implementation of Nonlinear Advanced Encryption Standard

A Secure Software Implementation of Nonlinear Advanced Encryption Standard IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) ISSN: 2319 4200, ISBN No. : 2319 4197 Volume 1, Issue 5 (Jan. - Feb 2013), PP 44-48 A Secure Software Implementation of Nonlinear Advanced Encryption

More information

Improving Performance of Secure Data Transmission in Communication Networks Using Physical Implementation of AES

Improving Performance of Secure Data Transmission in Communication Networks Using Physical Implementation of AES Improving Performance of Secure Data Transmission in Communication Networks Using Physical Implementation of AES K Anjaneyulu M.Tech Student, Y.Chalapathi Rao, M.Tech, Ph.D Associate Professor, Mr.M Basha,

More information

CS 758: Cryptography / Network Security

CS 758: Cryptography / Network Security CS 758: Cryptography / Network Security offered in the Fall Semester, 2003, by Doug Stinson my office: DC 3122 my email address: dstinson@uwaterloo.ca my web page: http://cacr.math.uwaterloo.ca/~dstinson/index.html

More information

Area Optimized and Pipelined FPGA Implementation of AES Encryption and Decryption

Area Optimized and Pipelined FPGA Implementation of AES Encryption and Decryption Area Optimized and Pipelined FPGA Implementation of AES Encryption and Decryption 1, Mg Suresh, 2, Dr.Nataraj.K.R 1, Asst Professor Rgit, Bangalore, 2, Professor 1,2, Department Of Electronics And Communication

More information

Combining Mifare Card and agsxmpp to Construct a Secure Instant Messaging Software

Combining Mifare Card and agsxmpp to Construct a Secure Instant Messaging Software Combining Mifare Card and agsxmpp to Construct a Secure Instant Messaging Software Ya Ling Huang, Chung Huang Yang Graduate Institute of Information & Computer Education, National Kaohsiung Normal University

More information

Network Security. Omer Rana

Network Security. Omer Rana Network Security Omer Rana CM0255 Material from: Cryptography Components Sender Receiver Plaintext Encryption Ciphertext Decryption Plaintext Encryption algorithm: Plaintext Ciphertext Cipher: encryption

More information

Added Advanced Encryption Standard (A-Aes): With 512 Bits Data Block And 512, 768 And 1024 Bits Encryption Key

Added Advanced Encryption Standard (A-Aes): With 512 Bits Data Block And 512, 768 And 1024 Bits Encryption Key Added Advanced Encryption Standard (A-Aes): With 512 Bits Data Block And 512, 768 And 1024 Bits Encryption Key Mahra Kumar Shrivas Lecturer Information Technology Sikkim Manipal University, Kumasi, Ghana

More information

AES Power Attack Based on Induced Cache Miss and Countermeasure

AES Power Attack Based on Induced Cache Miss and Countermeasure AES Power Attack Based on Induced Cache Miss and Countermeasure Guido Bertoni, Vittorio Zaccaria STMicroelectronics, Advanced System Technology Agrate Brianza - Milano, Italy, {guido.bertoni, vittorio.zaccaria}@st.com

More information

The implementation and performance/cost/power analysis of the network security accelerator on SoC applications

The implementation and performance/cost/power analysis of the network security accelerator on SoC applications The implementation and performance/cost/power analysis of the network security accelerator on SoC applications Ruei-Ting Gu grating@eslab.cse.nsysu.edu.tw Kuo-Huang Chung khchung@eslab.cse.nsysu.edu.tw

More information

How To Encrypt With A 64 Bit Block Cipher

How To Encrypt With A 64 Bit Block Cipher The Data Encryption Standard (DES) As mentioned earlier there are two main types of cryptography in use today - symmetric or secret key cryptography and asymmetric or public key cryptography. Symmetric

More information

Side-Channel Analysis Resistant Implementation of AES on Automotive Processors

Side-Channel Analysis Resistant Implementation of AES on Automotive Processors Side-Channel Analysis Resistant Implementation of AES on Automotive Processors Master Thesis Ruhr-University Bochum Chair for Embedded Security Prof. Dr.-Ing. Christof Paar from Andreas Hoheisel June 12,

More information

A PPENDIX G S IMPLIFIED DES

A PPENDIX G S IMPLIFIED DES A PPENDIX G S IMPLIFIED DES William Stallings opyright 2010 G.1 OVERVIEW...2! G.2 S-DES KEY GENERATION...3! G.3 S-DES ENRYPTION...4! Initial and Final Permutations...4! The Function f K...5! The Switch

More information

Efficient Software Implementation of AES on 32-Bit Platforms

Efficient Software Implementation of AES on 32-Bit Platforms Efficient Software Implementation of AES on 32-Bit Platforms Guido Bertoni 1, Luca Breveglieri 1, Pasqualina Fragneto 2, Marco Macchetti 3, and Stefano Marchesin 3 1 Politecnico di Milano, Milano, Italy

More information

Lecture 4 Data Encryption Standard (DES)

Lecture 4 Data Encryption Standard (DES) Lecture 4 Data Encryption Standard (DES) 1 Block Ciphers Map n-bit plaintext blocks to n-bit ciphertext blocks (n = block length). For n-bit plaintext and ciphertext blocks and a fixed key, the encryption

More information

Implementation and Design of AES S-Box on FPGA

Implementation and Design of AES S-Box on FPGA International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 232-9364, ISSN (Print): 232-9356 Volume 3 Issue ǁ Jan. 25 ǁ PP.9-4 Implementation and Design of AES S-Box on FPGA Chandrasekhar

More information

A VHDL Implemetation of the Advanced Encryption Standard-Rijndael Algorithm. Rajender Manteena

A VHDL Implemetation of the Advanced Encryption Standard-Rijndael Algorithm. Rajender Manteena A VHDL Implemetation of the Advanced Encryption Standard-Rijndael Algorithm y Rajender Manteena A thesis sumitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical

More information

Cryptography and Network Security Chapter 3

Cryptography and Network Security Chapter 3 Cryptography and Network Security Chapter 3 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 3 Block Ciphers and the Data Encryption Standard All the afternoon

More information

KALE: A High-Degree Algebraic-Resistant Variant of The Advanced Encryption Standard

KALE: A High-Degree Algebraic-Resistant Variant of The Advanced Encryption Standard KALE: A High-Degree Algebraic-Resistant Variant of The Advanced Encryption Standard Dr. Gavekort c/o Vakiopaine Bar Kauppakatu 6, 41 Jyväskylä FINLAND mjos@iki.fi Abstract. We have discovered that the

More information

A PPENDIX H RITERIA FOR AES E VALUATION C RITERIA FOR

A PPENDIX H RITERIA FOR AES E VALUATION C RITERIA FOR A PPENDIX H RITERIA FOR AES E VALUATION C RITERIA FOR William Stallings Copyright 20010 H.1 THE ORIGINS OF AES...2 H.2 AES EVALUATION...3 Supplement to Cryptography and Network Security, Fifth Edition

More information

AES implementation on Smart Card

AES implementation on Smart Card 1 AES implementation on Smart Card Pongnukit Juthamas, Tingthanathikul Witit Abstract This paper focus on the cryptographic algorithm on smart card. Many algorithms are used to implement on smart card.

More information

An Energy Efficient ATM System Using AES Processor

An Energy Efficient ATM System Using AES Processor www.seipub.org/eer Electrical Engineering Research (EER) Volume 1 Issue 2, April 2013 An Energy Efficient ATM System Using AES Processor Ali Nawaz *1, Fakir Sharif Hossain 2, Khan Md. Grihan 3 1 Department

More information

A NEW DNA BASED APPROACH OF GENERATING KEY-DEPENDENT SHIFTROWS TRANSFORMATION

A NEW DNA BASED APPROACH OF GENERATING KEY-DEPENDENT SHIFTROWS TRANSFORMATION A NEW DNA BASED APPROACH OF GENERATING KEY-DEPENDENT SHIFTROWS TRANSFORMATION Auday H. Al-Wattar 1, Ramlan Mahmod 2, Zuriati Ahmad Zukarnain3, and Nur Izura Udzir4, 1 Faculty of Computer Science and Information

More information

High Speed Software Driven AES Algorithm on IC Smartcards

High Speed Software Driven AES Algorithm on IC Smartcards SCIS 2004 The 2004 Symposium on Cryptography and Information Security Sendai, Japan, Jan.27-30, 2004 The Institute of Electronics, Information and Communication Engineers High Speed Software Driven AES

More information

A NEW DNA BASED APPROACH OF GENERATING KEY- DEPENDENTMIXCOLUMNS TRANSFORMATION

A NEW DNA BASED APPROACH OF GENERATING KEY- DEPENDENTMIXCOLUMNS TRANSFORMATION A NEW DNA BASED APPROACH OF GENERATING KEY- DEPENDENTMIXCOLUMNS TRANSFORMATION Auday H. Al-Wattar 1, Ramlan Mahmod 2,Zuriati Ahmad Zukarnain 3 and NurIzura Udzir 4 1 Faculty of Computer Science and Information

More information

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No. # 11 Block Cipher Standards (DES) (Refer Slide

More information

Cache based Timing Attacks on Embedded Systems

Cache based Timing Attacks on Embedded Systems Cache based Timing Attacks on Embedded Systems Malte Wienecke Monday 20 th July, 2009 Master Thesis Ruhr-Universität Bochum Chair for Embedded Security Prof. Dr.-Ing. Christof Paar Advisor: Dipl.-Ing.

More information

6 Data Encryption Standard (DES)

6 Data Encryption Standard (DES) 6 Data Encryption Standard (DES) Objectives In this chapter, we discuss the Data Encryption Standard (DES), the modern symmetric-key block cipher. The following are our main objectives for this chapter:

More information

ELECTENG702 Advanced Embedded Systems. Improving AES128 software for Altera Nios II processor using custom instructions

ELECTENG702 Advanced Embedded Systems. Improving AES128 software for Altera Nios II processor using custom instructions Assignment ELECTENG702 Advanced Embedded Systems Improving AES128 software for Altera Nios II processor using custom instructions October 1. 2005 Professor Zoran Salcic by Kilian Foerster 10-8 Claybrook

More information

Switching between the AES-128 and AES-256 Using Ks * & Two Keys

Switching between the AES-128 and AES-256 Using Ks * & Two Keys 36 IJCSNS International Journal of Computer Science and Network Security, VOL.0 No.8, August 200 Switching between the AES-28 and AES-256 Using Ks * & Two Keys Moceheb Lazam Shuwandy, Ali Khalil Salih,

More information

Polymorphic AES Encryption Implementation

Polymorphic AES Encryption Implementation Polymorphic AE Encryption Implementation Ricardo Chaves, Leonel ousa Instituto uperior Técnico / INEC-ID Portugal, Lisbon Email: ricardo.chaves@inesc-id.pt Georgi Kuzmanov, tamatis Vassiliadis Computer

More information

AESvisual: A Visualization Tool for the AES Cipher

AESvisual: A Visualization Tool for the AES Cipher AESvisual: A Visualization Tool for the AES Cipher Jun Ma, Jun Tao Department of Computer Science Michigan Technological University Houghton, MI {junm,junt}@mtu.edu Melissa Keranen Department of Mathematical

More information

Parallel AES Encryption with Modified Mix-columns For Many Core Processor Arrays M.S.Arun, V.Saminathan

Parallel AES Encryption with Modified Mix-columns For Many Core Processor Arrays M.S.Arun, V.Saminathan Parallel AES Encryption with Modified Mix-columns For Many Core Processor Arrays M.S.Arun, V.Saminathan Abstract AES is an encryption algorithm which can be easily implemented on fine grain many core systems.

More information

Specification of Cryptographic Technique PC-MAC-AES. NEC Corporation

Specification of Cryptographic Technique PC-MAC-AES. NEC Corporation Specification of Cryptographic Technique PC-MAC-AS NC Corporation Contents 1 Contents 1 Design Criteria 2 2 Specification 2 2.1 Notations............................................. 2 2.2 Basic Functions..........................................

More information

HARDWARE IMPLEMENTATION OF AES-CCM FOR ROBUST SECURE WIRELESS NETWORK

HARDWARE IMPLEMENTATION OF AES-CCM FOR ROBUST SECURE WIRELESS NETWORK HARDWARE IMPLEMENTATION OF AES-CCM FOR ROBUST SECURE WIRELESS NETWORK Arshad Aziz and Nassar Ikram National University of Sciences & Technology (NUST) Pakistan. arshad@khi.paknet.com.pk (Ph: +92-333-2228300)

More information

How To Understand And Understand The History Of Cryptography

How To Understand And Understand The History Of Cryptography CSE497b Introduction to Computer and Network Security - Spring 2007 - Professors Jaeger Lecture 5 - Cryptography CSE497b - Spring 2007 Introduction Computer and Network Security Professor Jaeger www.cse.psu.edu/~tjaeger/cse497b-s07/

More information

An Instruction Set Extension for Fast and Memory-Efficient AES Implementation

An Instruction Set Extension for Fast and Memory-Efficient AES Implementation An Instruction Set Extension for Fast and Memory-Efficient AES Implementation Stefan Tillich, Johann Großschädl, and Alexander Szekely Graz University of Technology Institute for Applied Information Processing

More information

Cryptography and Network Security Block Cipher

Cryptography and Network Security Block Cipher Cryptography and Network Security Block Cipher Xiang-Yang Li Modern Private Key Ciphers Stream ciphers The most famous: Vernam cipher Invented by Vernam, ( AT&T, in 1917) Process the message bit by bit

More information

FPGA IMPLEMENTATION OF AES ALGORITHM

FPGA IMPLEMENTATION OF AES ALGORITHM FPGA IMPLEMENTATION OF AES ALGORITHM S.A. Annadate 1, Nitin Ram Chavan 2 1,2 Electronics and Telecommunication Dept, J N Collage of engineering Aurangabad, (India) ABSTRACT Advanced Encryption Standard

More information

Journal of Research in Electrical and Electronics Engineering (ISTP-JREEE)

Journal of Research in Electrical and Electronics Engineering (ISTP-JREEE) Abstract SYNTHESIS OF 128 BIT ADVANCED ENCRYPTION STANDARD ALGORITHM USING VHDL Paramveer Kaur, M.Tech (ECE) Student, siviapinu77@gmail.com; Parminder Singh Jassal, Assistant Professor, pammi_jassal@yahoo.co.in;

More information

Introduction to Hill cipher

Introduction to Hill cipher Introduction to Hill cipher We have explored three simple substitution ciphers that generated ciphertext C from plaintext p by means of an arithmetic operation modulo 26. Caesar cipher: The Caesar cipher

More information

Cryptography and Network Security: Summary

Cryptography and Network Security: Summary Cryptography and Network Security: Summary Timo Karvi 12.2013 Timo Karvi () Cryptography and Network Security: Summary 12.2013 1 / 17 Summary of the Requirements for the exam The advices are valid for

More information

COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION

COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION o Attribution You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any

More information

Block encryption. CS-4920: Lecture 7 Secret key cryptography. Determining the plaintext ciphertext mapping. CS4920-Lecture 7 4/1/2015

Block encryption. CS-4920: Lecture 7 Secret key cryptography. Determining the plaintext ciphertext mapping. CS4920-Lecture 7 4/1/2015 CS-4920: Lecture 7 Secret key cryptography Reading Chapter 3 (pp. 59-75, 92-93) Today s Outcomes Discuss block and key length issues related to secret key cryptography Define several terms related to secret

More information

Hardware Implementation of AES Encryption and Decryption System Based on FPGA

Hardware Implementation of AES Encryption and Decryption System Based on FPGA Send Orders for Reprints to reprints@benthamscience.ae The Open Cybernetics & Systemics Journal, 2015, 9, 1373-1377 1373 Open Access Hardware Implementation of AES Encryption and Decryption System Based

More information

Multi-Layered Cryptographic Processor for Network Security

Multi-Layered Cryptographic Processor for Network Security International Journal of Scientific and Research Publications, Volume 2, Issue 10, October 2012 1 Multi-Layered Cryptographic Processor for Network Security Pushp Lata *, V. Anitha ** * M.tech Student,

More information

Area optimized in storage area network using Novel Mix column Transformation in Masked AES

Area optimized in storage area network using Novel Mix column Transformation in Masked AES Area optimized in storage area network using Novel Mix column Transformation in Masked AES Mrs.S.Anitha #1, Ms.M.Suganya #2 #1 Assistant professor, #2 P.G.Scholar, II M.E.VLSI Design #1,#2 Department of

More information

Research Article. ISSN 2347-9523 (Print) *Corresponding author Shi-hai Zhu Email:

Research Article. ISSN 2347-9523 (Print) *Corresponding author Shi-hai Zhu Email: Scholars Journal of Engineering and Technology (SJET) Sch. J. Eng. Tech., 2014; 2(3A):352-357 Scholars Academic and Scientific Publisher (An International Publisher for Academic and Scientific Resources)

More information

AES-CBC Software Execution Optimization

AES-CBC Software Execution Optimization AES-CBC Software Execution Optimization Razvi Doomun*, Jayramsingh Doma, Sundeep Tengur Computer Science and Engineering, University of Mauritius r.doomun@uom.ac.mu, kartouss@gmail.com, tempo14@gmail.com

More information

Solutions to Problem Set 1

Solutions to Problem Set 1 YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467b: Cryptography and Computer Security Handout #8 Zheng Ma February 21, 2005 Solutions to Problem Set 1 Problem 1: Cracking the Hill cipher Suppose

More information

Fast Implementations of AES on Various Platforms

Fast Implementations of AES on Various Platforms Fast Implementations of AES on Various Platforms Joppe W. Bos 1 Dag Arne Osvik 1 Deian Stefan 2 1 EPFL IC IIF LACAL, Station 14, CH-1015 Lausanne, Switzerland {joppe.bos, dagarne.osvik}@epfl.ch 2 Dept.

More information

1 Data Encryption Algorithm

1 Data Encryption Algorithm Date: Monday, September 23, 2002 Prof.: Dr Jean-Yves Chouinard Design of Secure Computer Systems CSI4138/CEG4394 Notes on the Data Encryption Standard (DES) The Data Encryption Standard (DES) has been

More information

AVR1318: Using the XMEGA built-in AES accelerator. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR1318: Using the XMEGA built-in AES accelerator. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR1318: Using the XMEGA built-in AES accelerator Features Full compliance with AES (FIPS Publication 197, 2002) - Both encryption and decryption procedures 128-bit Key and State memory XOR load option

More information

A HARDWARE IMPLEMENTATION OF THE ADVANCED ENCRYPTION STANDARD (AES) ALGORITHM USING SYSTEMVERILOG

A HARDWARE IMPLEMENTATION OF THE ADVANCED ENCRYPTION STANDARD (AES) ALGORITHM USING SYSTEMVERILOG A HARDWARE IMPLEMENTATION OF THE ADVANCED ENCRYPTION STANDARD (AES) ALGORITHM USING SYSTEMVERILOG Bahram Hakhamaneshi B.S., Islamic Azad University, Iran, 2004 PROJECT Submitted in partial satisfaction

More information

Disk Encryption. Adnan Vaseem Alam. Master of Science in Communication Technology. Scrutinizing IEEE Standard 1619\XTS-AES

Disk Encryption. Adnan Vaseem Alam. Master of Science in Communication Technology. Scrutinizing IEEE Standard 1619\XTS-AES Disk Encryption Scrutinizing IEEE Standard 1619\XTS-AES Adnan Vaseem Alam Master of Science in Communication Technology Submission date: June 2009 Supervisor: Danilo Gligoroski, ITEM Norwegian University

More information

Network Security. Chapter 2 Basics 2.1 Symmetric Cryptography. Cryptographic algorithms: outline. Basic Terms: Block cipher and Stream cipher

Network Security. Chapter 2 Basics 2.1 Symmetric Cryptography. Cryptographic algorithms: outline. Basic Terms: Block cipher and Stream cipher Chair for Network Architectures and Services Department of Informatics TU München Prof. Carle Cryptographic algorithms: outline Network Security Cryptographic Algorithms Chapter 2 Basics 2.1 Symmetric

More information

Lecture Note 8 ATTACKS ON CRYPTOSYSTEMS I. Sourav Mukhopadhyay

Lecture Note 8 ATTACKS ON CRYPTOSYSTEMS I. Sourav Mukhopadhyay Lecture Note 8 ATTACKS ON CRYPTOSYSTEMS I Sourav Mukhopadhyay Cryptography and Network Security - MA61027 Attacks on Cryptosystems Up to this point, we have mainly seen how ciphers are implemented. We

More information

F3 Symmetric Encryption

F3 Symmetric Encryption F3 Symmetric Encryption Cryptographic Algorithms: Overview During this course two main applications of cryptographic algorithms are of principal interest: Encryption of data: transforms plaintext data

More information

AES Cipher Modes with EFM32

AES Cipher Modes with EFM32 AES Cipher Modes with EFM32 AN0033 - Application Note Introduction This application note describes how to implement several cryptographic cipher modes with the Advanced ion Standard (AES) on the EFM32

More information

Automata Designs for Data Encryption with AES using the Micron Automata Processor

Automata Designs for Data Encryption with AES using the Micron Automata Processor IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.7, July 2015 1 Automata Designs for Data Encryption with AES using the Micron Automata Processor Angkul Kongmunvattana School

More information

Network Security. Abusayeed Saifullah. CS 5600 Computer Networks. These slides are adapted from Kurose and Ross 8-1

Network Security. Abusayeed Saifullah. CS 5600 Computer Networks. These slides are adapted from Kurose and Ross 8-1 Network Security Abusayeed Saifullah CS 5600 Computer Networks These slides are adapted from Kurose and Ross 8-1 Goals v understand principles of network security: cryptography and its many uses beyond

More information

EFFECTIVE AES IMPLEMENTATION

EFFECTIVE AES IMPLEMENTATION International Journal of Electronics and Communication Engineering & Technology (IJECET) Volume 7, Issue 1, Jan-Feb 2016, pp. 01-09, Article ID: IJECET_07_01_001 Available online at http://www.iaeme.com/ijecetissues.asp?jtype=ijecet&vtype=7&itype=1

More information

CIS433/533 - Computer and Network Security Cryptography

CIS433/533 - Computer and Network Security Cryptography CIS433/533 - Computer and Network Security Cryptography Professor Kevin Butler Winter 2011 Computer and Information Science A historical moment Mary Queen of Scots is being held by Queen Elizabeth and

More information

7! Cryptographic Techniques! A Brief Introduction

7! Cryptographic Techniques! A Brief Introduction 7! Cryptographic Techniques! A Brief Introduction 7.1! Introduction to Cryptography! 7.2! Symmetric Encryption! 7.3! Asymmetric (Public-Key) Encryption! 7.4! Digital Signatures! 7.5! Public Key Infrastructures

More information

AES 128-Bit Implementation with Z8 Encore! XP Microcontrollers

AES 128-Bit Implementation with Z8 Encore! XP Microcontrollers AES 128-Bit Implementation with Z8 Encore! XP Microcontrollers AN033801-0812 Abstract This application note discusses how AES-128 encryption can be implemented with Zilog s Z8 Encore! family of 8-bit microcontrollers.

More information

Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Module No. # 01 Lecture No. # 05 Classic Cryptosystems (Refer Slide Time: 00:42)

More information

{(i,j) 1 < i,j < n} pairs, X and X i, such that X and X i differ. exclusive-or sums. ( ) ( i ) V = f x f x

{(i,j) 1 < i,j < n} pairs, X and X i, such that X and X i differ. exclusive-or sums. ( ) ( i ) V = f x f x ON THE DESIGN OF S-BOXES A. F. Webster and S. E. Tavares Department of Electrical Engineering Queen's University Kingston, Ont. Canada The ideas of completeness and the avalanche effect were first introduced

More information

AES (Rijndael) IP-Cores

AES (Rijndael) IP-Cores AES (Rijndael) IP-Cores Encryption/Decryption and Key Expansion Page 1 Revision History Date Version Description 24 February 2006 1.0 Initial draft. 15 March 2006 1.1 Block diagrams added. 26 March 2006

More information

Programmable Cellular Automata Based Efficient Parallel AES Encryption Algorithm

Programmable Cellular Automata Based Efficient Parallel AES Encryption Algorithm Programmable Cellular Automata Based Efficient Parallel AES Encryption Algorithm Debasis Das 1, Rajiv Misra 2 Department of Computer Science and Engineering, Indian Institute of Technology, Patna Patna-800013,

More information

Advanced Cryptography

Advanced Cryptography Family Name:... First Name:... Section:... Advanced Cryptography Final Exam July 18 th, 2006 Start at 9:15, End at 12:00 This document consists of 12 pages. Instructions Electronic devices are not allowed.

More information

Network Security: Cryptography CS/SS G513 S.K. Sahay

Network Security: Cryptography CS/SS G513 S.K. Sahay Network Security: Cryptography CS/SS G513 S.K. Sahay BITS-Pilani, K.K. Birla Goa Campus, Goa S.K. Sahay Network Security: Cryptography 1 Introduction Network security: measure to protect data/information

More information

A Comparative Study Of Two Symmetric Encryption Algorithms Across Different Platforms.

A Comparative Study Of Two Symmetric Encryption Algorithms Across Different Platforms. A Comparative Study Of Two Symmetric Algorithms Across Different Platforms. Dr. S.A.M Rizvi 1,Dr. Syed Zeeshan Hussain 2 and Neeta Wadhwa 3 Deptt. of Computer Science, Jamia Millia Islamia, New Delhi,

More information

lundi 1 octobre 2012 In a set of N elements, by picking at random N elements, we have with high probability a collision two elements are equal

lundi 1 octobre 2012 In a set of N elements, by picking at random N elements, we have with high probability a collision two elements are equal Symmetric Crypto Pierre-Alain Fouque Birthday Paradox In a set of N elements, by picking at random N elements, we have with high probability a collision two elements are equal N=365, about 23 people are

More information

A NEW APPROACH FOR COMPLEX ENCRYPTING AND DECRYPTING DATA

A NEW APPROACH FOR COMPLEX ENCRYPTING AND DECRYPTING DATA A NEW APPROACH FOR COMPLEX ENCRYPTING AND DECRYPTING DATA ABSTRACT Obaida Mohammad Awad Al-Hazaimeh Department of Information Technology, Al-balqa Applied University, AL-Huson University College, Irbid,

More information

A Study of New Trends in Blowfish Algorithm

A Study of New Trends in Blowfish Algorithm A Study of New Trends in Blowfish Algorithm Gurjeevan Singh*, Ashwani Kumar**, K. S. Sandha*** *(Department of ECE, Shaheed Bhagat Singh College of Engg. & Tech. (Polywing), Ferozepur-152004) **(Department

More information