2.3 Solving Equations - Mathematical & Word
|
|
|
- Augustus Mosley
- 9 years ago
- Views:
Transcription
1 2.3 Solving Equations - Mathematical & Word Problems 7.EE.4a Students will be able to use properties of numbers to correctly solve mathematical and word problems in one variable using fraction bars, word boxes, and geometry diagrams. Solving Two Step Equations (review) When working in the language of math, certain parts of the equation have specific names. Look at the equation below. Just like a sentence in English has nouns and verbs, a math equation has terms and coefficients. There are 2 terms in this equation. The first is 3x. The second is + 7. Always include the sign with the term. The coefficient of the x term is 3. When we know all the numbers in a math expression, we can solve by using order of operations. Solving for a variable in an equation means to work backward. We know the answer and work backward to find part of the math problem. Since we work backward, we use order of operations backward. Using order of operations backward to find part of the problem (that s the variable) is called the inverse operation. The chart shows how the operations are reversed when we solve for a variable. Here are three examples of two step equations. You can have any rational number in an equation. The steps for solving using inverse operations is the same. The first step in all three is adding or subtracting the inverse. The second step is multiplying or dividing by the coefficient of x. 54
2 Chapter 2. Unit 2: Expressions and Equations Example 1a, b, c is a video review of solving two step equations. It also has practice problems you can try with answers explained. It is a good idea to try this before going on to the next section. Solving Equations Using the Distributive Property If you were given the math expression -2(8-6), could you find the answer? Of course you could. 2(8 6) 2(2) 4 What if you were given the math expression -2(x - 2)? You could simplify it, but not come up with a number answer. Any time we have an expression with a variable, we can only simplify, not solve. However, once we set the expression equal to something, we will get one answer, no answer, or inifinte answers. One answer means that when we are done solving, the variable will equal one number. No answer means that when we are done solving, we will get an answer like 6 = 7. That doesn t work! So there is no answer. Infinite answers means that when we are done solving, we will get an answer like 5 = 5. This means it doesn t matter what the variable is. We will work with equations that have one answer. Here are the steps to solve using the distributive property. Solve for x: 5(x + 4)= 13 55
3 As we solve more complex equations, it is a good idea to simplify the expression(s) before using inverse operations. Here is a more complex model. We will solve for m. 1 2 (8m + 2) 2(m + 1)=17 It looks a lot harder, but it is only longer. To make algebra easier we break down any big problem into smaller parts. Just like running a mile - if you think about finishing one lap at a time, it makes running the whole mile seem easier to finish. Looking at the expression, do you notice that there are two parts that need distributing? We solve each piece separately and then put them together. (Hint: half of any number means to divide it by 2.) 1 (8m + 2) 2 2(m + 1) 1 2 (8m)+1 (2) 2 2(1m)+ 2(1) 4m + 1 2m + 2 Putting them together gives an equivalent equation. 4m + 1 2m + 2 = 17 Now combine like terms. Like terms are numbers and variables that are the same. All rational numbers can be combined together. All variables that are the same (including the exponent) can be combined. Combine means to add or subtract. 4m + 1 2m + 2 = 17 4m m + 2 = 17 4m + 2m = 17 2m + 1 = 17 additive inverse commutative property combine like terms At last we have a two step equation to solve. This is our goal with any complex equation. Simplify it down to a simple two step problem. In this model, we will show the two step equation solved across instead of vertical. Just like equivalent expressions, it looks different, but does the same thing. 56
4 Chapter 2. Unit 2: Expressions and Equations 2m + 17 = 17 2m = 17 1 inverse of adding -1 is subtracting -1 2m = 18 2m 2 = 18 2 inverse of multiplying by 2 is dividing by 2 m = 9 Example 2 2 Solve for x: 3 (x + 2)+3( 1 4 x 1 ) 6 = 2 3 Putting in fractions makes this problem look harder. It is still solved the exact same way. We use the same steps to solve with ALL rational numbers. Breaking the equation down into smaller parts makes solving easier. Our first goal is to simplify the equation down to a simple two step problem. Now that the equation has been simplified, follow the two steps for solving. Use inverse operations. Add or subtract first. Multiply or divide second. 57
5 Example 3 Solve for m: (m 4) (6m 5)= 34 Example 4 Solve for a: 3(a + 2)+4(a + 2)=63 58
6 Chapter 2. Unit 2: Expressions and Equations This is a unique problem. Look at the terms in the parentheses. They are the same! Because they are the same, we can make an equivalent equation. The steps below show you how. Now all that is left to do is distribute, and we have our two step equation. and http :// are video examples with step by step solutions. Word Problems and Algebraic Equations Word problems are like playing hide and seek with math problems. Hidden in the sentences are words that mean numbers, variables, and math operations. Our job is to find these and create a math equation. In any word problem, the very first step is to define the variable. Defining the variable means to decide what the problem wants us to find, and then make it into a variable. Some examples are: If you are finding a number, write: Let a number = n If you are finding an age, write: Let the age of the person = a If you are finding a width, write: Let the width = w It is helpful to use a variable that matches what you are looking for. It is also helpful to create a type of fraction bar to see how the problem fits together. Here is a model to help you. 59
7 Leonard wants to save $100 in the next 2 months. He knows that in the second month he willbe able to save $30 more than the first month. How much should he save each month? Since we are using money, we select m as our variable. So the first month Lenoard saved m. The second month he saved m and another $20. Using the fraction bars, we can now make the math equation. m + m + 20 = 100 To solve, we combine like terms. Then we have a two step equation! Inverse operations - and we end up with the value of m. m + m + 20 = 100 2m + 20 = 100 2m = m = 80 2m 2 = 80 2 m = 40 Think you are done? Not yet! The tricky part of word problems is that the solution is not always the answer! What that really means is that once we get a value for the variable, we still have to answer the question. The question is; How much should he save each month? So to find this we look at the fraction bar. The first month is m. The second month is m The value of m is 40 or $40. The first month is m, or $40. The second month is m + 20, or $40 + $20. The second month is $60. Now we are done. Always make sure you answer the question in any word problem. Your first answer may not really be the answer:). Watch the video at to really learn how this model can help make word problems easier. It even has guided practice for you tocheck your understanding. Another way to solve word problems is by using a word model and an algebra model. It is like the fraction bars. Here is a word problem to show you how. 60
8 Chapter 2. Unit 2: Expressions and Equations Randy spent $89.98 on a new phone. After this, he had $27.32 left. How much money did he have before he bought the phone? In any word problem, we can always use x. The word model shows what x represents - the original amount. Word models and algebra models help you see the words and their math numbers. Making the equation is easy using the algebra model. x = Using the inverse operation (addition), we find the value of x. x = x = In this word problem, the value of x is our final answer - as long as it has a label and is written as money. The label is money, so the final answer is $
9 A specific type of algebra word problem is called a consecutive integer problem. Consecutive means one right after another. Examples of consecutive integers are -5, -4, -3 and 15, 16, 17. Consecutive integer word problems ask you to find a set of numbers that follow this pattern. If you were asked to give three consecutive integers beginning with 4, what would be your answer? That would be pretty easy; 4, 5, 6. How did you get from 4 to 5? By adding 1. How did you get from 4 to 6? By adding 2. How would you get from 4 to the next number in the series? By adding 3! Math is all about patterns. In algebra, the same pattern is used. If the first consecutive integer is x, how do you get to the next consecutive integer? By adding 1. How do you get to the second consecutive integer? By adding 2. Same pattern. Here is a model that shows how to find consecutive integers using algebra. Find three consecutive integers such that the sum of the second and third is 41. First, pick a variable to be the first integer. We will use n. Since the problem asks for three consecutive integers, we have to write all three in "algebra language". The first consecutive integer = n The second consecutive integer=n+1 The third consecutive integer=n+2 Now we can write the algebra equation. We will use a word model. Sum means to add. Now, solve for the variable. 62
10 Chapter 2. Unit 2: Expressions and Equations n n + 2 = 41 n + n = 41 2n + 3 = 41 2n = n = 38 2n 2 = 38 2 n = 19 commutative property combine like terms subtract three from both sides divide by 2 on both sides This is another word problem where the solution is not the final answer. We need three consecutive integers. Since 19 is the first consecutive integer, 20 must be the second, and 21 must be the third. is a video model of a consecutive integer problem. You can also browse the mathvids.com site for other examples on word problems. Here are some more examples for you to improve your word problem skills. Example 5 The length of a rectangle is 3 times its width. The perimeter of the rectangle is 72 meters. Find the dimensions of the rectangle. In any geometry problem, a diagram is helpful. A diagram also gives the algebra for the length and width. Perimeter is to add up all sides. The expression for the perimeter is 3w + w + 3w + w. The perimeter is 72 meters. The equation for the perimeter is 3w + w + 3w + w = 72. Now solve the equation for w. 3w + w + 3w + w = 72 8w = 72 8w 8 = 72 8 w = 9 We need to find the dimensions. That means the width AND the length. The length is 3 times the width. Multiply 9x3togetthelength. The length is
11 Finally we write the answer with labels. The width is 9 meters. The length is 27 meters. Example 6 On Wednesday, Harry sold 3 times as many bars of chocolate as on Tuesday. On Thursday, he sold 5 times as many bars as on Tuesday. In all he sold 90 bars of chocolate. Find the number of bars he sold each day. The number of chocloate bars Harry sold on Tuesday = c. (ALWAYS define the starting variable) Since we are adding up to make 90, we can use the modified fraction bars. Now make the equation and solve for c. c + 3c + 5c = 90 9c = 90 9c 9 = 90 9 c = 10 C is the number of candy bars sold on Tuesday. 3c is the number of candy bars sold on Wednesday. 5c is the number of candy bars sold on Thursday. Our algebra found that c = 10. Now we can find out how many candy bars were sold each day. 10 is the number of candy bars sold on Tuesday. 3(10) or 30 is the number of candy bars sold on Wednesday. 5(10) or 50 is the number of candy bars sold on Thursday. Need more help with word problems? Watch the video at: h-equation-in-one-variable/?id=941. commutative property, distributive property, coefficient, term, sum, equation, expression, variable, inverse operation, like terms, consecutive integer 64
MATH 90 CHAPTER 1 Name:.
MATH 90 CHAPTER 1 Name:. 1.1 Introduction to Algebra Need To Know What are Algebraic Expressions? Translating Expressions Equations What is Algebra? They say the only thing that stays the same is change.
MATH 60 NOTEBOOK CERTIFICATIONS
MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5
Free Pre-Algebra Lesson 55! page 1
Free Pre-Algebra Lesson 55! page 1 Lesson 55 Perimeter Problems with Related Variables Take your skill at word problems to a new level in this section. All the problems are the same type, so that you can
Properties of Real Numbers
16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should
3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
Algebra I Teacher Notes Expressions, Equations, and Formulas Review
Big Ideas Write and evaluate algebraic expressions Use expressions to write equations and inequalities Solve equations Represent functions as verbal rules, equations, tables and graphs Review these concepts
Clifton High School Mathematics Summer Workbook Algebra 1
1 Clifton High School Mathematics Summer Workbook Algebra 1 Completion of this summer work is required on the first day of the school year. Date Received: Date Completed: Student Signature: Parent Signature:
Solving systems by elimination
December 1, 2008 Solving systems by elimination page 1 Solving systems by elimination Here is another method for solving a system of two equations. Sometimes this method is easier than either the graphing
WRITING EQUATIONS USING THE 5-D PROCESS #43
WRITING EQUATIONS USING THE 5-D PROCESS #43 You have used the 5-D Process to solve problems. However, solving complicated problems with the 5-D Process can be time consuming and it may be difficult to
The Properties of Signed Numbers Section 1.2 The Commutative Properties If a and b are any numbers,
1 Summary DEFINITION/PROCEDURE EXAMPLE REFERENCE From Arithmetic to Algebra Section 1.1 Addition x y means the sum of x and y or x plus y. Some other words The sum of x and 5 is x 5. indicating addition
Veterans Upward Bound Algebra I Concepts - Honors
Veterans Upward Bound Algebra I Concepts - Honors Brenda Meery Kaitlyn Spong Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) www.ck12.org Chapter 6. Factoring CHAPTER
CAHSEE on Target UC Davis, School and University Partnerships
UC Davis, School and University Partnerships CAHSEE on Target Mathematics Curriculum Published by The University of California, Davis, School/University Partnerships Program 006 Director Sarah R. Martinez,
APPLICATIONS AND MODELING WITH QUADRATIC EQUATIONS
APPLICATIONS AND MODELING WITH QUADRATIC EQUATIONS Now that we are starting to feel comfortable with the factoring process, the question becomes what do we use factoring to do? There are a variety of classic
Maths Workshop for Parents 2. Fractions and Algebra
Maths Workshop for Parents 2 Fractions and Algebra What is a fraction? A fraction is a part of a whole. There are two numbers to every fraction: 2 7 Numerator Denominator 2 7 This is a proper (or common)
POLYNOMIAL FUNCTIONS
POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a
Algebra Word Problems
WORKPLACE LINK: Nancy works at a clothing store. A customer wants to know the original price of a pair of slacks that are now on sale for 40% off. The sale price is $6.50. Nancy knows that 40% of the original
Chapter 4 -- Decimals
Chapter 4 -- Decimals $34.99 decimal notation ex. The cost of an object. ex. The balance of your bank account ex The amount owed ex. The tax on a purchase. Just like Whole Numbers Place Value - 1.23456789
Click on the links below to jump directly to the relevant section
Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is
Section 1.5 Exponents, Square Roots, and the Order of Operations
Section 1.5 Exponents, Square Roots, and the Order of Operations Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Identify perfect squares.
Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:
Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than
A Quick Algebra Review
1. Simplifying Epressions. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Eponents 9. Quadratics 10. Rationals 11. Radicals
MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created January 17, 2006
MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions Created January 7, 2006 Math 092, Elementary Algebra, covers the mathematical content listed below. In order
Lesson 4: Efficiently Adding Integers and Other Rational Numbers
Classwork Example 1: Rule for Adding Integers with Same Signs a. Represent the sum of 3 + 5 using arrows on the number line. i. How long is the arrow that represents 3? ii. iii. How long is the arrow that
Charlesworth School Year Group Maths Targets
Charlesworth School Year Group Maths Targets Year One Maths Target Sheet Key Statement KS1 Maths Targets (Expected) These skills must be secure to move beyond expected. I can compare, describe and solve
Operations with positive and negative numbers - see first chapter below. Rules related to working with fractions - see second chapter below
INTRODUCTION If you are uncomfortable with the math required to solve the word problems in this class, we strongly encourage you to take a day to look through the following links and notes. Some of them
EVALUATING ACADEMIC READINESS FOR APPRENTICESHIP TRAINING Revised For ACCESS TO APPRENTICESHIP
EVALUATING ACADEMIC READINESS FOR APPRENTICESHIP TRAINING For ACCESS TO APPRENTICESHIP MATHEMATICS SKILL OPERATIONS WITH INTEGERS AN ACADEMIC SKILLS MANUAL for The Precision Machining And Tooling Trades
Direct Translation is the process of translating English words and phrases into numbers, mathematical symbols, expressions, and equations.
Section 1 Mathematics has a language all its own. In order to be able to solve many types of word problems, we need to be able to translate the English Language into Math Language. is the process of translating
Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving
Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words
NF5-12 Flexibility with Equivalent Fractions and Pages 110 112
NF5- Flexibility with Equivalent Fractions and Pages 0 Lowest Terms STANDARDS preparation for 5.NF.A., 5.NF.A. Goals Students will equivalent fractions using division and reduce fractions to lowest terms.
Number Sense and Operations
Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents
Solving Equations by the Multiplication Property
2.2 Solving Equations by the Multiplication Property 2.2 OBJECTIVES 1. Determine whether a given number is a solution for an equation 2. Use the multiplication property to solve equations. Find the mean
Indiana State Core Curriculum Standards updated 2009 Algebra I
Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and
Multiplying and Dividing Signed Numbers. Finding the Product of Two Signed Numbers. (a) (3)( 4) ( 4) ( 4) ( 4) 12 (b) (4)( 5) ( 5) ( 5) ( 5) ( 5) 20
SECTION.4 Multiplying and Dividing Signed Numbers.4 OBJECTIVES 1. Multiply signed numbers 2. Use the commutative property of multiplication 3. Use the associative property of multiplication 4. Divide signed
Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
Algebra 1. Practice Workbook with Examples. McDougal Littell. Concepts and Skills
McDougal Littell Algebra 1 Concepts and Skills Larson Boswell Kanold Stiff Practice Workbook with Examples The Practice Workbook provides additional practice with worked-out examples for every lesson.
7 Literal Equations and
CHAPTER 7 Literal Equations and Inequalities Chapter Outline 7.1 LITERAL EQUATIONS 7.2 INEQUALITIES 7.3 INEQUALITIES USING MULTIPLICATION AND DIVISION 7.4 MULTI-STEP INEQUALITIES 113 7.1. Literal Equations
Chapter 11 Number Theory
Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications
Welcome to Math 19500 Video Lessons. Stanley Ocken. Department of Mathematics The City College of New York Fall 2013
Welcome to Math 19500 Video Lessons Prof. Department of Mathematics The City College of New York Fall 2013 An important feature of the following Beamer slide presentations is that you, the reader, move
SAT Math Strategies Quiz
When you are stumped on an SAT or ACT math question, there are two very useful strategies that may help you to get the correct answer: 1) work with the answers; and 2) plug in real numbers. This review
Time needed. Before the lesson Assessment task:
Formative Assessment Lesson Materials Alpha Version Beads Under the Cloud Mathematical goals This lesson unit is intended to help you assess how well students are able to identify patterns (both linear
To Evaluate an Algebraic Expression
1.5 Evaluating Algebraic Expressions 1.5 OBJECTIVES 1. Evaluate algebraic expressions given any signed number value for the variables 2. Use a calculator to evaluate algebraic expressions 3. Find the sum
Mathematics Navigator. Misconceptions and Errors
Mathematics Navigator Misconceptions and Errors Introduction In this Guide Misconceptions and errors are addressed as follows: Place Value... 1 Addition and Subtraction... 4 Multiplication and Division...
Summer Assignment for incoming Fairhope Middle School 7 th grade Advanced Math Students
Summer Assignment for incoming Fairhope Middle School 7 th grade Advanced Math Students Studies show that most students lose about two months of math abilities over the summer when they do not engage in
OA3-10 Patterns in Addition Tables
OA3-10 Patterns in Addition Tables Pages 60 63 Standards: 3.OA.D.9 Goals: Students will identify and describe various patterns in addition tables. Prior Knowledge Required: Can add two numbers within 20
2.3. Finding polynomial functions. An Introduction:
2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned
No Solution Equations Let s look at the following equation: 2 +3=2 +7
5.4 Solving Equations with Infinite or No Solutions So far we have looked at equations where there is exactly one solution. It is possible to have more than solution in other types of equations that are
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL 3 EQUATIONS This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves on fundamentals.
Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.
Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. Solve word problems that call for addition of three whole numbers
Math Placement Test Study Guide. 2. The test consists entirely of multiple choice questions, each with five choices.
Math Placement Test Study Guide General Characteristics of the Test 1. All items are to be completed by all students. The items are roughly ordered from elementary to advanced. The expectation is that
Solving Quadratic Equations by Factoring
4.7 Solving Quadratic Equations by Factoring 4.7 OBJECTIVE 1. Solve quadratic equations by factoring The factoring techniques you have learned provide us with tools for solving equations that can be written
Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.
8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent
TSI College Level Math Practice Test
TSI College Level Math Practice Test Tutorial Services Mission del Paso Campus. Factor the Following Polynomials 4 a. 6 8 b. c. 7 d. ab + a + b + 6 e. 9 f. 6 9. Perform the indicated operation a. ( +7y)
How To Factor By Gcf In Algebra 1.5
7-2 Factoring by GCF Warm Up Lesson Presentation Lesson Quiz Algebra 1 Warm Up Simplify. 1. 2(w + 1) 2. 3x(x 2 4) 2w + 2 3x 3 12x Find the GCF of each pair of monomials. 3. 4h 2 and 6h 2h 4. 13p and 26p
Simple Examples. This is the information that we are given. To find the answer we are to solve an equation in one variable, x.
Worksheet. Solving Equations in One Variable Section 1 Simple Examples You are on your way to Brisbane from Sydney, and you know that the trip is 1100 km. You pass a sign that says that Brisbane is now
Expression. Variable Equation Polynomial Monomial Add. Area. Volume Surface Space Length Width. Probability. Chance Random Likely Possibility Odds
Isosceles Triangle Congruent Leg Side Expression Equation Polynomial Monomial Radical Square Root Check Times Itself Function Relation One Domain Range Area Volume Surface Space Length Width Quantitative
Primes. Name Period Number Theory
Primes Name Period A Prime Number is a whole number whose only factors are 1 and itself. To find all of the prime numbers between 1 and 100, complete the following exercise: 1. Cross out 1 by Shading in
7.2 Quadratic Equations
476 CHAPTER 7 Graphs, Equations, and Inequalities 7. Quadratic Equations Now Work the Are You Prepared? problems on page 48. OBJECTIVES 1 Solve Quadratic Equations by Factoring (p. 476) Solve Quadratic
Use order of operations to simplify. Show all steps in the space provided below each problem. INTEGER OPERATIONS
ORDER OF OPERATIONS In the following order: 1) Work inside the grouping smbols such as parenthesis and brackets. ) Evaluate the powers. 3) Do the multiplication and/or division in order from left to right.
Mathematics Common Core Sample Questions
New York State Testing Program Mathematics Common Core Sample Questions Grade6 The materials contained herein are intended for use by New York State teachers. Permission is hereby granted to teachers and
PERT Mathematics Test Review
PERT Mathematics Test Review Prof. Miguel A. Montañez ESL/Math Seminar Math Test? NO!!!!!!! I am not good at Math! I cannot graduate because of Math! I hate Math! Helpful Sites Math Dept Web Site Wolfson
Exponents. Exponents tell us how many times to multiply a base number by itself.
Exponents Exponents tell us how many times to multiply a base number by itself. Exponential form: 5 4 exponent base number Expanded form: 5 5 5 5 25 5 5 125 5 625 To use a calculator: put in the base number,
Session 7 Fractions and Decimals
Key Terms in This Session Session 7 Fractions and Decimals Previously Introduced prime number rational numbers New in This Session period repeating decimal terminating decimal Introduction In this session,
Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper
Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic
Prentice Hall: Middle School Math, Course 1 2002 Correlated to: New York Mathematics Learning Standards (Intermediate)
New York Mathematics Learning Standards (Intermediate) Mathematical Reasoning Key Idea: Students use MATHEMATICAL REASONING to analyze mathematical situations, make conjectures, gather evidence, and construct
Grade 7/8 Math Circles Sequences and Series
Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Sequences and Series November 30, 2012 What are sequences? A sequence is an ordered
HFCC Math Lab Beginning Algebra 13 TRANSLATING ENGLISH INTO ALGEBRA: WORDS, PHRASE, SENTENCES
HFCC Math Lab Beginning Algebra 1 TRANSLATING ENGLISH INTO ALGEBRA: WORDS, PHRASE, SENTENCES Before being able to solve word problems in algebra, you must be able to change words, phrases, and sentences
Scope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B
Scope and Sequence Earlybird Kindergarten, Standards Edition Primary Mathematics, Standards Edition Copyright 2008 [SingaporeMath.com Inc.] The check mark indicates where the topic is first introduced
Grade 5 Mathematics Curriculum Guideline Scott Foresman - Addison Wesley 2008. Chapter 1: Place, Value, Adding, and Subtracting
Grade 5 Math Pacing Guide Page 1 of 9 Grade 5 Mathematics Curriculum Guideline Scott Foresman - Addison Wesley 2008 Test Preparation Timeline Recommendation: September - November Chapters 1-5 December
Multiplication and Division with Rational Numbers
Multiplication and Division with Rational Numbers Kitty Hawk, North Carolina, is famous for being the place where the first airplane flight took place. The brothers who flew these first flights grew up
Integers are positive and negative whole numbers, that is they are; {... 3, 2, 1,0,1,2,3...}. The dots mean they continue in that pattern.
INTEGERS Integers are positive and negative whole numbers, that is they are; {... 3, 2, 1,0,1,2,3...}. The dots mean they continue in that pattern. Like all number sets, integers were invented to describe
Decimals and Percentages
Decimals and Percentages Specimen Worksheets for Selected Aspects Paul Harling b recognise the number relationship between coordinates in the first quadrant of related points Key Stage 2 (AT2) on a line
Grade 6 Math Circles. Binary and Beyond
Faculty of Mathematics Waterloo, Ontario N2L 3G1 The Decimal System Grade 6 Math Circles October 15/16, 2013 Binary and Beyond The cool reality is that we learn to count in only one of many possible number
Order of Operations More Essential Practice
Order of Operations More Essential Practice We will be simplifying expressions using the order of operations in this section. Automatic Skill: Order of operations needs to become an automatic skill. Failure
2.3 Solving Equations Containing Fractions and Decimals
2. Solving Equations Containing Fractions and Decimals Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Solve equations containing fractions
Formulas and Problem Solving
2.4 Formulas and Problem Solving 2.4 OBJECTIVES. Solve a literal equation for one of its variables 2. Translate a word statement to an equation 3. Use an equation to solve an application Formulas are extremely
3.3 Addition and Subtraction of Rational Numbers
3.3 Addition and Subtraction of Rational Numbers In this section we consider addition and subtraction of both fractions and decimals. We start with addition and subtraction of fractions with the same denominator.
Verbal Phrases to Algebraic Expressions
Student Name: Date: Contact Person Name: Phone Number: Lesson 13 Verbal Phrases to s Objectives Translate verbal phrases into algebraic expressions Solve word problems by translating sentences into equations
4.5 Some Applications of Algebraic Equations
4.5 Some Applications of Algebraic Equations One of the primary uses of equations in algebra is to model and solve application problems. In fact, much of the remainder of this book is based on the application
ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite
ALGEBRA Pupils should be taught to: Generate and describe sequences As outcomes, Year 7 pupils should, for example: Use, read and write, spelling correctly: sequence, term, nth term, consecutive, rule,
0.8 Rational Expressions and Equations
96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to
Exercise Worksheets. Copyright. 2002 Susan D. Phillips
Exercise Worksheets Copyright 00 Susan D. Phillips Contents WHOLE NUMBERS. Adding. Subtracting. Multiplying. Dividing. Order of Operations FRACTIONS. Mixed Numbers. Prime Factorization. Least Common Multiple.
Accentuate the Negative: Homework Examples from ACE
Accentuate the Negative: Homework Examples from ACE Investigation 1: Extending the Number System, ACE #6, 7, 12-15, 47, 49-52 Investigation 2: Adding and Subtracting Rational Numbers, ACE 18-22, 38(a),
Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.
Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear
Solving Quadratic Equations
9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation
Chapter 1: Order of Operations, Fractions & Percents
HOSP 1107 (Business Math) Learning Centre Chapter 1: Order of Operations, Fractions & Percents ORDER OF OPERATIONS When finding the value of an expression, the operations must be carried out in a certain
TEKS TAKS 2010 STAAR RELEASED ITEM STAAR MODIFIED RELEASED ITEM
7 th Grade Math TAKS-STAAR-STAAR-M Comparison Spacing has been deleted and graphics minimized to fit table. (1) Number, operation, and quantitative reasoning. The student represents and uses numbers in
A Concrete Introduction. to the Abstract Concepts. of Integers and Algebra using Algebra Tiles
A Concrete Introduction to the Abstract Concepts of Integers and Algebra using Algebra Tiles Table of Contents Introduction... 1 page Integers 1: Introduction to Integers... 3 2: Working with Algebra Tiles...
Rules of Exponents. Math at Work: Motorcycle Customization OUTLINE CHAPTER
Rules of Exponents CHAPTER 5 Math at Work: Motorcycle Customization OUTLINE Study Strategies: Taking Math Tests 5. Basic Rules of Exponents Part A: The Product Rule and Power Rules Part B: Combining the
Contents. Sample worksheet from www.mathmammoth.com
Contents Introduction... 4 Warmup: Mental Math 1... 8 Warmup: Mental Math 2... 10 Review: Addition and Subtraction... 12 Review: Multiplication and Division... 15 Balance Problems and Equations... 19 More
MTH 100 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created June 6, 2011
MTH 00 College Algebra Essex County College Division of Mathematics Sample Review Questions Created June 6, 0 Math 00, Introductory College Mathematics, covers the mathematical content listed below. In
Answer Key for California State Standards: Algebra I
Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.
Here are some examples of combining elements and the operations used:
MATRIX OPERATIONS Summary of article: What is an operation? Addition of two matrices. Multiplication of a Matrix by a scalar. Subtraction of two matrices: two ways to do it. Combinations of Addition, Subtraction,
Algebra I. In this technological age, mathematics is more important than ever. When students
In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,
Assessment For The California Mathematics Standards Grade 2
Introduction: Summary of Goals GRADE TWO By the end of grade two, students understand place value and number relationships in addition and subtraction and they use simple concepts of multiplication. They
Grade 6 Mathematics Assessment. Eligible Texas Essential Knowledge and Skills
Grade 6 Mathematics Assessment Eligible Texas Essential Knowledge and Skills STAAR Grade 6 Mathematics Assessment Mathematical Process Standards These student expectations will not be listed under a separate
Factoring ax 2 + bx + c - Teacher Notes
Southern Nevada Regional Professi onal D evel opment Program VOLUME 1, ISSUE 8 MAY 009 A N ewsletter from the Sec ondary Mathematic s Team Factoring ax + bx + c - Teacher Notes Here we look at sample teacher
All the examples in this worksheet and all the answers to questions are available as answer sheets or videos.
BIRKBECK MATHS SUPPORT www.mathsupport.wordpress.com Numbers 3 In this section we will look at - improper fractions and mixed fractions - multiplying and dividing fractions - what decimals mean and exponents
Grade 5 Math Content 1
Grade 5 Math Content 1 Number and Operations: Whole Numbers Multiplication and Division In Grade 5, students consolidate their understanding of the computational strategies they use for multiplication.
WORK SCHEDULE: MATHEMATICS 2007
, K WORK SCHEDULE: MATHEMATICS 00 GRADE MODULE TERM... LO NUMBERS, OPERATIONS AND RELATIONSHIPS able to recognise, represent numbers and their relationships, and to count, estimate, calculate and check
