A CMOS-MEMS Humidity Sensor
|
|
|
- Briana Loren Patrick
- 9 years ago
- Views:
Transcription
1 2011 International Conference on Circuits, System and Simulation IPCSIT vol.7 (2011) (2011) IACSIT Press, Singapore A CMOS-MEMS Humidity Sensor Tzu-Yi Yang 1 +, Jyun-Jie Huang 1, Chih-Yi Liu 1 and Hung-Yu Wang 1 1 Department of Electronic Engineering, National Kaohsiung University of Applied Sciences Abstract. This paper presents an integrated humidity sensor which is comprised of a humidity sensing element and a readout circuitry. The sensor is realized in TSMC 0.35 μm CMOS process with subsequent micromachining technology. The presented humidity sensor can achieve good linearity over the relative humidity range from 20% to 80%. The total power dissipation of readout circuit is 37.1 mw and the chip size is μm 2. The designed humidity sensor has the advantages of high integration, small size, high sensitivity and high reproducibility. Its feasibility has been demonstrated by experimental results. Keywords: humidity sensor, capacitive sensor, CMOS-MEMS process 1. Introduction Humidity sensor is widely used in different application areas, especially in the industry requires the environment of humidity control, such as the semiconductor and LCD fabrication industries. High-humidity environment also enhance the growth speed of bacteria and fungus. It may harm the human s health and damage the stored materials. Therefore, proper sensing and control of humidity is very important. The common existing humidity sensing element can be classified into the following four types: capacitive [1-2], resistive [3-4], oscillatory [5] and piezoelectric [6]. The capacitive and resistive sensing elements are easier to realize with semiconductor process. For these two sensing types, the resistive one is more susceptible to temperature thus larger error will be induced. The capacitive-type of humidity sensing elements are less sensitive to temperature and have lower power consumption. The sensing film material used in capacitive humidity sensor often possesses the features of high resistivity and low relative permittivity (about 3 to 7), and has functional groups for the adsorbing of water molecules. Ether (-O-) is one of the functional groups and is the composition of polyvinyl alcohol (P.V.A.). It is known that the relative permittivity of water is about 80, which is much higher than the sensing film. After the water molecules have been adsorbed by sensing film, the overall relative permittivity is increased. It results in the increased values of capacitance. This is the main principle of the presented humidity sensing element in the article. Because of the availability and properties of good water absorption, water retention and adhesion of P.V.A., it has been adopted in our designed humidity sensing element. The designed integrated sensor comprises sensing element and readout circuit. It is implemented in TSMC 0.35 μm CMOS process. The total power dissipation of readout circuit is 37.1 mw and the chip size of overall sensor is μm 2. The measured result confirms the feasibility of our design. 2. Humidity Sensing Element Design The schematic of the humidity sensor structure is shown in Fig. 1. It comprises comb electrodes, sensing film, heater, readout circuit, and silicon substrate. + Corresponding author. Tel.: ; fax: address: @cc.kuas.edu.tw. 212
2 Fig. 1: Schematic of the humidity sensor. Fig. 2: Structure of the comb electrodes. Fig. 3: Cross-section view of the humidity sensor. The structure of the comb electrodes is shown in Fig. 2, and it is consisted of metal (Al) and via (W) layers. The gap between two comb electrodes is formed by removing the oxide layer with dry etching technology. The designed electrode width is 5μm with 4μm spacing. The total area of sensing element is μm 2. After etching process, we coated 10 wt% of P.V.A. in the gap of comb electrodes as the sensing film. Thus the relative permittivity will be changed after adsorbing water molecules, and hence the capacitance between comb electrodes is changed. In addition, the readout circuit senses the change of capacitance and converts the signal to frequency form. Furthermore, the polysilicon layer is used as a heater which locates under the comb electrodes in order to achieve the reset function. It speeds up the release of water molecules for present measurement. The cross-section view of the humidity sensor is shown in Fig Readout Circuit Design The capacitive sensing circuit with outputted voltage signal is common adopted for signal processing. It is conductive to real-time measurement of voltage signal. The capacitance variations in the sensing element result in various outputted voltage level. However, if the sensor outputs a weak voltage signal, it will be hard to distinguish the measured signal from noise interference. So the resolution of sensor is limited. Therefore, we monitor the variations of outputted frequency of circuit for detecting capacitance variation. A selfoscillated oscillator is used to sense the capacitance variation of the sensing element. The different capacitance of the sensing element leads to different outputted frequency of the sensing circuit CMOS Oscillator Principle The basic CMOS oscillator composed of two inverters, a resistor, and a capacitor, is shown in Fig. 4(a) [7]. The period depends on the charge and discharge time of node A, and is proportional to the product of RC S. Fig 4(b) shows the voltage waveforms of the nodes in the circuit of Fig 4(a). The voltage of node A are given by 213
3 T1 V τ DD va( T1) = VDD 1 e T1 = τ ln VDD V th (1) T2 τ 2 DD 2 va( T ) = V e T VDD = τ ln Vth (2) The time constant τ is defined by τ = RC (3) The period T of this CMOS oscillator can be described as VDD V DD T = T1+ T2 = RCS ln VDD Vth Vth (4) Fig. 4: (a) Basic CMOS oscillator. (b) Waveforms of the circuit. Fig. 5: The designed oscillator The Realization of CMOS Oscillator For the practical application of circuit in Fig. 4(a), the output waveform of node B will not be a square wave if the voltage of node A can not approach logic threshold V th. For the deriving of better square waveform and correct operation of the oscillator circuit, the Buffer 1 is added to faster charge the capacitor C S, as shown in Fig. 5. Thus the voltage of node A will be larger than V th. In addition, a large buffer (Buffer 2) is used to drive the external off-chip load. The C S in Fig. 5 is realized by the sensing element in Section Measurement Results As shown in Fig. 6, the designed humidity sensor is tested in a humidity-controllable environment. We inject the nitrogen into a filter bottle to generate water vapour. So we can change the humidity in measurement environment by adjusting the inputted quantity of nitrogen. The sensor chip is tested by the measurement of outputted oscillation frequency with a DC supply voltage of 3.3V. 214
4 Fig. 6: Structure of the measurement environment. The experimental result shows that the humidity sensor operates correctly for the RH of 20% to 60%, as shown in Fig. 7. To improve the operating range of the humidity sensing element, the property of the sensing film has been modified by oxygen plasma reaction and immersion with 0.1 wt% NaCl solution, respectively. After these processing procedures, the humidity sensor is tested in the same measurement environment. In Fig. 7, it shows that the designed sensor with the process of oxygen plasma reaction can work validly for the RH of 20% to 80%. Besides, the designed sensor with the process of immersion with 0.1 wt% NaCl solution can also work validly for the RH of 20% to 80%. Also, In Fig. 7, it can be observed that the linearity of the sensing element is improved for our modifications of sensing film. In addition, we can compute the capacitance in different environment of humidity. Fig. 8 shows the measured equivalent capacitance in various environment of humidity. Since the reproducibility is an important parameter of sensing element, the sensor is tested for many times. The reproducibility of the designed sensor is verified by various testing of the designed sensor with the process of oxygen plasma reaction. Fig. 9 shows the tested results of different experimental measurement. The photograph of fabricated sensor chip is shown in Fig Frequency (MHz) PVA PVA - plasma PVA - NaCl RH (%) Fig. 7: Measurement results of the humidity sensor PVA PVA - plasma PVA - NaCl Capacitance (F) RH (%) Fig. 8: Equivalent measured capacitance in various environment of humidity. 215
5 28 26 Frequency (MHz) First Second Third RH (%) Fig. 9: Reproducibility of the humidity sensor with the process of oxygen plasma reaction. 5. Conclusions Fig. 10: Photograph of fabricated sensor chip. In this article, a CMOS-MEMS humidity sensor has been presented. The sensor system integrates humidity sensing element with its readout circuit. The humidity sensor has the advantages of high integration, small size, high sensitivity and high reproducibility. This humidity sensor may have potential for many applications, such as industrial automation and environmental monitoring. 6. Acknowledgements The authors would like to thank National Chip Implementation Center (CIC) for chip fabrication. The authors would also like to express their appreciation to the National Center for High-performance Computing (NCHC) for software supporting. 7. References [1] Kang U. and Wise K.D. A high-speed capacitive humidity sensor with on-chip thermal reset, IEEE Trans. on Electron Devices, vol. 47, pp , [2] L. Gu, Q.-A. Huang and M. Qin, A novel capacitive-type humidity sensor using CMOS fabrication technology, Sens. Actuators, vol. 99, pp , [3] C.W. Lee and M.S. Gong, Resistive humidity sensor using phosphonium salt-containing polyelectrolytes based on the mutually cross-linkable copolymers, Macromol. Res., vol. 11, pp ,
6 [4] C.W. Lee, Y. Kim, S.W. Joo and M.S. Gong, Resistive humidity sensor using polyelectrolytes based on new-type mutually cross-linkable copolymers, Sens. Actuators, vol. 88 pp , [5] M. Penza and G. Cassano, Relative humidity sensing by PVA-coated dual resonator SAW oscillator, Sens. Actuators, vol. 68, pp , [6] C.S. Lao et al., Polymer Functionalized Piezoelectric-FET as Humidity/Chemical Nanosensors, Applied Physics Letters, vol. 90, no. 26, [7] Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits, New York: Oxford,
Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications
Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications TRIPTI SHARMA, K. G. SHARMA, B. P. SINGH, NEHA ARORA Electronics & Communication Department MITS Deemed University,
Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of
Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of applications such as home appliances, medical, automotive,
A 10,000 Frames/s 0.18 µm CMOS Digital Pixel Sensor with Pixel-Level Memory
Presented at the 2001 International Solid State Circuits Conference February 5, 2001 A 10,000 Frames/s 0.1 µm CMOS Digital Pixel Sensor with Pixel-Level Memory Stuart Kleinfelder, SukHwan Lim, Xinqiao
Digital to Analog Converter. Raghu Tumati
Digital to Analog Converter Raghu Tumati May 11, 2006 Contents 1) Introduction............................... 3 2) DAC types................................... 4 3) DAC Presented.............................
ISSCC 2003 / SESSION 13 / 40Gb/s COMMUNICATION ICS / PAPER 13.7
ISSCC 2003 / SESSION 13 / 40Gb/s COMMUNICATION ICS / PAPER 13.7 13.7 A 40Gb/s Clock and Data Recovery Circuit in 0.18µm CMOS Technology Jri Lee, Behzad Razavi University of California, Los Angeles, CA
Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment.
Op-Amp Simulation EE/CS 5720/6720 Read Chapter 5 in Johns & Martin before you begin this assignment. This assignment will take you through the simulation and basic characterization of a simple operational
Nano Meter Stepping Drive of Surface Acoustic Wave Motor
Proc. of 1st IEEE Conf. on Nanotechnology, Oct. 28-3, pp. 495-5, (21) Maui, Hawaii Nano Meter Stepping Drive of Surface Acoustic Wave Motor Takashi Shigematsu*, Minoru Kuribayashi Kurosawa*, and Katsuhiko
TRUE SINGLE PHASE CLOCKING BASED FLIP-FLOP DESIGN
TRUE SINGLE PHASE CLOCKING BASED FLIP-FLOP DESIGN USING DIFFERENT FOUNDRIES Priyanka Sharma 1 and Rajesh Mehra 2 1 ME student, Department of E.C.E, NITTTR, Chandigarh, India 2 Associate Professor, Department
ENS 07 Paris, France, 3-4 December 2007
ENS 7 Paris, France, 3-4 December 7 FRICTION DRIVE SIMULATION OF A SURFACE ACOUSTIC WAVE MOTOR BY NANO VIBRATION Minoru Kuribayashi Kurosawa, Takashi Shigematsu Tokyou Institute of Technology, Yokohama
Evaluating AC Current Sensor Options for Power Delivery Systems
Evaluating AC Current Sensor Options for Power Delivery Systems State-of-the-art isolated ac current sensors based on CMOS technology can increase efficiency, performance and reliability compared to legacy
Features. Applications
LM555 Timer General Description The LM555 is a highly stable device for generating accurate time delays or oscillation. Additional terminals are provided for triggering or resetting if desired. In the
A Practical Guide to Free Energy Devices
A Practical Guide to Free Energy Devices Device Patent No 29: Last updated: 7th October 2008 Author: Patrick J. Kelly This is a slightly reworded copy of this patent application which shows a method of
A Simple Current-Sense Technique Eliminating a Sense Resistor
INFINITY Application Note AN-7 A Simple Current-Sense Technique Eliminating a Sense Resistor Copyright 998 A SIMPE CURRENT-SENSE TECHNIQUE EIMINATING A SENSE RESISTOR INTRODUCTION A sense resistor R S,
Automated Switching Mechanism for Multi-Standard RFID Transponder
Automated Switching Mechanism for Multi-Standard RFID Transponder Teh Kim Ting and Khaw Mei Kum Faculty of Engineering Multimedia University Cyberjaya, Malaysia [email protected] Abstract This paper presents
Micro Power Generators. Sung Park Kelvin Yuk ECS 203
Micro Power Generators Sung Park Kelvin Yuk ECS 203 Overview Why Micro Power Generators are becoming important Types of Micro Power Generators Power Generators Reviewed Ambient Vibrational energy Radiant
High Voltage Power Supplies for Analytical Instrumentation
ABSTRACT High Voltage Power Supplies for Analytical Instrumentation by Cliff Scapellati Power supply requirements for Analytical Instrumentation are as varied as the applications themselves. Power supply
LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.
LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus
Micro-Step Driving for Stepper Motors: A Case Study
Micro-Step Driving for Stepper Motors: A Case Study N. Sedaghati-Mokhtari Graduate Student, School of ECE, University of Tehran, Tehran, Iran n.sedaghati @ece.ut.ac.ir Abstract: In this paper, a case study
Design and analysis of flip flops for low power clocking system
Design and analysis of flip flops for low power clocking system Gabariyala sabadini.c PG Scholar, VLSI design, Department of ECE,PSNA college of Engg and Tech, Dindigul,India. Jeya priyanka.p PG Scholar,
S. Venkatesh, Mrs. T. Gowri, Department of ECE, GIT, GITAM University, Vishakhapatnam, India
Power reduction on clock-tree using Energy recovery and clock gating technique S. Venkatesh, Mrs. T. Gowri, Department of ECE, GIT, GITAM University, Vishakhapatnam, India Abstract Power consumption of
4 SENSORS. Example. A force of 1 N is exerted on a PZT5A disc of diameter 10 mm and thickness 1 mm. The resulting mechanical stress is:
4 SENSORS The modern technical world demands the availability of sensors to measure and convert a variety of physical quantities into electrical signals. These signals can then be fed into data processing
Static-Noise-Margin Analysis of Conventional 6T SRAM Cell at 45nm Technology
Static-Noise-Margin Analysis of Conventional 6T SRAM Cell at 45nm Technology Nahid Rahman Department of electronics and communication FET-MITS (Deemed university), Lakshmangarh, India B. P. Singh Department
Module 7 : I/O PADs Lecture 33 : I/O PADs
Module 7 : I/O PADs Lecture 33 : I/O PADs Objectives In this lecture you will learn the following Introduction Electrostatic Discharge Output Buffer Tri-state Output Circuit Latch-Up Prevention of Latch-Up
True Single Phase Clocking Flip-Flop Design using Multi Threshold CMOS Technique
True Single Phase Clocking Flip-Flop Design using Multi Threshold CMOS Technique Priyanka Sharma ME (ECE) Student NITTTR Chandigarh Rajesh Mehra Associate Professor Department of ECE NITTTR Chandigarh
Power Supplies. 1.0 Power Supply Basics. www.learnabout-electronics.org. Module
Module 1 www.learnabout-electronics.org Power Supplies 1.0 Power Supply Basics What you ll learn in Module 1 Section 1.0 Power Supply Basics. Basic functions of a power supply. Safety aspects of working
A Study of Low Cost Meteorological Monitoring System Based on Wireless Sensor Networks
, pp.100-104 http://dx.doi.org/10.14257/astl.2014.45.19 A Study of Low Cost Meteorological Monitoring System Based on Wireless Sensor Networks Li Ma 1,2,3, Jingzhou Yan 1,2,Kuo Liao 3,4, Shuangshuang Yan
An On-chip Security Monitoring Solution For System Clock For Low Cost Devices
An On-chip Security Monitoring Solution For System Clock For Low Cost Devices Frank Vater Innovations for High Performance Microelectronics Im Technologiepark 25 15236 Frankfurt (Oder), Germany [email protected]
Electronics Technology
Teacher Assessment Blueprint Electronics Technology Test Code: 5907 / Version: 01 Copyright 2011 NOCTI. All Rights Reserved. General Assessment Information Blueprint Contents General Assessment Information
International Journal of Electronics and Computer Science Engineering 1482
International Journal of Electronics and Computer Science Engineering 1482 Available Online at www.ijecse.org ISSN- 2277-1956 Behavioral Analysis of Different ALU Architectures G.V.V.S.R.Krishna Assistant
E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE
E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE References for Nuclear Magnetic Resonance 1. Slichter, Principles of Magnetic Resonance, Harper and Row, 1963. chapter
Performance Comparison of an Algorithmic Current- Mode ADC Implemented using Different Current Comparators
Performance Comparison of an Algorithmic Current- Mode ADC Implemented using Different Current Comparators Veepsa Bhatia Indira Gandhi Delhi Technical University for Women Delhi, India Neeta Pandey Delhi
Title : Analog Circuit for Sound Localization Applications
Title : Analog Circuit for Sound Localization Applications Author s Name : Saurabh Kumar Tiwary Brett Diamond Andrea Okerholm Contact Author : Saurabh Kumar Tiwary A-51 Amberson Plaza 5030 Center Avenue
LOW POWER DESIGN OF DIGITAL SYSTEMS USING ENERGY RECOVERY CLOCKING AND CLOCK GATING
LOW POWER DESIGN OF DIGITAL SYSTEMS USING ENERGY RECOVERY CLOCKING AND CLOCK GATING A thesis work submitted to the faculty of San Francisco State University In partial fulfillment of the requirements for
Wireless Temperature
Wireless Temperature connected freedom and Humidity Sensor Using TELRAN Application note TZ1053AN-06 Oct 2011 Abstract Dr. C. Uche This application note describes the complete system design (hardware and
A 1-GSPS CMOS Flash A/D Converter for System-on-Chip Applications
A -GSPS CMOS Flash A/D Converter for System-on-Chip Applications Jincheol Yoo, Kyusun Choi, and Ali Tangel Department of Computer Science & Department of Computer & Engineering Communications Engineering
Chapter 10 Advanced CMOS Circuits
Transmission Gates Chapter 10 Advanced CMOS Circuits NMOS Transmission Gate The active pull-up inverter circuit leads one to thinking about alternate uses of NMOS devices. Consider the circuit shown in
POLYVINYL-ALCOHOL (PVA)-BASED RF HUMIDITY SENSOR IN MICROWAVE FREQUENCY. 72 Clayton Campus, Monash University, VIC 3800, Australia
Progress In Electromagnetics Research B, Vol. 54, 149 166, 2013 POLYVINYL-ALCOHOL (PVA)-BASED RF HUMIDITY SENSOR IN MICROWAVE FREQUENCY Emran Md Amin 1, *, Nemai Karmakar 1, and Bjorn Winther-Jensen 2
A 1.62/2.7/5.4 Gbps Clock and Data Recovery Circuit for DisplayPort 1.2 with a single VCO
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.13, NO.3, JUNE, 2013 http://dx.doi.org/10.5573/jsts.2013.13.3.185 A 1.62/2.7/5.4 Clock and Data Recovery Circuit for DisplayPort 1.2 with a single VCO
1. Learn about the 555 timer integrated circuit and applications 2. Apply the 555 timer to build an infrared (IR) transmitter and receiver
Electronics Exercise 2: The 555 Timer and its Applications Mechatronics Instructional Laboratory Woodruff School of Mechanical Engineering Georgia Institute of Technology Lab Director: I. Charles Ume,
Understanding Power Impedance Supply for Optimum Decoupling
Introduction Noise in power supplies is not only caused by the power supply itself, but also the load s interaction with the power supply (i.e. dynamic loads, switching, etc.). To lower load induced noise,
Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1
Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1 LECTURE 030 - DEEP SUBMICRON (DSM) CMOS TECHNOLOGY LECTURE ORGANIZATION Outline Characteristics of a deep submicron CMOS technology Typical deep submicron
A New Programmable RF System for System-on-Chip Applications
Vol. 6, o., April, 011 A ew Programmable RF System for System-on-Chip Applications Jee-Youl Ryu 1, Sung-Woo Kim 1, Jung-Hun Lee 1, Seung-Hun Park 1, and Deock-Ho Ha 1 1 Dept. of Information and Communications
AN111: Using 8-Bit MCUs in 5 Volt Systems
This document describes how to incorporate Silicon Lab s 8-bit EFM8 and C8051 families of devices into existing 5 V systems. When using a 3 V device in a 5 V system, the user must consider: A 3 V power
A Design of DC/DC Converter of Photovoltaic Generation System for Streetcars
Journal of International Council on Electrical Engineering Vol. 3, No. 2, pp.164~168, 2013 http://dx.doi.org/10.5370/jicee.2013.3.2.164 A Design of DC/DC Converter of Photovoltaic Generation System for
Transistor Amplifiers
Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input
DATA LOGGER AND REMOTE MONITORING SYSTEM FOR MULTIPLE PARAMETER MEASUREMENT APPLICATIONS. G.S. Nhivekar, R.R.Mudholker
e -Journal of Science & Technology (e-jst) e-περιοδικό Επιστήμης & Τεχνολογίας 55 DATA LOGGER AND REMOTE MONITORING SYSTEM FOR MULTIPLE PARAMETER MEASUREMENT APPLICATIONS G.S. Nhivekar, R.R.Mudholker Department
Tire pressure monitoring
Application Note AN601 Tire pressure monitoring 1 Purpose This document is intended to give hints on how to use the Intersema pressure sensors in a low cost tire pressure monitoring system (TPMS). 2 Introduction
Design and Simulation of Soft Switched Converter Fed DC Servo Drive
International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-237, Volume-1, Issue-5, November 211 Design and Simulation of Soft Switched Converter Fed DC Servo Drive Bal Mukund Sharma, A.
How to Read a Datasheet
How to Read a Datasheet Prepared for the WIMS outreach program 5/6/02, D. Grover In order to use a PIC microcontroller, a flip-flop, a photodetector, or practically any electronic device, you need to consult
HSeries. High Power High Quality. Ultra-High Speed, Sensing Ionizer SJ-H Series
NEW Ultra-High Speed, Sensing Ionizer SJ-H Series High Power High Quality Suitable for high-speed static elimination in wide areas, including clean room environments HSeries The highest static elimination
LEVERAGING FPGA AND CPLD DIGITAL LOGIC TO IMPLEMENT ANALOG TO DIGITAL CONVERTERS
LEVERAGING FPGA AND CPLD DIGITAL LOGIC TO IMPLEMENT ANALOG TO DIGITAL CONVERTERS March 2010 Lattice Semiconductor 5555 Northeast Moore Ct. Hillsboro, Oregon 97124 USA Telephone: (503) 268-8000 www.latticesemi.com
Development of New Inkjet Head Applying MEMS Technology and Thin Film Actuator
Development of New Inkjet Head Applying MEMS Technology and Thin Film Actuator Kenji MAWATARI, Koich SAMESHIMA, Mitsuyoshi MIYAI, Shinya MATSUDA Abstract We developed a new inkjet head by applying MEMS
Using NTC Temperature Sensors Integrated into Power Modules
Using NTC Temperature Sensors Integrated into Power Modules Pierre-Laurent Doumergue R&D Engineer Advanced Power Technology Europe Chemin de Magret 33700 Mérignac, France Introduction Most APTE (Advanced
Lab 7: Operational Amplifiers Part I
Lab 7: Operational Amplifiers Part I Objectives The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op amp circuits,
Case Studies in On-Line Measurement of PD in Motors Fed by Voltage Source PWM Drives
Case Studies in On-Line Measurement of PD in Motors Fed by Voltage Source PWM Drives G.C. Stone, I. Culbert, H.G. Sedding Qualitrol-Iris Power Mississauga, Ontario, Canada Abstract On-line partial discharge
Simulation and Design of Printed Circuit Boards Utilizing Novel Embedded Capacitance Material
Simulation and Design of Printed Circuit Boards Utilizing Novel Embedded Capacitance Material Yu Xuequan, Yan Hang, Zhang Gezi, Wang Haisan Huawei Technologies Co., Ltd Lujiazui Subpark, Pudong Software
Bourns Resistive Products
Bourns Resistive Products Diverse Requirements Drive Innovations to Pulse Resistors Introduction Countless circuits depend on the protection provided by one of the most fundamental types of passive components:
Electronics Technology
Job Ready Assessment Blueprint Electronics Technology Test Code: 4035 / Version: 01 Copyright 2010. All Rights Reserved. General Assessment Information Blueprint Contents General Assessment Information
ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.5
ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.5 10.5 Broadband ESD Protection Circuits in CMOS Technology Sherif Galal, Behzad Razavi Electrical Engineering Department, University of
Here we introduced (1) basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices.
Outline Here we introduced () basic circuit for logic and (2)recent nano-devices, and presented (3) some practical issues on nano-devices. Circuit Logic Gate A logic gate is an elemantary building block
DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION
DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems
Interfacing To Alphanumeric Displays
Interfacing To Alphanumeric Displays To give directions or data values to users, many microprocessor-controlled instruments and machines need to display letters of the alphabet and numbers. In systems
CHARGE pumps are the circuits that used to generate dc
INTERNATIONAL JOURNAL OF DESIGN, ANALYSIS AND TOOLS FOR CIRCUITS AND SYSTEMS, VOL. 1, NO. 1, JUNE 2011 27 A Charge Pump Circuit by using Voltage-Doubler as Clock Scheme Wen Chang Huang, Jin Chang Cheng,
Signal Types and Terminations
Helping Customers Innovate, Improve & Grow Application Note Signal Types and Terminations Introduction., H, LV, Sinewave, Clipped Sinewave, TTL, PECL,,, CML Oscillators and frequency control devices come
Computer Aided Design of Home Medical Alert System
Computer Aided Design of Home Medical Alert System Submitted to The Engineering Honors Committee 119 Hitchcock Hall College of Engineering The Ohio State University Columbus, Ohio 43210 By Pei Chen Kan
RF Energy Harvesting Circuits
RF Energy Harvesting Circuits Joseph Record University of Maine ECE 547 Fall 2011 Abstract This project presents the design and simulation of various energy harvester circuits. The overall design consists
See Horenstein 4.3 and 4.4
EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes by Drs. A.V. Radun and K.D. Donohue (2/14/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated
1.Introduction. Introduction. Most of slides come from Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda.
.Introduction If the automobile had followed the same development cycle as the computer, a Rolls- Royce would today cost $00, get one million miles to the gallon and explode once a year Most of slides
LM101A LM201A LM301A Operational Amplifiers
LM101A LM201A LM301A Operational Amplifiers General Description The LM101A series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709 Advanced
Experiment teaching of digital electronic technology using Multisim 12.0
World Transactions on Engineering and Technology Education Vol.12, No.1, 2014 2014 WIETE Experiment teaching of digital electronic technology using Multisim 12.0 Qiu-xia Liu Heze University Heze, Shandong,
Application Note for SDP600 and SDP1000 Series Measuring Differential Pressure and Air Volume with Sensirion s CMOSens technology
Application Note for SDP600 and SDP1000 Series Measuring Differential Pressure and Air Volume with Sensirion s CMOSens technology Summary The increasing customer requirements for comfort and safety and
SWITCH-MODE POWER SUPPLY CONTROLLER PULSE OUTPUT DC OUTPUT GROUND EXTERNAL FUNCTION SIMULATION ZERO CROSSING INPUT CONTROL EXTERNAL FUNCTION
SWITCH-MODE POWER SUPPLY CONTROLLER. LOW START-UP CURRENT. DIRECT CONTROL OF SWITCHING TRAN- SISTOR. COLLECTOR CURRENT PROPORTIONAL TO BASE-CURRENT INPUT REERSE-GOING LINEAR OERLOAD CHARACTERISTIC CURE
A 3 V 12b 100 MS/s CMOS D/A Converter for High- Speed Communication Systems
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.3, NO., DECEMBER, 3 A 3 V b MS/s CMOS D/A Converter for High- Speed Communication Systems Min-Jung Kim, Hyuen-Hee Bae, Jin-Sik Yoon, and Seung-Hoon
HCF4056B BCD TO 7 SEGMENT DECODER /DRIVER WITH STROBED LATCH FUNCTION
BCD TO 7 SEGMENT DECODER /DRIVER WITH STROBED LATCH FUNCTION QUIESCENT CURRENT SPECIF. UP TO 20V OPERATION OF LIQUID CRYSTALS WITH CMOS CIRCUITS PROVIDES ULTRA LOW POWER DISPLAY. EQUIVALENT AC OUTPUT DRIVE
LM566C Voltage Controlled Oscillator
LM566C Voltage Controlled Oscillator General Description The LM566CN is a general purpose voltage controlled oscillator which may be used to generate square and triangular waves the frequency of which
High Intensify Interleaved Converter for Renewable Energy Resources
High Intensify Interleaved Converter for Renewable Energy Resources K. Muthiah 1, S.Manivel 2, Gowthaman.N 3 1 PG Scholar, Jay Shriram Group of Institutions,Tirupur 2 Assistant Professor, Jay Shriram Group
A 2.4GHz Cascode CMOS Low Noise Amplifier
A 2.4GHz Cascode CMOS Low Noise Amplifier Gustavo Campos Martins Universidade Federal de Santa Catarina Florianopolis, Brazil [email protected] Fernando Rangel de Sousa Universidade Federal de Santa Catarina
EMC / EMI issues for DSM: new challenges
EMC / EMI issues for DSM: new challenges A. Boyer, S. Ben Dhia, A. C. Ndoye INSA Toulouse Université de Toulouse / LATTIS, France www.ic-emc.org Long Term Reliability in DSM, 3rd October, 2008 www.ic-emc.org
Programmable Single-/Dual-/Triple- Tone Gong SAE 800
Programmable Single-/Dual-/Triple- Tone Gong Preliminary Data SAE 800 Bipolar IC Features Supply voltage range 2.8 V to 18 V Few external components (no electrolytic capacitor) 1 tone, 2 tones, 3 tones
White paper. CCD and CMOS sensor technology Technical white paper
White paper CCD and CMOS sensor technology Technical white paper Table of contents 1. Introduction to image sensors 3 2. CCD technology 4 3. CMOS technology 5 4. HDTV and megapixel sensors 6 5. Main differences
Novel Loaded-Resonant Converter & Application of DC-to-DC Energy Conversions systems
International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 2, Issue 11 (November 2013), PP.50-57 Novel Loaded-Resonant Converter & Application of
TDA4605 CONTROL CIRCUIT FOR SWITCH MODE POWER SUPPLIES USING MOS TRANSISTORS
CONTROL CIRCUIT FOR SWITCH MODE POWER SUPPLIES USING MOS TRANSISTORS Fold-Back Characteristic provides Overload Protection for External Diodes Burst Operation under Short-Circuit and no Load Conditions
Planar Inter Digital Capacitors on Printed Circuit Board
1 Planar Inter Digital Capacitors on Printed Circuit Board Ajayan K.R., K.J.Vinoy Department of Electrical Communication Engineering Indian Institute of Science, Bangalore, India 561 Email {ajayanr jvinoy}
BARE PCB INSPECTION BY MEAN OF ECT TECHNIQUE WITH SPIN-VALVE GMR SENSOR
BARE PCB INSPECTION BY MEAN OF ECT TECHNIQUE WITH SPIN-VALVE GMR SENSOR K. Chomsuwan 1, S. Yamada 1, M. Iwahara 1, H. Wakiwaka 2, T. Taniguchi 3, and S. Shoji 4 1 Kanazawa University, Kanazawa, Japan;
An Efficient AC/DC Converter with Power Factor Correction
An Efficient AC/DC Converter with Power Factor Correction Suja C Rajappan 1, K. Sarabose 2, Neetha John 3 1,3 PG Scholar, Sri Shakthi Institute of Engineering & Technology, L&T Bypass Road, Coimbatore-62,
HT9170 DTMF Receiver. Features. General Description. Selection Table
DTMF Receiver Features Operating voltage: 2.5V~5.5V Minimal external components No external filter is required Low standby current (on power down mode) General Description The HT9170 series are Dual Tone
A Low-Cost VCA Limiter
The circuits within this application note feature THAT218x to provide the essential function of voltage-controlled amplifier (VCA). Since writing this note, THAT has introduced a new dual VCA, as well
Laboratory 4: Feedback and Compensation
Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 20-24) and Week 10 (Oct. 27-31) Due Week 11 (Nov. 3-7) 1 Pre-Lab This Pre-Lab should be completed before attending your regular
Bipolar Transistor Amplifiers
Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must
A 3.2Gb/s Clock and Data Recovery Circuit Without Reference Clock for a High-Speed Serial Data Link
A 3.2Gb/s Clock and Data Recovery Circuit Without Reference Clock for a High-Speed Serial Data Link Kang jik Kim, Ki sang Jeong, Seong ik Cho The Department of Electronics Engineering Chonbuk National
ENEE 307 Electronic Circuit Design Laboratory Spring 2012. A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742
1.1. Differential Amplifiers ENEE 307 Electronic Circuit Design Laboratory Spring 2012 A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742 Differential Amplifiers
Output Ripple and Noise Measurement Methods for Ericsson Power Modules
Output Ripple and Noise Measurement Methods for Ericsson Power Modules Design Note 022 Ericsson Power Modules Ripple and Noise Abstract There is no industry-wide standard for measuring output ripple and
Bridgeless PFC Implementation Using One Cycle Control Technique
Bridgeless PFC Implementation Using One Cycle Control Technique Bing Lu Center for Power Electronics Systems Virginia Polytechnic Institute and State University 674 Whittemore Hall Blacksburg, VA 24061
ICS514 LOCO PLL CLOCK GENERATOR. Description. Features. Block Diagram DATASHEET
DATASHEET ICS514 Description The ICS514 LOCO TM is the most cost effective way to generate a high-quality, high-frequency clock output from a 14.31818 MHz crystal or clock input. The name LOCO stands for
APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS
APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS Selection and use of Ultrasonic Ceramic Transducers The purpose of this application note is to aid the user in the selection and application of the Ultrasonic
Current Measurement of Resistance Spot Welding Using DSP
Tamkang Journal of Science and Engineering, Vol. 14, No. 1, pp. 33 38 (2011) 33 Current Measurement of Resistance Spot Welding Using DSP Wen-Ren Yang and Chau-Shing Wang* Department of Electrical Engineering,
CERAMIC RESONATOR PRINCIPLES
CERAMIC RESONATOR PRINCIPLES Principles of Operation for Ceramic Resonators Equivalent Circuit Constants: Fig.1.2 shows the symbol for a ceramic resonator. The impedance and phase characteristics measured
Application of network analyzer in measuring the performance functions of power supply
J Indian Inst Sci, July Aug 2006, 86, 315 325 Indian Institute of Science Application of network analyzer in measuring the performance functions of power supply B SWAMINATHAN* AND V RAMANARAYANAN Power
Step Response of RC Circuits
Step Response of RC Circuits 1. OBJECTIVES...2 2. REFERENCE...2 3. CIRCUITS...2 4. COMPONENTS AND SPECIFICATIONS...3 QUANTITY...3 DESCRIPTION...3 COMMENTS...3 5. DISCUSSION...3 5.1 SOURCE RESISTANCE...3
