A Model- Driven Partitioning and Auto- tuning Integrated Framework for Sparse Matrix- Vector Multiplication on GPUs

Size: px
Start display at page:

Download "A Model- Driven Partitioning and Auto- tuning Integrated Framework for Sparse Matrix- Vector Multiplication on GPUs"

Transcription

1 A Model- Driven Partitioning and Auto- tuning Integrated Framework for Sparse Matrix- Vector Multiplication on GPUs HUANG, He Department of Computer Science, University of Wyoming Ping Guo, He Huang, Qichang Chen, Liqiang Wang, En-Jui Lee, and Po Chen. A Model-Driven Partitioning and Auto-tuning Integrated F ramework for Sparse Matrix-Vector Multiplication on GPUs. In the 2011 TeraGrid Conference. Salt Lake City, UT. ACM Press, 2011.

2 Outline 1. Introduction 2. GPU performance model 3. Model driven partitioning 4. Auto- tuning GPU parameter 5. Experiment 6. Conclusion and future work 2

3 GPU: attractive platform for data- intensive computation in science and engineering due to its high computation power. Sparse matrix- vector multiplication (SpMV): a common operation in solving linear systems Matrix maybe very large and sparse Typical iterative method may require many times of SpMV SpMV is often the most time- consuming part of scientific calculation 3

4 Observation: SpMV on GPU Different SpMV CUDA kernels are good at on different types of matrices: CSR good when large: number of non- zero elements ELLPACK better when: nearly equal and small number of non- zero elements per row Hybrid ELL/COO better when: matrix has small number of non- zero elements per row, and most of rows have nearly equal number of nonzero but there may be a few irregular rows with much larger non- zero elements 4

5 Objective Design an automatic approach to improve SpMV performance based on the previous observations partition the matrix give near optimal compressed format for each partition combine the advantages of various formats 5

6 Framework 6

7 Outline 1. Introduction 2. GPU execution time estimation model 3. Model driven partitioning 4. Auto- tuning GPU parameter 5. Experiment 6. Conclusion and future work 7

8 GPU memory architecture review Thread: registers and local memory Block of threads: Shared memory Block is scheduled to SM for calculation All blocks: Global memory Constant memory Texture memory Registers and shared memory are very fast but very limited Global memory is abundant Our model considers register and shared memory restriction source: NVIDIA 8

9 GPU exec. time estimation model(1) Obtain hardware information of GPU Determined by compute capability, e.g. GTX Compile kernel using cubin Obtained info used in the following steps 9

10 Model(2) Count the number of active thread blocks (TBs) for a streaming multiprocessor. Limited by three factors: active warps, registers and shared memory Compute number of thread block limited by the three factors respectively The minimum value of the three is the active TB Total number of thread blocks for a given matrix CSR: one warp per row ELL: one thread per row The information is used in next step 10

11 Model(3) CSR Choose several sample matrices and test their execution time Principle of choosing sample matrices 1. The matrix should be large enough - > fully utilize all active blocks in all SMs and also simulate the real large matrix 2. Keep every row has the same number of nonzeros 11

12 Model(3) ELLPACK The execution time is related to number of nonzeros per row and number of rows Two dimensional interpolation for sample matrices Use the fitting surface to estimate execution time x axis: log(# nonzeros per row) y axis: log(# rows) z axis: log(time) 12

13 Model(4): estimate exec. time Sometime, appropriately enlarge the number of non- zero elements for some row, if there is little nonzero in that row. CSR: Input the total number of nonzeros to the model ELLPACK: Input number of nonzero per row, and number of rows to the model Estimate the execution time 13

14 Outline 1. Introduction 2. GPU performance model 3. Model driven partitioning 4. Auto- tuning GPU parameter 5. Experiment 6. Conclusion and future work 14

15 Model- driven matrix partitioning Use GPU model to decide how to partition the matrix 1. Partition the matrix into several blocks 2. Each block uses different storage format, the execution time of every block can be estimated by the GPU model 3. The total estimated execution time is the summation 4. By exploring different partition combination, we may find an near optimal one from the model 5. The optimal partition is used for real execution 15

16 Outline 1. Introduction 2. GPU performance model 3. Model driven partitioning 4. Auto- tuning GPU parameter 5. Experiment 6. Conclusion and future work 16

17 Details: Auto- Tuning CUDA Parameters for Sparse Matrix- Vector Multiplication on GPUs. 17

18 Outline 1. Introduction 2. GPU performance model 3. Model driven partitioning 4. Auto- tuning GPU parameter 5. Experiment 6. Conclusion and future work 18

19 Integrate model- driven partitioning and auto- tuning CSR: 222% performance improvement ELLPACK: 197% performance improvement HYBRID: 33% performance improvement 19

20 Outline 1. Introduction 2. GPU performance model 3. Model driven partitioning 4. Auto- tuning GPU parameter 5. Experiment 6. Conclusion and future work 20

21 Concussion and Future Work Conclusion: Design and implement a model- driven partitioning approach to decide how to partition the target sparse matrix and transform each partition into appropriate storage format. The auto- tuning tool can automatically adjust CUDA- specific parameters to improve performance. We integrate model- driven partitioning and auto- tuning to maximize the performance. Experiment shows that this approach has substantial performance SpMV kernels Future work: Refine our performance model - > more accurate Extend current framework to include more CUDA kernels. 21

22 A Model-Driven Partitioning and Auto-tuning Integrated F ramework for Sparse Matrix-Vector Multiplication on GPUs.

HIGH PERFORMANCE CONSULTING COURSE OFFERINGS

HIGH PERFORMANCE CONSULTING COURSE OFFERINGS Performance 1(6) HIGH PERFORMANCE CONSULTING COURSE OFFERINGS LEARN TO TAKE ADVANTAGE OF POWERFUL GPU BASED ACCELERATOR TECHNOLOGY TODAY 2006 2013 Nvidia GPUs Intel CPUs CONTENTS Acronyms and Terminology...

More information

1. If we need to use each thread to calculate one output element of a vector addition, what would

1. If we need to use each thread to calculate one output element of a vector addition, what would Quiz questions Lecture 2: 1. If we need to use each thread to calculate one output element of a vector addition, what would be the expression for mapping the thread/block indices to data index: (A) i=threadidx.x

More information

Introduction to GPU Programming Languages

Introduction to GPU Programming Languages CSC 391/691: GPU Programming Fall 2011 Introduction to GPU Programming Languages Copyright 2011 Samuel S. Cho http://www.umiacs.umd.edu/ research/gpu/facilities.html Maryland CPU/GPU Cluster Infrastructure

More information

The sparse matrix vector product on GPUs

The sparse matrix vector product on GPUs The sparse matrix vector product on GPUs F. Vázquez, E. M. Garzón, J. A. Martínez, J. J. Fernández {f.vazquez, gmartin, jamartine, jjfdez}@ual.es Dpt Computer Architecture and Electronics. University of

More information

Load Balancing Algorithms for Sparse Matrix Kernels on Heterogeneous Platforms

Load Balancing Algorithms for Sparse Matrix Kernels on Heterogeneous Platforms Load Balancing Algorithms for Sparse Matrix Kernels on Heterogeneous Platforms Thesis submitted in partial fulfillment of the requirements for the degree of MS by Research in Computer Science and Engineering

More information

Applications to Computational Financial and GPU Computing. May 16th. Dr. Daniel Egloff +41 44 520 01 17 +41 79 430 03 61

Applications to Computational Financial and GPU Computing. May 16th. Dr. Daniel Egloff +41 44 520 01 17 +41 79 430 03 61 F# Applications to Computational Financial and GPU Computing May 16th Dr. Daniel Egloff +41 44 520 01 17 +41 79 430 03 61 Today! Why care about F#? Just another fashion?! Three success stories! How Alea.cuBase

More information

LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR

LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR Frédéric Kuznik, frederic.kuznik@insa lyon.fr 1 Framework Introduction Hardware architecture CUDA overview Implementation details A simple case:

More information

Efficient Sparse Matrix-Vector Multiplication on CUDA

Efficient Sparse Matrix-Vector Multiplication on CUDA Efficient Sparse -Vector Multiplication on CUDA Nathan Bell and Michael Garland December 11, 2008 Abstract The massive parallelism of graphics processing units (GPUs) offers tremendous performance in many

More information

GPU Computing with CUDA Lecture 2 - CUDA Memories. Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile

GPU Computing with CUDA Lecture 2 - CUDA Memories. Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile GPU Computing with CUDA Lecture 2 - CUDA Memories Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile 1 Outline of lecture Recap of Lecture 1 Warp scheduling CUDA Memory hierarchy

More information

E6895 Advanced Big Data Analytics Lecture 14:! NVIDIA GPU Examples and GPU on ios devices

E6895 Advanced Big Data Analytics Lecture 14:! NVIDIA GPU Examples and GPU on ios devices E6895 Advanced Big Data Analytics Lecture 14: NVIDIA GPU Examples and GPU on ios devices Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science IBM Chief Scientist,

More information

Enabling Multi-pipeline Data Transfer in HDFS for Big Data Applications

Enabling Multi-pipeline Data Transfer in HDFS for Big Data Applications Enabling Multi-pipeline Data Transfer in HDFS for Big Data Applications Liqiang (Eric) Wang, Hong Zhang University of Wyoming Hai Huang IBM T.J. Watson Research Center Background Hadoop: Apache Hadoop

More information

MONTE-CARLO SIMULATION OF AMERICAN OPTIONS WITH GPUS. Julien Demouth, NVIDIA

MONTE-CARLO SIMULATION OF AMERICAN OPTIONS WITH GPUS. Julien Demouth, NVIDIA MONTE-CARLO SIMULATION OF AMERICAN OPTIONS WITH GPUS Julien Demouth, NVIDIA STAC-A2 BENCHMARK STAC-A2 Benchmark Developed by banks Macro and micro, performance and accuracy Pricing and Greeks for American

More information

OpenCL Optimization. San Jose 10/2/2009 Peng Wang, NVIDIA

OpenCL Optimization. San Jose 10/2/2009 Peng Wang, NVIDIA OpenCL Optimization San Jose 10/2/2009 Peng Wang, NVIDIA Outline Overview The CUDA architecture Memory optimization Execution configuration optimization Instruction optimization Summary Overall Optimization

More information

Real-time Visual Tracker by Stream Processing

Real-time Visual Tracker by Stream Processing Real-time Visual Tracker by Stream Processing Simultaneous and Fast 3D Tracking of Multiple Faces in Video Sequences by Using a Particle Filter Oscar Mateo Lozano & Kuzahiro Otsuka presented by Piotr Rudol

More information

ultra fast SOM using CUDA

ultra fast SOM using CUDA ultra fast SOM using CUDA SOM (Self-Organizing Map) is one of the most popular artificial neural network algorithms in the unsupervised learning category. Sijo Mathew Preetha Joy Sibi Rajendra Manoj A

More information

A Quantitative Performance Analysis Model for GPU Architectures

A Quantitative Performance Analysis Model for GPU Architectures A Quantitative Performance Analysis Model for GPU Architectures Yao Zhang and John D. Owens Department of Electrical and Computer Engineering University of California, Davis {yaozhang, jowens}@ece.ucdavis.edu

More information

Next Generation GPU Architecture Code-named Fermi

Next Generation GPU Architecture Code-named Fermi Next Generation GPU Architecture Code-named Fermi The Soul of a Supercomputer in the Body of a GPU Why is NVIDIA at Super Computing? Graphics is a throughput problem paint every pixel within frame time

More information

Exploiting GPU Hardware Saturation for Fast Compiler Optimization

Exploiting GPU Hardware Saturation for Fast Compiler Optimization Exploiting GPU Hardware Saturation for Fast Compiler Optimization Alberto Magni School of Informatics University of Edinburgh United Kingdom a.magni@sms.ed.ac.uk Christophe Dubach School of Informatics

More information

IMPROVED ROW-GROUPED CSR FORMAT FOR STORING OF SPARSE MATRICES ON GPU

IMPROVED ROW-GROUPED CSR FORMAT FOR STORING OF SPARSE MATRICES ON GPU Proceedings of ALGORITMY 01 pp. 8 90 IMPROVED ROW-GROUPED CSR FORMAT FOR STORING OF SPARSE MATRICES ON GPU TOMÁŠ OBERHUBER AND MARTIN HELLER Abstract. We present new format for storing sparse matrices

More information

HPC with Multicore and GPUs

HPC with Multicore and GPUs HPC with Multicore and GPUs Stan Tomov Electrical Engineering and Computer Science Department University of Tennessee, Knoxville CS 594 Lecture Notes March 4, 2015 1/18 Outline! Introduction - Hardware

More information

Introduction to GPU Architecture

Introduction to GPU Architecture Introduction to GPU Architecture Ofer Rosenberg, PMTS SW, OpenCL Dev. Team AMD Based on From Shader Code to a Teraflop: How GPU Shader Cores Work, By Kayvon Fatahalian, Stanford University Content 1. Three

More information

Introduction to GP-GPUs. Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1

Introduction to GP-GPUs. Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1 Introduction to GP-GPUs Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1 GPU Architectures: How do we reach here? NVIDIA Fermi, 512 Processing Elements (PEs) 2 What Can It Do?

More information

OpenACC 2.0 and the PGI Accelerator Compilers

OpenACC 2.0 and the PGI Accelerator Compilers OpenACC 2.0 and the PGI Accelerator Compilers Michael Wolfe The Portland Group michael.wolfe@pgroup.com This presentation discusses the additions made to the OpenACC API in Version 2.0. I will also present

More information

Introduction GPU Hardware GPU Computing Today GPU Computing Example Outlook Summary. GPU Computing. Numerical Simulation - from Models to Software

Introduction GPU Hardware GPU Computing Today GPU Computing Example Outlook Summary. GPU Computing. Numerical Simulation - from Models to Software GPU Computing Numerical Simulation - from Models to Software Andreas Barthels JASS 2009, Course 2, St. Petersburg, Russia Prof. Dr. Sergey Y. Slavyanov St. Petersburg State University Prof. Dr. Thomas

More information

Optimizing Symmetric Dense Matrix-Vector Multiplication on GPUs

Optimizing Symmetric Dense Matrix-Vector Multiplication on GPUs Optimizing Symmetric Dense Matrix-Vector Multiplication on GPUs Rajib Nath Computer Science and Engineering University of California, San Diego rknath@ucsd.edu Stanimire Tomov Electrical Engineering and

More information

Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers

Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers Haohuan Fu haohuan@tsinghua.edu.cn High Performance Geo-Computing (HPGC) Group Center for Earth System Science Tsinghua University

More information

Texture Cache Approximation on GPUs

Texture Cache Approximation on GPUs Texture Cache Approximation on GPUs Mark Sutherland Joshua San Miguel Natalie Enright Jerger {suther68,enright}@ece.utoronto.ca, joshua.sanmiguel@mail.utoronto.ca 1 Our Contribution GPU Core Cache Cache

More information

Optimizing Memory-Bound SYMV Kernel on GPU Hardware Accelerators

Optimizing Memory-Bound SYMV Kernel on GPU Hardware Accelerators Optimizing Memory-Bound SYMV Kernel on GPU Hardware Accelerators Ahmad Abdelfattah 1, Jack Dongarra 2, David Keyes 1, and Hatem Ltaief 3 1 KAUST Division of Mathematical and Computer Sciences and Engineering,

More information

Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming

Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming Overview Lecture 1: an introduction to CUDA Mike Giles mike.giles@maths.ox.ac.uk hardware view software view Oxford University Mathematical Institute Oxford e-research Centre Lecture 1 p. 1 Lecture 1 p.

More information

GPUs for Scientific Computing

GPUs for Scientific Computing GPUs for Scientific Computing p. 1/16 GPUs for Scientific Computing Mike Giles mike.giles@maths.ox.ac.uk Oxford-Man Institute of Quantitative Finance Oxford University Mathematical Institute Oxford e-research

More information

~ Greetings from WSU CAPPLab ~

~ Greetings from WSU CAPPLab ~ ~ Greetings from WSU CAPPLab ~ Multicore with SMT/GPGPU provides the ultimate performance; at WSU CAPPLab, we can help! Dr. Abu Asaduzzaman, Assistant Professor and Director Wichita State University (WSU)

More information

Hierarchically Parallel FE Software for Assembly Structures : FrontISTR - Parallel Performance Evaluation and Its Industrial Applications

Hierarchically Parallel FE Software for Assembly Structures : FrontISTR - Parallel Performance Evaluation and Its Industrial Applications CO-DESIGN 2012, October 23-25, 2012 Peing University, Beijing Hierarchically Parallel FE Software for Assembly Structures : FrontISTR - Parallel Performance Evaluation and Its Industrial Applications Hiroshi

More information

Concurrent Solutions to Linear Systems using Hybrid CPU/GPU Nodes

Concurrent Solutions to Linear Systems using Hybrid CPU/GPU Nodes Concurrent Solutions to Linear Systems using Hybrid CPU/GPU Nodes Oluwapelumi Adenikinju1, Julian Gilyard2, Joshua Massey1, Thomas Stitt 1 Department of Computer Science and Electrical Engineering, UMBC

More information

GPU Parallel Computing Architecture and CUDA Programming Model

GPU Parallel Computing Architecture and CUDA Programming Model GPU Parallel Computing Architecture and CUDA Programming Model John Nickolls Outline Why GPU Computing? GPU Computing Architecture Multithreading and Arrays Data Parallel Problem Decomposition Parallel

More information

Non-negative Matrix Factorization (NMF) in Semi-supervised Learning Reducing Dimension and Maintaining Meaning

Non-negative Matrix Factorization (NMF) in Semi-supervised Learning Reducing Dimension and Maintaining Meaning Non-negative Matrix Factorization (NMF) in Semi-supervised Learning Reducing Dimension and Maintaining Meaning SAMSI 10 May 2013 Outline Introduction to NMF Applications Motivations NMF as a middle step

More information

GPU Hardware and Programming Models. Jeremy Appleyard, September 2015

GPU Hardware and Programming Models. Jeremy Appleyard, September 2015 GPU Hardware and Programming Models Jeremy Appleyard, September 2015 A brief history of GPUs In this talk Hardware Overview Programming Models Ask questions at any point! 2 A Brief History of GPUs 3 Once

More information

CUDA Optimization with NVIDIA Tools. Julien Demouth, NVIDIA

CUDA Optimization with NVIDIA Tools. Julien Demouth, NVIDIA CUDA Optimization with NVIDIA Tools Julien Demouth, NVIDIA What Will You Learn? An iterative method to optimize your GPU code A way to conduct that method with Nvidia Tools 2 What Does the Application

More information

Guided Performance Analysis with the NVIDIA Visual Profiler

Guided Performance Analysis with the NVIDIA Visual Profiler Guided Performance Analysis with the NVIDIA Visual Profiler Identifying Performance Opportunities NVIDIA Nsight Eclipse Edition (nsight) NVIDIA Visual Profiler (nvvp) nvprof command-line profiler Guided

More information

CUDA Basics. Murphy Stein New York University

CUDA Basics. Murphy Stein New York University CUDA Basics Murphy Stein New York University Overview Device Architecture CUDA Programming Model Matrix Transpose in CUDA Further Reading What is CUDA? CUDA stands for: Compute Unified Device Architecture

More information

Imperial College London

Imperial College London Imperial College London Department of Computing GiMMiK - Generating Bespoke Matrix Multiplication Kernels for Various Hardware Accelerators; Applications in High-Order Computational Fluid Dynamics Author:

More information

Benchmark Hadoop and Mars: MapReduce on cluster versus on GPU

Benchmark Hadoop and Mars: MapReduce on cluster versus on GPU Benchmark Hadoop and Mars: MapReduce on cluster versus on GPU Heshan Li, Shaopeng Wang The Johns Hopkins University 3400 N. Charles Street Baltimore, Maryland 21218 {heshanli, shaopeng}@cs.jhu.edu 1 Overview

More information

GPU Computing with CUDA Lecture 4 - Optimizations. Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile

GPU Computing with CUDA Lecture 4 - Optimizations. Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile GPU Computing with CUDA Lecture 4 - Optimizations Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile 1 Outline of lecture Recap of Lecture 3 Control flow Coalescing Latency hiding

More information

Introduction to GPGPU. Tiziano Diamanti t.diamanti@cineca.it

Introduction to GPGPU. Tiziano Diamanti t.diamanti@cineca.it t.diamanti@cineca.it Agenda From GPUs to GPGPUs GPGPU architecture CUDA programming model Perspective projection Vectors that connect the vanishing point to every point of the 3D model will intersecate

More information

GPU System Architecture. Alan Gray EPCC The University of Edinburgh

GPU System Architecture. Alan Gray EPCC The University of Edinburgh GPU System Architecture EPCC The University of Edinburgh Outline Why do we want/need accelerators such as GPUs? GPU-CPU comparison Architectural reasons for GPU performance advantages GPU accelerated systems

More information

Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing

Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing Innovation Intelligence Devin Jensen August 2012 Altair Knows HPC Altair is the only company that: makes HPC tools

More information

OpenCL Programming for the CUDA Architecture. Version 2.3

OpenCL Programming for the CUDA Architecture. Version 2.3 OpenCL Programming for the CUDA Architecture Version 2.3 8/31/2009 In general, there are multiple ways of implementing a given algorithm in OpenCL and these multiple implementations can have vastly different

More information

CUDA programming on NVIDIA GPUs

CUDA programming on NVIDIA GPUs p. 1/21 on NVIDIA GPUs Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute for Quantitative Finance Oxford eresearch Centre p. 2/21 Overview hardware view

More information

NVIDIA GeForce GTX 580 GPU Datasheet

NVIDIA GeForce GTX 580 GPU Datasheet NVIDIA GeForce GTX 580 GPU Datasheet NVIDIA GeForce GTX 580 GPU Datasheet 3D Graphics Full Microsoft DirectX 11 Shader Model 5.0 support: o NVIDIA PolyMorph Engine with distributed HW tessellation engines

More information

CUDA Programming. Week 4. Shared memory and register

CUDA Programming. Week 4. Shared memory and register CUDA Programming Week 4. Shared memory and register Outline Shared memory and bank confliction Memory padding Register allocation Example of matrix-matrix multiplication Homework SHARED MEMORY AND BANK

More information

Porting the Plasma Simulation PIConGPU to Heterogeneous Architectures with Alpaka

Porting the Plasma Simulation PIConGPU to Heterogeneous Architectures with Alpaka Porting the Plasma Simulation PIConGPU to Heterogeneous Architectures with Alpaka René Widera1, Erik Zenker1,2, Guido Juckeland1, Benjamin Worpitz1,2, Axel Huebl1,2, Andreas Knüpfer2, Wolfgang E. Nagel2,

More information

GPGPU for Real-Time Data Analytics: Introduction. Nanyang Technological University, Singapore 2

GPGPU for Real-Time Data Analytics: Introduction. Nanyang Technological University, Singapore 2 GPGPU for Real-Time Data Analytics: Introduction Bingsheng He 1, Huynh Phung Huynh 2, Rick Siow Mong Goh 2 1 Nanyang Technological University, Singapore 2 A*STAR Institute of High Performance Computing,

More information

DCT-JPEG Image Coding Based on GPU

DCT-JPEG Image Coding Based on GPU , pp. 293-302 http://dx.doi.org/10.14257/ijhit.2015.8.5.32 DCT-JPEG Image Coding Based on GPU Rongyang Shan 1, Chengyou Wang 1*, Wei Huang 2 and Xiao Zhou 1 1 School of Mechanical, Electrical and Information

More information

Auto-Tuning TRSM with an Asynchronous Task Assignment Model on Multicore, GPU and Coprocessor Systems

Auto-Tuning TRSM with an Asynchronous Task Assignment Model on Multicore, GPU and Coprocessor Systems Auto-Tuning TRSM with an Asynchronous Task Assignment Model on Multicore, GPU and Coprocessor Systems Murilo Boratto Núcleo de Arquitetura de Computadores e Sistemas Operacionais, Universidade do Estado

More information

Introduction to GPU Computing

Introduction to GPU Computing Matthis Hauschild Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Technische Aspekte Multimodaler Systeme December 4, 2014 M. Hauschild - 1 Table of Contents 1. Architecture

More information

Graphics Cards and Graphics Processing Units. Ben Johnstone Russ Martin November 15, 2011

Graphics Cards and Graphics Processing Units. Ben Johnstone Russ Martin November 15, 2011 Graphics Cards and Graphics Processing Units Ben Johnstone Russ Martin November 15, 2011 Contents Graphics Processing Units (GPUs) Graphics Pipeline Architectures 8800-GTX200 Fermi Cayman Performance Analysis

More information

Accelerating Wavelet-Based Video Coding on Graphics Hardware

Accelerating Wavelet-Based Video Coding on Graphics Hardware Wladimir J. van der Laan, Andrei C. Jalba, and Jos B.T.M. Roerdink. Accelerating Wavelet-Based Video Coding on Graphics Hardware using CUDA. In Proc. 6th International Symposium on Image and Signal Processing

More information

GTC 2014 San Jose, California

GTC 2014 San Jose, California GTC 2014 San Jose, California An Approach to Parallel Processing of Big Data in Finance for Alpha Generation and Risk Management Yigal Jhirad and Blay Tarnoff March 26, 2014 GTC 2014: Table of Contents

More information

ANALYSIS OF RSA ALGORITHM USING GPU PROGRAMMING

ANALYSIS OF RSA ALGORITHM USING GPU PROGRAMMING ANALYSIS OF RSA ALGORITHM USING GPU PROGRAMMING Sonam Mahajan 1 and Maninder Singh 2 1 Department of Computer Science Engineering, Thapar University, Patiala, India 2 Department of Computer Science Engineering,

More information

NVIDIA CUDA Software and GPU Parallel Computing Architecture. David B. Kirk, Chief Scientist

NVIDIA CUDA Software and GPU Parallel Computing Architecture. David B. Kirk, Chief Scientist NVIDIA CUDA Software and GPU Parallel Computing Architecture David B. Kirk, Chief Scientist Outline Applications of GPU Computing CUDA Programming Model Overview Programming in CUDA The Basics How to Get

More information

Multi-GPU Load Balancing for Simulation and Rendering

Multi-GPU Load Balancing for Simulation and Rendering Multi- Load Balancing for Simulation and Rendering Yong Cao Computer Science Department, Virginia Tech, USA In-situ ualization and ual Analytics Instant visualization and interaction of computing tasks

More information

GPU for Scientific Computing. -Ali Saleh

GPU for Scientific Computing. -Ali Saleh 1 GPU for Scientific Computing -Ali Saleh Contents Introduction What is GPU GPU for Scientific Computing K-Means Clustering K-nearest Neighbours When to use GPU and when not Commercial Programming GPU

More information

Learn CUDA in an Afternoon: Hands-on Practical Exercises

Learn CUDA in an Afternoon: Hands-on Practical Exercises Learn CUDA in an Afternoon: Hands-on Practical Exercises Alan Gray and James Perry, EPCC, The University of Edinburgh Introduction This document forms the hands-on practical component of the Learn CUDA

More information

Petascale Software Challenges. William Gropp www.cs.illinois.edu/~wgropp

Petascale Software Challenges. William Gropp www.cs.illinois.edu/~wgropp Petascale Software Challenges William Gropp www.cs.illinois.edu/~wgropp Petascale Software Challenges Why should you care? What are they? Which are different from non-petascale? What has changed since

More information

Alberto Corrales-García, Rafael Rodríguez-Sánchez, José Luis Martínez, Gerardo Fernández-Escribano, José M. Claver and José Luis Sánchez

Alberto Corrales-García, Rafael Rodríguez-Sánchez, José Luis Martínez, Gerardo Fernández-Escribano, José M. Claver and José Luis Sánchez Alberto Corrales-García, Rafael Rodríguez-Sánchez, José Luis artínez, Gerardo Fernández-Escribano, José. Claver and José Luis Sánchez 1. Introduction 2. Technical Background 3. Proposed DVC to H.264/AVC

More information

Project INF BigData. Figure 1: Plot of the learned function from the checker board data set.

Project INF BigData. Figure 1: Plot of the learned function from the checker board data set. Project INF BigData Roberto Fontanarosa, Tobias Rupp, and Steffen Hirschmann Figure 1: Plot of the learned function from the checker board data set. Abstract Prediction and forecasting has become very

More information

Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms

Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms Amani AlOnazi, David E. Keyes, Alexey Lastovetsky, Vladimir Rychkov Extreme Computing Research Center,

More information

Sélection adaptative de codes polyédriques pour GPU/CPU

Sélection adaptative de codes polyédriques pour GPU/CPU Sélection adaptative de codes polyédriques pour GPU/CPU Jean-François DOLLINGER, Vincent LOECHNER, Philippe CLAUSS INRIA - Équipe CAMUS Université de Strasbourg Saint-Hippolyte - Le 6 décembre 2011 1 Sommaire

More information

Programming models for heterogeneous computing. Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga

Programming models for heterogeneous computing. Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga Programming models for heterogeneous computing Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga Talk outline [30 slides] 1. Introduction [5 slides] 2.

More information

A Comparative Study of Conforming and Nonconforming High-Resolution Finite Element Schemes

A Comparative Study of Conforming and Nonconforming High-Resolution Finite Element Schemes A Comparative Study of Conforming and Nonconforming High-Resolution Finite Element Schemes Matthias Möller Institute of Applied Mathematics (LS3) TU Dortmund, Germany European Seminar on Computing Pilsen,

More information

APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder

APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder APPM4720/5720: Fast algorithms for big data Gunnar Martinsson The University of Colorado at Boulder Course objectives: The purpose of this course is to teach efficient algorithms for processing very large

More information

Optimizing a 3D-FWT code in a cluster of CPUs+GPUs

Optimizing a 3D-FWT code in a cluster of CPUs+GPUs Optimizing a 3D-FWT code in a cluster of CPUs+GPUs Gregorio Bernabé Javier Cuenca Domingo Giménez Universidad de Murcia Scientific Computing and Parallel Programming Group XXIX Simposium Nacional de la

More information

Flexible Agent Based Simulation for Pedestrian Modelling on GPU Hardware

Flexible Agent Based Simulation for Pedestrian Modelling on GPU Hardware Flexible Agent Based Simulation for Pedestrian Modelling on GPU Hardware The University of Sheffield, UK www.dcs.shef.ac.uk/~paul Richmond Paul, Coakley Simon, Romano Daniela, "Cellular Level Agent Based

More information

Object-oriented scientific computing

Object-oriented scientific computing Object-oriented scientific computing Pras Pathmanathan Summer 2012 The finite element method Advantages of the FE method over the FD method Main advantages of FE over FD 1 Deal with Neumann boundary conditions

More information

22S:295 Seminar in Applied Statistics High Performance Computing in Statistics

22S:295 Seminar in Applied Statistics High Performance Computing in Statistics 22S:295 Seminar in Applied Statistics High Performance Computing in Statistics Luke Tierney Department of Statistics & Actuarial Science University of Iowa August 30, 2007 Luke Tierney (U. of Iowa) HPC

More information

GPGPU acceleration in OpenFOAM

GPGPU acceleration in OpenFOAM Carl-Friedrich Gauß Faculty GPGPU acceleration in OpenFOAM Northern germany OpenFoam User meeting Braunschweig Institute of Technology Thorsten Grahs Institute of Scientific Computing/move-csc 2nd October

More information

DARPA, NSF-NGS/ITR,ACR,CPA,

DARPA, NSF-NGS/ITR,ACR,CPA, Spiral Automating Library Development Markus Püschel and the Spiral team (only part shown) With: Srinivas Chellappa Frédéric de Mesmay Franz Franchetti Daniel McFarlin Yevgen Voronenko Electrical and Computer

More information

Towards Large-Scale Molecular Dynamics Simulations on Graphics Processors

Towards Large-Scale Molecular Dynamics Simulations on Graphics Processors Towards Large-Scale Molecular Dynamics Simulations on Graphics Processors Joe Davis, Sandeep Patel, and Michela Taufer University of Delaware Outline Introduction Introduction to GPU programming Why MD

More information

NVIDIA Tools For Profiling And Monitoring. David Goodwin

NVIDIA Tools For Profiling And Monitoring. David Goodwin NVIDIA Tools For Profiling And Monitoring David Goodwin Outline CUDA Profiling and Monitoring Libraries Tools Technologies Directions CScADS Summer 2012 Workshop on Performance Tools for Extreme Scale

More information

CUDAMat: a CUDA-based matrix class for Python

CUDAMat: a CUDA-based matrix class for Python Department of Computer Science 6 King s College Rd, Toronto University of Toronto M5S 3G4, Canada http://learning.cs.toronto.edu fax: +1 416 978 1455 November 25, 2009 UTML TR 2009 004 CUDAMat: a CUDA-based

More information

Le langage OCaml et la programmation des GPU

Le langage OCaml et la programmation des GPU Le langage OCaml et la programmation des GPU GPU programming with OCaml Mathias Bourgoin - Emmanuel Chailloux - Jean-Luc Lamotte Le projet OpenGPU : un an plus tard Ecole Polytechnique - 8 juin 2011 Outline

More information

Clustering Billions of Data Points Using GPUs

Clustering Billions of Data Points Using GPUs Clustering Billions of Data Points Using GPUs Ren Wu ren.wu@hp.com Bin Zhang bin.zhang2@hp.com Meichun Hsu meichun.hsu@hp.com ABSTRACT In this paper, we report our research on using GPUs to accelerate

More information

Retour d expérience : portage d une application haute-performance vers un langage de haut niveau

Retour d expérience : portage d une application haute-performance vers un langage de haut niveau Retour d expérience : portage d une application haute-performance vers un langage de haut niveau ComPAS/RenPar 2013 Mathias Bourgoin - Emmanuel Chailloux - Jean-Luc Lamotte 16 Janvier 2013 Our Goals Globally

More information

6. Cholesky factorization

6. Cholesky factorization 6. Cholesky factorization EE103 (Fall 2011-12) triangular matrices forward and backward substitution the Cholesky factorization solving Ax = b with A positive definite inverse of a positive definite matrix

More information

Implementation of Stereo Matching Using High Level Compiler for Parallel Computing Acceleration

Implementation of Stereo Matching Using High Level Compiler for Parallel Computing Acceleration Implementation of Stereo Matching Using High Level Compiler for Parallel Computing Acceleration Jinglin Zhang, Jean François Nezan, Jean-Gabriel Cousin, Erwan Raffin To cite this version: Jinglin Zhang,

More information

Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com

Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com CSCI-GA.3033-012 Graphics Processing Units (GPUs): Architecture and Programming Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com Modern GPU

More information

( ) which must be a vector

( ) which must be a vector MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are

More information

CSR REPORT 2016 Corporate Social Responsibility Report

CSR REPORT 2016 Corporate Social Responsibility Report CSR REPORT 2016 Corporate Social Responsibility Report 01 02 03 07 13 14 15 17 Business 19 20 21 22 Support and Contribution 23 Management System 27 31 with Employee 02 Business 03 1 2 04 18 1 3 4 2 6

More information

Speeding Up RSA Encryption Using GPU Parallelization

Speeding Up RSA Encryption Using GPU Parallelization 2014 Fifth International Conference on Intelligent Systems, Modelling and Simulation Speeding Up RSA Encryption Using GPU Parallelization Chu-Hsing Lin, Jung-Chun Liu, and Cheng-Chieh Li Department of

More information

Matrix-vector multiplication in terms of dot-products

Matrix-vector multiplication in terms of dot-products Matrix-vector multiplication in terms of dot-products Let M be an R C matrix. Dot-Product Definition of matrix-vector multiplication: M u is the R-vector v such that v[r] is the dot-product of row r of

More information

Overview of HPC Resources at Vanderbilt

Overview of HPC Resources at Vanderbilt Overview of HPC Resources at Vanderbilt Will French Senior Application Developer and Research Computing Liaison Advanced Computing Center for Research and Education June 10, 2015 2 Computing Resources

More information

Conjugate Gradients on Multiple GPUs

Conjugate Gradients on Multiple GPUs Conjugate Gradients on Multiple GPUs Serban Georgescu 1, Hiroshi Okuda 2 1 The University of Tokyo, Department of Quantum Eng. and Systems Science, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan 2 The University

More information

Introduction to GPU hardware and to CUDA

Introduction to GPU hardware and to CUDA Introduction to GPU hardware and to CUDA Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) GPU introduction 1 / 37 Course outline Introduction to GPU hardware

More information

PERI Auto-Tuning. E-mail: mhall@isi.edu

PERI Auto-Tuning. E-mail: mhall@isi.edu PERI Auto-Tuning David H Bailey 2, Jacqueline Chame 4, Chun Chen 4, Jack Dongarra 5, Mary Hall 4, Jeffrey K Hollingsworth 3, Paul Hovland 1, Shirley Moore 5, Keith Seymour 5, Jaewook Shin 1, Ananta Tiwari

More information

GPGPU Computing. Yong Cao

GPGPU Computing. Yong Cao GPGPU Computing Yong Cao Why Graphics Card? It s powerful! A quiet trend Copyright 2009 by Yong Cao Why Graphics Card? It s powerful! Processor Processing Units FLOPs per Unit Clock Speed Processing Power

More information

Efficient Gather and Scatter Operations on Graphics Processors

Efficient Gather and Scatter Operations on Graphics Processors Efficient Gather and Operations on Graphics Processors ingsheng He # Naga K. Govindaraju * Qiong Luo # urton Smith * # Hong Kong Univ. of Science and Technology * Microsoft Corp. {saven, luo}@cse.ust.hk

More information

Introduction to Numerical General Purpose GPU Computing with NVIDIA CUDA. Part 1: Hardware design and programming model

Introduction to Numerical General Purpose GPU Computing with NVIDIA CUDA. Part 1: Hardware design and programming model Introduction to Numerical General Purpose GPU Computing with NVIDIA CUDA Part 1: Hardware design and programming model Amin Safi Faculty of Mathematics, TU dortmund January 22, 2016 Table of Contents Set

More information

Advanced Computational Software

Advanced Computational Software Advanced Computational Software Scientific Libraries: Part 2 Blue Waters Undergraduate Petascale Education Program May 29 June 10 2011 Outline Quick review Fancy Linear Algebra libraries - ScaLAPACK -PETSc

More information

CS 352H: Computer Systems Architecture

CS 352H: Computer Systems Architecture CS 352H: Computer Systems Architecture Topic 14: Multicores, Multiprocessors, and Clusters University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell Introduction Goal:

More information

CUDA Debugging. GPGPU Workshop, August 2012. Sandra Wienke Center for Computing and Communication, RWTH Aachen University

CUDA Debugging. GPGPU Workshop, August 2012. Sandra Wienke Center for Computing and Communication, RWTH Aachen University CUDA Debugging GPGPU Workshop, August 2012 Sandra Wienke Center for Computing and Communication, RWTH Aachen University Nikolay Piskun, Chris Gottbrath Rogue Wave Software Rechen- und Kommunikationszentrum

More information

GPU-BASED TUNING OF QUANTUM-INSPIRED GENETIC ALGORITHM FOR A COMBINATORIAL OPTIMIZATION PROBLEM

GPU-BASED TUNING OF QUANTUM-INSPIRED GENETIC ALGORITHM FOR A COMBINATORIAL OPTIMIZATION PROBLEM GPU-BASED TUNING OF QUANTUM-INSPIRED GENETIC ALGORITHM FOR A COMBINATORIAL OPTIMIZATION PROBLEM Robert Nowotniak, Jacek Kucharski Computer Engineering Department The Faculty of Electrical, Electronic,

More information