Audiometer: Correction factor for atmospheric pressure

Size: px
Start display at page:

Download "Audiometer: Correction factor for atmospheric pressure"

Transcription

1 Audiometer: Correction factor for atmospheric pressure Zemar SOARES 1 ; Davi A. BRASIL 2 ; Viviane FONTES 3 1 Electroacoustics Lab. - Inmetro, Brazil 2 Dimensional Metrology Lab. - Inmetro, Brazil 3 Phonoaudiologist of SMS/SUBVISA/NUSAT, Brazil ABSTRACT Audiometers are electroacoustic equipment used by audiology professionals to measure the auditory acuity. The general and specific requirements that characterizes how it should be an audiometer is described in IEC (2012), including its calibration. However, this technical document does not allow the use of the audiometer at range of atmospheric pressure out of 98 kpa to 104 kpa. This means that approximately in cities higher than 290 meters altitude the audiology professionals may not use the audiometer. This paper presents correction factors for audiometric earphones coupled both with 6cc couplers (IEC ) as in artificial ears (IEC ). Measurements in a vacuum/pressure chamber were taken from sea level to equivalent atmospheric pressure at altitudes of 1600 meters. The different values at each altitude it enabled to determine the correction factor that lets audiology professionals can use the audiometer at different altitudes without the loss of quality of the results. Keywords: Audiometer, atmospheric pressure, correction factor, earphones, audiometry 1. INTRODUCTION The audiometers are measuring instruments applied to health (specifically audiology) widely used in a developed society. Brazil has Audiology professionals (Federal Council of Phonoaudiology of Brazil - Set 2015). The estimated number of audiometers in the country is around Taking these numbers it is noticed a significant number of audiometers that need to be evaluated by mean of periodic checks. This number of audiometers in Brazil shows a potential deal for calibration laboratories, however, IEC [1] limits the calibration of the audiometer to an atmospheric pressure range of 104 kpa to 98 kpa. The value of 98 kpa is related to altitude of approximately 290 meters. For European countries, this altitude level may not be very significant, but for America Latin countries this altitude level significantly limit calibration of audiometers, consequently the application of these in clinical diagnostics. A significant number of Brazilian cities is above this level altitude of 290 meters, implying still a number around 3000 audiometer that should be calibrated but the IEC does not allow. However, it is known that this is not the procedure that has been used. The audiometer are calibrated even being above the level of 290 meters. Therefore, bring systematic errors in the calibration process. The magnitude of this systematic error is a function of altitude level (or atmospheric pressure) where the audiometer was calibrated. The sensitivity of earphones as a function of frequency changes directly with the change of the local atmospheric pressure. This article aims to measure these systematic errors (changes sensitivity) caused by different atmospheric pressures due to different levels of altitude. The result of this investigation shows the correction factor of atmospheric pressure as a function of frequency. 2. THEORETICAL CONSIDERATIONS Considering the earphone as a source of the volume velocity u and the coupler as a cavity of volume V, then the relationship between the alternating pressure p (detected by microphone inside the coupler) and the 1 zmsoares@inmetro.gov.br 2 dabrasil@inmetro.gov.br 3 viviane_fontes@hotmail.com 695

2 volume velocity u is [2] (1) where Ps is the atmospheric pressure, is the specific heat ratio of air, f is the frequency of the driving sinusoidal signal and j = (-1) 1/2 is the imaginary number. Taking the equation (1) is possible to estimate the theoretical variation of p with the decreasing of Ps shown in the equation (2). (2) 3. METHODOLOGY The measuring reference of this investigation is the sound pressure level (SPL) emitted by the headset into the coupler (artificial ear and 6cc). To obtain the reference SPL, it was necessary to use an excitation signal (Swept Sine) with constant envelope [3] (100 Hz to 10 khz) which was directed at the headphone under test. At sea level (101,325 kpa) the SPL at 1 khz emitted by the earphone was adjusted (voltage) to approximately 90 db. The audio analyzer used to perform this measurement of SPL was "CMF22 + Monkey Forest." For the simulation of different atmospheric pressures and consequently different altitude levels, a Vacuum/Pressure chamber model 8700 of the Theodor Friedrichs was used. A BaroThermoHygrometer PTU300 Vaisala model was used to monitor the environmental conditions within the Vacuum/Pressure chamber. Figure 1 shows a measurement system used in this work. Figure 1 - measuring system consists of signal analyzer, vacuum/pressure chamber, barothermohygrometer, coupler (artificial ear and 6cc) and earphone under test. The earphones under test used in this work were the TDH 39 (Telephonics) and DD 45 (Radioear). For coupling the earphones to the measurement microphone were used the artificial ear (B&K4153) and the 6cc coupler (B&K 4152). The static pressure applied in the chamber to simulate different atmospheric pressures were 103,325 kpa, 98 kpa, 95 kpa, 92 kpa, 89 kpa, 86 kpa and 83 kpa. These simulations of atmospheric pressures correspond from the altitude of the sea level to an altitude level of approximately 1700 meters. They were purposely chosen to cover the altitudes of large Brazilian cities. For example, Campinas (~ 94 kpa), São Paulo (~ 93 kpa), Belo Horizonte (~ 92 kpa), Curitiba (~ 91 kpa), Brasilia (~ 89 kpa). Also, include medium and small Brazilian cities that have atmospheric pressures close to 86 kpa and 83 kpa. Before starting any measurement, the sound level calibrator was coupled to the microphone of artificial ear to adjust the gain of the measurement system input. Then the earphone under test was coupled to the artificial ear following the standard recommendation of force applied under it. The vacuum/pressure chamber was adjusted to a pressure of 101,325 kpa. The excitation signal was directed to the earphone 696

3 under test. The SPL emitted by the earphone was recorded by the audio analyzer as a function of frequency (100 Hz to 10 khz). This SPL recorded is assumed as the reference value for all other SPL recorded at different pressures inside the vacuum/pressure chamber. For the sequence of pressures inside the vacuum/pressure chamber, the pressure value was adjusted and time waiting for at least 3 minutes for the internal equalization of the coupler before of start the measures of SPL. Then after this time waiting, the excitation of the earphones was started and the SPL as a function of frequency was recorded. The test was repeated 3 times so that it could have an estimate of the repeatability of the measurement result. The correction factor proposed in this paper is the difference between the SPL measured, for example, 98 kpa for the SPL measured in 103,325 kpa. So many deviations were determined for each pressure relative to the pressure at sea level. The correction factor allows to the laboratories correct the SPL measured during calibration of audiometer at level of altitude higher than sea level. 4. RESULTS OF MEASUREMENT Figure 2 shows the difference between the SPL measured at high level of altitude and SPL measured at sea level. The result of this difference is presented as mean deviation between 4 earphones TDH 39 coupled to the artificial ear. Figure 3 shows the standard deviation of the deviations calculated between 4 earphones TDH 39 coupled to the artificial ear. Noting that two earphones means: a left and a right earphone, for example of one headset TDH 39. Figure 2 - Difference between the SPL measured at the high level of altitude and the SPL measured at sea level. Results expressed as average of deviation between 4 earphones TDH 39 coupled to the artificial ear 697

4 Figure 3 - Standard deviation calculated from the deviations determined between 4 earphones TDH 39 coupled to the artificial ear In the same way, measurements were taken using 4 earphones TDH 39 coupled to the 6cc coupler. Figure 4 and 5 shows respectively the results of differences of the SPL measured (deviation of the SPL of sea level) and standard deviation. Figure 4 - Difference between the SPL measured at the high level of altitude and the SPL measured at sea level. Results expressed as average of deviation between 4 earphones TDH 39 coupled to the 6cc coupler 698

5 Figure 5 Standard deviation calculated from the deviations determined between 4 earphones TDH 39 coupled to the 6cc coupler For the results with the earphone DD 45, it was used two earphones (left and right of the DD 45). The results of Figures 6 represents the average value of the deviations found with two earphones. Figure 6 - Difference between the SPL measured at the high level of altitude and the SPL measured at sea level. Results expressed as average of deviation between 2 earphones DD 45 coupled to the artificial ear Also, measurements were taken using 2 earphones DD 45 coupled to the 6cc coupler. Figure 7 shows the results of differences of the SPL measured (deviation of the SPL of sea level). 699

6 Figure 7 - Difference between the SPL measured at the high level of altitude and the SPL measured at sea level. Results expressed as average of deviation between 2 earphones DD 45 coupled to the 6cc Coupler Freq. Resp. TDH39+6cc Figure 8 - frequency response curves for different atmospheric pressures. Red (101,325 kpa), Gray (98 kpa), Yellow (95 kpa), Light Blue (92 kpa), Green (89 kpa), Blue (86 kpa) and Brown (83 kpa) In Figure 8, it is possible to note that the frequency response curves tend to shift to the left with the decrement of the simulated atmospheric pressure inside the vacuum/pressure chamber. This left shift does not occur at frequencies close to 6 khz, where the resonance (1 th mode) of the 6cc coupler does not seem to change with the variation of pressure. In the frequency range where the shift to the left (from 2.5 khz to 3 khz) shows that the earphone resonance frequency decreases with decreasing atmospheric pressure. 700

7 Further noting Figure 8 can be justified the reason of the correction factor around 2kHz be positive or zero, would be expected to have negative correction values for the entire frequency range. As the resonance frequency of the earphone decreases, so when comparing the curve corresponding to lower atmospheric pressure against the reference curve (101,325 kpa) it is possible note that the value of the SPL measured at frequency of the resonance peak (curve 101,325 kpa) increases. This value SPL increases because there was a shift of the resonance to the left. However, there are frequencies that cause the shift of the resonance to the left, leading to the computed differences between the measured SPL to near to the zero. Another important point to note is that below 200 Hz coupling between the earphone and the 6cc coupler does not seem to be enough. A leak seems to lead the internal volume of 6cc coupler to increase it until to the large external volume. This causes the correction factor come close to zero because the new propagation model (different from equation (1)) does the SPL to be more insensible to the variations of atmospheric pressure. Taking equation (2) and comparing it with the results shown in Figures 2, 4, 6 and 7 can only agree in the frequency range of 3,15 khz to 6,3 khz. The arguments that justify this are already described in the previous three paragraphs. 5. CONCLUSION This work presented a measurement procedure for determining the differences in sensitivities of headphones TDH 39 and DD 45 when coupled to the artificial ear and 6cc coupler. The results show that it is possible to measure the change of the sensitivity of earphones TDH 39 and DD 45 in the form of deviations from the sensitivity to sea level. Through these deviations are possible establish a correction factor for these earphones when coupled to the artificial ear and 6cc coupler. Based on the determined correction factor in this work it is possible to correct the measured SPL at different altitudes from sea level. In each measured frequency, simply add the correction factor related to altitude where the measurement was carried out. With this procedure the SPL measurement result is equal to the SPL measured at sea level. Even with few samples tested of earphones, 4 for TDH 39 and 2 for the DD 45, it is possible have a quantification of this sensitivity of deviations related to the sea level. This work is the beginning of an investigation that is ongoing and main objective is the search results with at least 20 headphones TDH 39 and 20 earphones DD 45. With this sample quantity is possible to measure dispersions of the results related to the production line of these earphones, ensuring a good estimate of uncertainty of the correction factor proposed in this project. ACKNOWLEDGEMENTS Thanks to the Ministry of Health of Brazil to finance part of this work. REFERENCES 1. IEC Electroacoustics - Audiometric equipment Part 1: Equipment for pure-tone audiometry, 2012; 2. AIP Handbook of Condenser Microphones Theory, Calibration, and Measurements, George S. K Wong and Tony F. W. Embleton, AIP Press, Chapter 4, ISBN , 1995; 3. Müller, S.; Massarani, P.: Transfer-Function Measurement with Sweeps, Journal of Audio Engineering Society, 80,

PURE TONE AUDIOMETER

PURE TONE AUDIOMETER PURE TONE AUDIOMETER V. Vencovský, F. Rund Department of Radioelectronics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic Abstract Estimation of pure tone hearing

More information

Instructions for the use of E-A-RTONE 3A. Insert Earphones. Revised 1997 per ANSI S3.6-1996 and ISO 389-2:1994 12/99

Instructions for the use of E-A-RTONE 3A. Insert Earphones. Revised 1997 per ANSI S3.6-1996 and ISO 389-2:1994 12/99 Instructions for the use of E-A-RTONE 3A Insert Earphones Revised 1997 per ANSI S3.6-1996 and ISO 389-2:1994 12/99 INTRODUCTION Congratulations on the purchase of your new E-A-RTONE 3A Insert Earphones.

More information

Testing FM Systems on the FP35 Hearing Aid Analyzer -1-

Testing FM Systems on the FP35 Hearing Aid Analyzer -1- Testing FM Systems on the FP35 Hearing Aid Analyzer -1- Testing FM Systems on the FP35 Hearing Aid Analyzer Introduction This workbook describes how to test FM systems with the FP35 Hearing Aid Analyzer

More information

By Michael Block, PhD

By Michael Block, PhD By Michael Block, PhD IHS offers a diversity of options for obtaining continuing education credit: seminars and classroom training, institutional courses, online studies, and distance learning programs.

More information

INTERFERENCE OF SOUND WAVES

INTERFERENCE OF SOUND WAVES 1/2016 Sound 1/8 INTERFERENCE OF SOUND WAVES PURPOSE: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves and to observe interference phenomena with ultrasonic sound waves.

More information

Step-by-Step RECD Guide

Step-by-Step RECD Guide Precision Audiometric Instruments www.medrx-usa.com Step-by-Step RECD Guide The RECD task involves 4 steps: 1 - Complete Calibration of the Speakers and Probe Tube 2 - Measure an Ear Response 3 - Perform

More information

Frequency Response of Filters

Frequency Response of Filters School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To

More information

INTERFERENCE OF SOUND WAVES

INTERFERENCE OF SOUND WAVES 2011 Interference - 1 INTERFERENCE OF SOUND WAVES The objectives of this experiment are: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves. To observe interference phenomena

More information

APPLICATION NOTE. Ear Simulator for Telephonometry. Use of Wideband Ear Simulator Type 4195

APPLICATION NOTE. Ear Simulator for Telephonometry. Use of Wideband Ear Simulator Type 4195 APPLICATIO OTE Ear Simulator for Telephonometry Use of Wideband Ear Simulator Type 4195 Wideband Ear Simulator Type 4195 has been designed to match the ear simulators in Head and Torso Simulator Type 4128-C

More information

AN-007 APPLICATION NOTE MEASURING MAXIMUM SUBWOOFER OUTPUT ACCORDING ANSI/CEA-2010 STANDARD INTRODUCTION CEA-2010 (ANSI) TEST PROCEDURE

AN-007 APPLICATION NOTE MEASURING MAXIMUM SUBWOOFER OUTPUT ACCORDING ANSI/CEA-2010 STANDARD INTRODUCTION CEA-2010 (ANSI) TEST PROCEDURE AUDIOMATICA AN-007 APPLICATION NOTE MEASURING MAXIMUM SUBWOOFER OUTPUT ACCORDING ANSI/CEA-2010 STANDARD by Daniele Ponteggia - dp@audiomatica.com INTRODUCTION The Consumer Electronics Association (CEA),

More information

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common

More information

MICROPHONE SPECIFICATIONS EXPLAINED

MICROPHONE SPECIFICATIONS EXPLAINED Application Note AN-1112 MICROPHONE SPECIFICATIONS EXPLAINED INTRODUCTION A MEMS microphone IC is unique among InvenSense, Inc., products in that its input is an acoustic pressure wave. For this reason,

More information

Stream Boost: All About That Bass

Stream Boost: All About That Bass Carreen Pederson, M.A., & Alyson Gruhlke, Au.D. Stream Boost is an automatic feature that activates hearing aid settings optimized for high-quality streamed audio. Stream Boost settings are not part of

More information

MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER

MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER W. Li, J. Vandewege Department of Information Technology (INTEC) University of Gent, St.Pietersnieuwstaat 41, B-9000, Gent, Belgium Abstract: Precision

More information

PURE TONE AUDIOMETRY Andrew P. McGrath, AuD

PURE TONE AUDIOMETRY Andrew P. McGrath, AuD PURE TONE AUDIOMETRY Andrew P. McGrath, AuD Pure tone audiometry is the standard behavioral assessment of an individual s hearing. The results of pure tone audiometry are recorded on a chart or form called

More information

Sound Pressure Measurement

Sound Pressure Measurement Objectives: Sound Pressure Measurement 1. Become familiar with hardware and techniques to measure sound pressure 2. Measure the sound level of various sizes of fan modules 3. Calculate the signal-to-noise

More information

Direct and Reflected: Understanding the Truth with Y-S 3

Direct and Reflected: Understanding the Truth with Y-S 3 Direct and Reflected: Understanding the Truth with Y-S 3 -Speaker System Design Guide- December 2008 2008 Yamaha Corporation 1 Introduction Y-S 3 is a speaker system design software application. It is

More information

ECE 435 INTRODUCTION TO THE MICROWAVE NETWORK ANALYZER

ECE 435 INTRODUCTION TO THE MICROWAVE NETWORK ANALYZER ECE 435 INTRODUCTION TO THE MICROWAVE NETWORK ANALYZER Latest revision: October 1999 Introduction A vector network analyzer (VNA) is a device capable of measuring both the magnitude and phase of a sinusoidal

More information

MA 25 Operating Manual

MA 25 Operating Manual MA 25 Operating Manual MAICO Diagnostics 10393 West 70 th Street Eden Prairie, MN 55344, USA Toll Free 888.941.4201 MA 25 Operating Manual Table of Contents Page 1.... Introduction... 1 2.... Description...

More information

HyperX Cloud Headset

HyperX Cloud Headset HyperX Cloud Headset Document No. 480KHX-H3CL/WR.A01 HyperX Cloud Headset Page 1 of 12 Introduction Optimized for pro-gaming, HyperX Cloud Headset (KHX-H3CL/WR) is a high-quality communicating device that

More information

Outer Diameter 23 φ mm Face side Dimension 20.1 φ mm. Baffle Opening. Normal 0.5 Watts Maximum 1.0 Watts Sine Wave.

Outer Diameter 23 φ mm Face side Dimension 20.1 φ mm. Baffle Opening. Normal 0.5 Watts Maximum 1.0 Watts Sine Wave. 1. MODEL: 23CR08FH-50ND 2 Dimension & Weight Outer Diameter 23 φ mm Face side Dimension 20.1 φ mm Baffle Opening 20.1 φ mm Height Refer to drawing Weight 4.0Grams 3 Magnet Materials Rare Earth Size φ 9.5

More information

Experiment 5. Lasers and laser mode structure

Experiment 5. Lasers and laser mode structure Northeastern University, PHYS5318 Spring 2014, 1 1. Introduction Experiment 5. Lasers and laser mode structure The laser is a very important optical tool that has found widespread use in science and industry,

More information

Application Note. So You Need to Measure Some Inductors?

Application Note. So You Need to Measure Some Inductors? So You Need to Measure Some nductors? Take a look at the 1910 nductance Analyzer. Although specifically designed for production testing of inductors and coils, in addition to measuring inductance (L),

More information

FREQUENCY RESPONSE OF AN AUDIO AMPLIFIER

FREQUENCY RESPONSE OF AN AUDIO AMPLIFIER 2014 Amplifier - 1 FREQUENCY RESPONSE OF AN AUDIO AMPLIFIER The objectives of this experiment are: To understand the concept of HI-FI audio equipment To generate a frequency response curve for an audio

More information

DAILY BIOLOGIC CHECK OF AUDIOMETERS

DAILY BIOLOGIC CHECK OF AUDIOMETERS DAILY BIOLOGIC CHECK OF AUDIOMETERS An audiometer must be checked before each day of use or if a problem is suspected with the equipment during use. After the audiometer is turned on, the operator should

More information

OUTPUT-ONLY MODAL ANALYSIS FOR A 50 YEARS OLD CONCRETE BRIDGE

OUTPUT-ONLY MODAL ANALYSIS FOR A 50 YEARS OLD CONCRETE BRIDGE OUTPUT-ONLY MODAL ANALYSIS FOR A 50 YEARS OLD CONCRETE BRIDGE Tiago Albino a, Cláudio José Martins a, Tiago A. Soares b, and Alberto Ortigão b a Federal Centre for Technological Education of Minas Gerais,

More information

Electrical Resonance

Electrical Resonance Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION

More information

PROFESSIONAL BOARD FOR SPEECH, LANGUAGE AND HEARING PROFESSIONS STANDARDS OF PRACTICE IN AUDIOLOGY

PROFESSIONAL BOARD FOR SPEECH, LANGUAGE AND HEARING PROFESSIONS STANDARDS OF PRACTICE IN AUDIOLOGY The Health Professions Council of South Africa PROFESSIONAL BOARD FOR SPEECH, LANGUAGE AND HEARING PROFESSIONS STANDARDS OF PRACTICE IN AUDIOLOGY December 2002 The following are considered to be standard

More information

Air Conduction Audiometer Series. MA 27 with headphones and built-in carrying case. MA1, MA25 & MA27. www.maico-diagnostics.com

Air Conduction Audiometer Series. MA 27 with headphones and built-in carrying case. MA1, MA25 & MA27. www.maico-diagnostics.com Air Conduction Audiometer Series MA 27 with headphones and built-in carrying case. MA1, MA25 & MA27 www.maico-diagnostics.com MA 1 The super-lightweight MA1 weighs in at only 1 pound. Small enough to hold

More information

RC Circuits and The Oscilloscope Physics Lab X

RC Circuits and The Oscilloscope Physics Lab X Objective RC Circuits and The Oscilloscope Physics Lab X In this series of experiments, the time constant of an RC circuit will be measured experimentally and compared with the theoretical expression for

More information

The Sonometer The Resonant String and Timbre Change after plucking

The Sonometer The Resonant String and Timbre Change after plucking The Sonometer The Resonant String and Timbre Change after plucking EQUIPMENT Pasco sonometers (pick up 5 from teaching lab) and 5 kits to go with them BK Precision function generators and Tenma oscilloscopes

More information

3M E-A-RTONE 3A and 5A Audiometric Insert Earphones

3M E-A-RTONE 3A and 5A Audiometric Insert Earphones 34-8708-1478-6 GZXO$ 3M 3A and 5A Audiometric Insert Earphones www.3m.eu/safety GZXO$ INTRODUCTION Congratulations on the purchase of your new 3A or 5A Insert Earphones. Whether you are performing comprehensive

More information

An in situ calibration for hearing thresholds

An in situ calibration for hearing thresholds An in situ calibration for hearing thresholds Robert H. Withnell a Department of Speech and Hearing Sciences, Indiana University, Bloomington, Indiana 47405 Patricia S. Jeng Mimosa Acoustics, Champaign,

More information

NMI R 118 Testing Procedures and Test Report Format for Pattern Evaluation of Fuel Dispensers for Motor Vehicles (OIML R 118:1995(E), NEQ)

NMI R 118 Testing Procedures and Test Report Format for Pattern Evaluation of Fuel Dispensers for Motor Vehicles (OIML R 118:1995(E), NEQ) Testing Procedures and Test Report Format for Pattern Evaluation of Fuel Dispensers for Motor Vehicles (OIM R 118:1995(E), NEQ) The English version of international standard OIM R 118:1995 Testing Procedures

More information

MicW i436 on iphone 6 / iphone 6 Plus basedreal Time

MicW i436 on iphone 6 / iphone 6 Plus basedreal Time Technical Note 1501 MicW i436 on iphone 6 / iphone 6 Plus basedreal Time Analyzers (RTA) 1. Introduction With new iphone 6 and iphone 6 Plus being released in October 2014, the iphone based real time analyzer

More information

GUIDELINES ON THE ACOUSTICS OF SOUND FIELD AUDIOMETRY IN CLINICAL AUDIOLOGICAL APPLICATIONS

GUIDELINES ON THE ACOUSTICS OF SOUND FIELD AUDIOMETRY IN CLINICAL AUDIOLOGICAL APPLICATIONS NOTE Although care has been taken in preparing the information supplied by the British Society of Audiology, the BSA does not and cannot guarantee the interpretation and application of it. The BSA cannot

More information

Dayton Audio is proud to introduce DATS V2, the best tool ever for accurately measuring loudspeaker driver parameters in seconds.

Dayton Audio is proud to introduce DATS V2, the best tool ever for accurately measuring loudspeaker driver parameters in seconds. Dayton Audio is proud to introduce DATS V2, the best tool ever for accurately measuring loudspeaker driver parameters in seconds. DATS V2 is the latest edition of the Dayton Audio Test System. The original

More information

PRODUCT SHEET OUT1 SPECIFICATIONS

PRODUCT SHEET OUT1 SPECIFICATIONS OUT SERIES Headphones OUT2 BNC Output Adapter OUT1 High Fidelity Headphones OUT1A Ultra-Wide Frequency Response Headphones OUT3 see Stimulators OUT100 Monaural Headphone 40HP Monaural Headphones OUT101

More information

APPLICATION NOTE AP050830

APPLICATION NOTE AP050830 APPLICATION NOTE AP050830 Selection and use of Ultrasonic Ceramic Transducers Pro-Wave Electronics Corp. E-mail: sales@pro-wave.com.tw URL: http://www.prowave.com.tw The purpose of this application note

More information

HEARING SCREENING FOR CHILDREN

HEARING SCREENING FOR CHILDREN PURPOSE Audiologic (hearing) screening identifies those persons who are likely to have hearing impairments or disorders that may interfere with body function/structure and/or activity/participation as

More information

Simulation of Couplers

Simulation of Couplers Simulation of Couplers by Søren Jønsson, Bin Liu, Lars B. Nielsen, Andreas Schuhmacher Brüel & Kjær AES, Workshop 7, 2003 March 23rd Brüel & Kjær 2003, 1 Agenda Introduction to Couplers Traditional Simulation

More information

The Calculation of G rms

The Calculation of G rms The Calculation of G rms QualMark Corp. Neill Doertenbach The metric of G rms is typically used to specify and compare the energy in repetitive shock vibration systems. However, the method of arriving

More information

Noise. CIH Review PDC March 2012

Noise. CIH Review PDC March 2012 Noise CIH Review PDC March 2012 Learning Objectives Understand the concept of the decibel, decibel determination, decibel addition, and weighting Know the characteristics of frequency that are relevant

More information

Transmission Line and Back Loaded Horn Physics

Transmission Line and Back Loaded Horn Physics Introduction By Martin J. King, 3/29/3 Copyright 23 by Martin J. King. All Rights Reserved. In order to differentiate between a transmission line and a back loaded horn, it is really important to understand

More information

1000+ AUDIOMETER OPERATING INSTRUCTIONS

1000+ AUDIOMETER OPERATING INSTRUCTIONS 1000+ AUDIOMETER OPERATING INSTRUCTIONS AMBCO Model 1000+ is a microprocessor controlled pure tone air conduction audiometer with automated screening test feature. INDEX A. Getting Started Patient Instructions

More information

Demanded sound level meter performance characteristics according to DIN EN 61672-1:2003

Demanded sound level meter performance characteristics according to DIN EN 61672-1:2003 Demanded sound level meter performance characteristics according to DIN EN 1.1 Anwendungsbereich 5.1.9, 5.1.10 Allgemeines Demanded functions class 1 instruments: - L AF, - L AFmax - L Cpeak, L c - (L

More information

EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP

EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP 1 EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP Purpose: To demonstrate the relationship between the voltage and current of a capacitor. Theory: A capacitor is a linear circuit element whose

More information

EMC STANDARDS STANDARDS AND STANDARD MAKING BODIES. International. International Electrotechnical Commission (IEC) http://www.iec.

EMC STANDARDS STANDARDS AND STANDARD MAKING BODIES. International. International Electrotechnical Commission (IEC) http://www.iec. EMC STANDARDS The EMC standards that a particular electronic product must meet depend on the product application (commercial or military) and the country in which the product is to be used. These EMC regulatory

More information

Germanium Diode AM Radio

Germanium Diode AM Radio Germanium Diode AM Radio LAB 3 3.1 Introduction In this laboratory exercise you will build a germanium diode based AM (Medium Wave) radio. Earliest radios used simple diode detector circuits. The diodes

More information

THE development of new methods and circuits for electrical energy conversion

THE development of new methods and circuits for electrical energy conversion FACTA UNIERSITATIS (NIŠ) SER.: ELEC. ENERG. vol. 22, no. 2, August 29, 245252 Investigation of ThreePhase to SinglePhase Matrix Converter Mihail Antchev and Georgi Kunov Abstract: A threephase to singlephase

More information

HEARING SCREENING (May 2006)

HEARING SCREENING (May 2006) HEARING SCREENING (May 2006) Definition Procedures for Hearing Screening Student with hearing loss School Nurse Role Referral Criteria Resources Definition: Hearing is the perception of sound. The normal

More information

Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide)

Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide) Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide) OVERVIEW Students will measure a sound wave by placing the Ward s DataHub microphone near one tuning fork A440 (f=440hz). Then

More information

EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS

EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS 1 EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides

More information

Audiometer Calibration System Manual

Audiometer Calibration System Manual Audiometer Calibration System Manual Larson Davis Audiometer Calibration System Manual IAUDIT.01 Rev J Copyright Copyright 2015 by PCB Piezotronics, Inc. This manual is copyrighted, with all rights reserved.

More information

APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS

APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS Selection and use of Ultrasonic Ceramic Transducers The purpose of this application note is to aid the user in the selection and application of the Ultrasonic

More information

Measuring Sound Insulation using Deconvolution Techniques

Measuring Sound Insulation using Deconvolution Techniques Measuring Sound Insulation using Deconvolution Techniques C. C. J. M. Hak a, N. H. A. M. Van Hout b and H. J. Martin c a Technische Universteit Eindhoven, De Rondom 10, 5612 AP Eindhoven, Netherlands b

More information

GSI AUDIOSTAR PRO CLINICAL TWO-CHANNEL AUDIOMETER. Setting The Clinical Standard

GSI AUDIOSTAR PRO CLINICAL TWO-CHANNEL AUDIOMETER. Setting The Clinical Standard GSI AUDIOSTAR PRO CLINICAL TWO-CHANNEL AUDIOMETER Setting The Clinical Standard GSI AUDIOSTAR PRO CLINICAL TWO-CHANNEL AUDIOMETER Tradition of Excellence The GSI AudioStar Pro continues the tradition of

More information

ENEE 307 Electronic Circuit Design Laboratory Spring 2012. A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742

ENEE 307 Electronic Circuit Design Laboratory Spring 2012. A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742 1.1. Differential Amplifiers ENEE 307 Electronic Circuit Design Laboratory Spring 2012 A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742 Differential Amplifiers

More information

Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz

Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz Author: Don LaFontaine Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz Abstract Making accurate voltage and current noise measurements on op amps in

More information

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya (LKaya@ieee.org) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper

More information

Acoustics: the study of sound waves

Acoustics: the study of sound waves Acoustics: the study of sound waves Sound is the phenomenon we experience when our ears are excited by vibrations in the gas that surrounds us. As an object vibrates, it sets the surrounding air in motion,

More information

DETERMINATION OF THE EFFECTIVE VOLUME OF AN EXTRAPOLATION CHAMBER FOR X-RAY DOSIMETRY

DETERMINATION OF THE EFFECTIVE VOLUME OF AN EXTRAPOLATION CHAMBER FOR X-RAY DOSIMETRY X Congreso Regional Latinoamericano IRPA de Protección y Seguridad Radiológica Radioprotección: Nuevos Desafíos para un Mundo en Evolución Buenos Aires, 12 al 17 de abril, 2015 SOCIEDAD ARGENTINA DE RADIOPROTECCIÓN

More information

Oscilloscope, Function Generator, and Voltage Division

Oscilloscope, Function Generator, and Voltage Division 1. Introduction Oscilloscope, Function Generator, and Voltage Division In this lab the student will learn to use the oscilloscope and function generator. The student will also verify the concept of voltage

More information

Generic - Hearing Loop - (AFILS) U.S. System Specification

Generic - Hearing Loop - (AFILS) U.S. System Specification This document is a generic specification for any Hearing Loop (Audio Frequency Induction Loop System). For the remainder of the document, we will refer to using the term Hearing Loop rather than Audio

More information

Understanding Power Impedance Supply for Optimum Decoupling

Understanding Power Impedance Supply for Optimum Decoupling Introduction Noise in power supplies is not only caused by the power supply itself, but also the load s interaction with the power supply (i.e. dynamic loads, switching, etc.). To lower load induced noise,

More information

High Pressure Measurements with the High Pressure Microphone Calibrator Type 4221. Introduction. The High Pressure Microphone Calibrator Type 4221

High Pressure Measurements with the High Pressure Microphone Calibrator Type 4221. Introduction. The High Pressure Microphone Calibrator Type 4221 17-231 High Pressure Measurements with the High Pressure Microphone Calibrator Type 4221 by Pierre Bernard Erling Frederiksen, and Brijel & Kjaer Introduction Microphones are often used to may include

More information

Function Guide for the Fourier Transformation Package SPIRE-UOL-DOC-002496

Function Guide for the Fourier Transformation Package SPIRE-UOL-DOC-002496 Function Guide for the Fourier Transformation Package SPIRE-UOL-DOC-002496 Prepared by: Peter Davis (University of Lethbridge) peter.davis@uleth.ca Andres Rebolledo (University of Lethbridge) andres.rebolledo@uleth.ca

More information

A Low-Cost, Single Coupling Capacitor Configuration for Stereo Headphone Amplifiers

A Low-Cost, Single Coupling Capacitor Configuration for Stereo Headphone Amplifiers Application Report SLOA043 - December 1999 A Low-Cost, Single Coupling Capacitor Configuration for Stereo Headphone Amplifiers Shawn Workman AAP Precision Analog ABSTRACT This application report compares

More information

Physics 42 Lab 4 Fall 2012 Cathode Ray Tube (CRT)

Physics 42 Lab 4 Fall 2012 Cathode Ray Tube (CRT) Physics 42 Lab 4 Fall 202 Cathode Ray Tube (CRT) PRE-LAB Read the background information in the lab below and then derive this formula for the deflection. D = LPV defl 2 SV accel () Redraw the diagram

More information

A wave lab inside a coaxial cable

A wave lab inside a coaxial cable INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 25 (2004) 581 591 EUROPEAN JOURNAL OF PHYSICS PII: S0143-0807(04)76273-X A wave lab inside a coaxial cable JoãoMSerra,MiguelCBrito,JMaiaAlves and A M Vallera

More information

Data Sheet, V1.1, May 2008 SMM310. Silicon MEMS Microphone. Small Signal Discretes

Data Sheet, V1.1, May 2008 SMM310. Silicon MEMS Microphone. Small Signal Discretes Data Sheet, V1.1, May 2008 SMM310 Small Signal Discretes Edition 2008-05-28 Published by Infineon Technologies AG 81726 München, Germany Infineon Technologies AG 2008. All Rights Reserved. Legal Disclaimer

More information

Development and optimization of a hybrid passive/active liner for flow duct applications

Development and optimization of a hybrid passive/active liner for flow duct applications Development and optimization of a hybrid passive/active liner for flow duct applications 1 INTRODUCTION Design of an acoustic liner effective throughout the entire frequency range inherent in aeronautic

More information

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007 PUMPED Nd:YAG LASER Last Revision: August 21, 2007 QUESTION TO BE INVESTIGATED: How can an efficient atomic transition laser be constructed and characterized? INTRODUCTION: This lab exercise will allow

More information

Standing Waves on a String

Standing Waves on a String 1 of 6 Standing Waves on a String Summer 2004 Standing Waves on a String If a string is tied between two fixed supports, pulled tightly and sharply plucked at one end, a pulse will travel from one end

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

AM-1. AM-1 Setup Guide for the Polycom Video Conferencing Systems QUICK SETUP GUIDE

AM-1. AM-1 Setup Guide for the Polycom Video Conferencing Systems QUICK SETUP GUIDE QUICK SETUP GUIDE AM-1 Setup Guide for the Polycom Video Conferencing Systems AM-1 *POLYCOM and the names and marks associated with Polycom's products are trademarks and/or service marks of Polycom, Inc.,

More information

arxiv:astro-ph/0509450 v1 15 Sep 2005

arxiv:astro-ph/0509450 v1 15 Sep 2005 arxiv:astro-ph/0509450 v1 15 Sep 2005 TESTING THERMO-ACOUSTIC SOUND GENERATION IN WATER WITH PROTON AND LASER BEAMS K. GRAF, G. ANTON, J. HÖSSL, A. KAPPES, T. KARG, U. KATZ, R. LAHMANN, C. NAUMANN, K.

More information

Estimating Acoustic Performance of a Cell Phone Speaker Using Abaqus

Estimating Acoustic Performance of a Cell Phone Speaker Using Abaqus Estimating Acoustic Performance of a Cell Phone Speaker Using Abaqus C. Jackman 1, M. Zampino 1 D. Cadge 2, R. Dravida 2, V. Katiyar 2, J. Lewis 2 1 Foxconn Holdings LLC 2 DS SIMULIA Abstract: Consumers

More information

Experiment 1: SOUND. The equation used to describe a simple sinusoidal function that propagates in space is given by Y = A o sin(k(x v t))

Experiment 1: SOUND. The equation used to describe a simple sinusoidal function that propagates in space is given by Y = A o sin(k(x v t)) Experiment 1: SOUND Introduction Sound is classified under the topic of mechanical waves. A mechanical wave is a term which refers to a displacement of elements in a medium from their equilibrium state,

More information

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Concept: circuits Time: 30 m SW Interface: 750 Windows file: RLC.SWS EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

Engineering Sciences 151. Electromagnetic Communication Laboratory Assignment 3 Fall Term 1998-99

Engineering Sciences 151. Electromagnetic Communication Laboratory Assignment 3 Fall Term 1998-99 Engineering Sciences 151 Electromagnetic Communication Laboratory Assignment 3 Fall Term 1998-99 WAVE PROPAGATION II: HIGH FREQUENCY SLOTTED LINE AND REFLECTOMETER MEASUREMENTS OBJECTIVES: To build greater

More information

Audio processing and ALC in the FT-897D

Audio processing and ALC in the FT-897D Audio processing and ALC in the FT-897D I recently bought an FT-897D, and after a period of operation noticed problems with what I perceived to be a low average level of output power and reports of muffled

More information

Pediatric Whitepaper. Electrophysiological Threshold Estimation and Infant Hearing Instrument Fitting

Pediatric Whitepaper. Electrophysiological Threshold Estimation and Infant Hearing Instrument Fitting Pediatric Whitepaper January 2010 Electrophysiological Threshold Estimation and Infant Hearing Instrument Fitting Merethe Lindgaard Fuglholt, M.A. Oticon A/S, Pediatric Audiology Abstract This paper addresses

More information

Guideline for diagnosing occupational noise-induced hearing loss. Part 3: Audiometric standards

Guideline for diagnosing occupational noise-induced hearing loss. Part 3: Audiometric standards Purdy & Williams: Guidelines for audiometry for diagnosis of NIHL Page 1 of 59 Guideline for diagnosing occupational noise-induced hearing loss Part 3: Audiometric standards Suzanne Purdy Head of Speech

More information

Digital Systems Ribbon Cables I CMPE 650. Ribbon Cables A ribbon cable is any cable having multiple conductors bound together in a flat, wide strip.

Digital Systems Ribbon Cables I CMPE 650. Ribbon Cables A ribbon cable is any cable having multiple conductors bound together in a flat, wide strip. Ribbon Cables A ribbon cable is any cable having multiple conductors bound together in a flat, wide strip. Each dielectric configuration has different high-frequency characteristics. All configurations

More information

Testing Panasonic s WM-61A Mike Cartridge

Testing Panasonic s WM-61A Mike Cartridge Tube, Solid State, Loudspeaker Technology Article prepared for www.audioxpress.com Testing Panasonic s WM-61A Mike Cartridge By George Danavaras This microphone study measures how distortion affects performance.

More information

Section 5.0 : Horn Physics. By Martin J. King, 6/29/08 Copyright 2008 by Martin J. King. All Rights Reserved.

Section 5.0 : Horn Physics. By Martin J. King, 6/29/08 Copyright 2008 by Martin J. King. All Rights Reserved. Section 5. : Horn Physics Section 5. : Horn Physics By Martin J. King, 6/29/8 Copyright 28 by Martin J. King. All Rights Reserved. Before discussing the design of a horn loaded loudspeaker system, it is

More information

Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy

Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy Application Note RF & Microwave Spectrum Analyzers Table of Contents 3 3 4 4 5 7 8 8 13 13 14 16 16 Introduction Absolute versus relative

More information

By Authority Of THE UNITED STATES OF AMERICA Legally Binding Document

By Authority Of THE UNITED STATES OF AMERICA Legally Binding Document By Authority Of THE UNITED STATES OF AMERICA Legally Binding Document By the Authority Vested By Part 5 of the United States Code 552(a) and Part 1 of the Code of Regulations 51 the attached document has

More information

Acceleration Introduction: Objectives: Methods:

Acceleration Introduction: Objectives: Methods: Acceleration Introduction: Acceleration is defined as the rate of change of velocity with respect to time, thus the concepts of velocity also apply to acceleration. In the velocity-time graph, acceleration

More information

10EaZy SW White Paper Choosing the right hardware

10EaZy SW White Paper Choosing the right hardware 10EaZy SW White Paper Choosing the right hardware Selecting proper hardware for the 10EaZy SW This white paper describes important elements to consider before purchasing hardware intended for sound level

More information

AN4427 Application note

AN4427 Application note Application note Gasket design for optimal acoustic performance in MEMS microphones Introduction This application note serves as a reference for the design of gaskets in MEMS microphones, providing recommendations

More information

MA33 & MA55. PC Based Audiometers. The ideal choice for health care professionals on the go. www.maico-diagnostics.com. by Maico Diagnostics

MA33 & MA55. PC Based Audiometers. The ideal choice for health care professionals on the go. www.maico-diagnostics.com. by Maico Diagnostics PC Based Audiometers by Maico Diagnostics MA33 & MA55 The ideal choice for health care professionals on the go 6 4 MA33 Pictured www.maico-diagnostics.com Portable - PC Based Audiometers Our PC based Audiometers

More information

Lab 1: The Digital Oscilloscope

Lab 1: The Digital Oscilloscope PHYSICS 220 Physical Electronics Lab 1: The Digital Oscilloscope Object: To become familiar with the oscilloscope, a ubiquitous instrument for observing and measuring electronic signals. Apparatus: Tektronix

More information

Effects of Noise Attenuation Devices on Screening Distortion Product Otoacoustic Emissions in Different Levels of Background Noise

Effects of Noise Attenuation Devices on Screening Distortion Product Otoacoustic Emissions in Different Levels of Background Noise Effects of Noise Attenuation Devices on Screening Distortion Product Otoacoustic Emissions in Different Levels of Background Noise Kelsey Nielsen, Au.D. Otolaryngology Associates, P.C. Fairfax, Virginia

More information

California State University, Fresno Department of Communicative Disorders and Deaf Studies CDDS 128. Observations in Audiology

California State University, Fresno Department of Communicative Disorders and Deaf Studies CDDS 128. Observations in Audiology 125 California State University, Fresno Department of Communicative Disorders and Deaf Studies CDDS 128 Observations in Audiology Prerequisites: CDDS 80, 95; and CDDS 102 or CDDS 121; priority will be

More information

Manual Pure-Tone Threshold Audiometry

Manual Pure-Tone Threshold Audiometry Guidelines Manual Pure-Tone Threshold Audiometry Guidelines 1977 / II - 221 Manual Pure-Tone Threshold Audiometry ASHA Committee on Audiometric Evaluation Reference this material as: American Speech-Language-

More information

Operating Instructions MA 27

Operating Instructions MA 27 Operating Instructions MA 27 1162-7830 Rev G 03/11 Maico Diagnostics 7625 Golden Triangle Drive Eden Prairie, MN 55344 Toll free (888) 941-4201 Maico Diagnostic GmbH Salzufer 13/14 10587 Berlin, Germany

More information

Experiment 7: Familiarization with the Network Analyzer

Experiment 7: Familiarization with the Network Analyzer Experiment 7: Familiarization with the Network Analyzer Measurements to characterize networks at high frequencies (RF and microwave frequencies) are usually done in terms of scattering parameters (S parameters).

More information