Auto-Tuning TRSM with an Asynchronous Task Assignment Model on Multicore, GPU and Coprocessor Systems

Size: px
Start display at page:

Download "Auto-Tuning TRSM with an Asynchronous Task Assignment Model on Multicore, GPU and Coprocessor Systems"

Transcription

1 Auto-Tuning TRSM with an Asynchronous Task Assignment Model on Multicore, GPU and Coprocessor Systems Murilo Boratto Núcleo de Arquitetura de Computadores e Sistemas Operacionais, Universidade do Estado da Bahia, Brazil July 2, 2016

2 Outline Motivation TRSM Auto-Tuning Modelling Experimental Results Perspectives

3 Objective Auto-tuning: automatically decide how to run a routine for low execution time.

4 Objective Auto-tuning: automatically decide how to run a routine for low execution time. Predict the routine behavior depending on the problem size and the computational system.

5 Objective Auto-tuning: automatically decide how to run a routine for low execution time. Predict the routine behavior depending on the problem size and the computational system. Use of parameterized routines and models, with theoretical or empirical estimation of the parameters of the system and selection of the routine parameters at execution time.

6 Hybrid parallelism Routines combining different sources of parallelism: Multilevel parallelism with OpenMP OpenMP+BLAS+MAGMA parallelism CPU+GPU+Coprocessador parallelism There are possible extensions: MPI+OpenMP+BLAS+MAGMA+Multi-GPU+Multi- Coprocessor... Systems and computation hybrid, heterogeneous, hierarchical.

7 Applications Collaboration with the Scientific Computing and Parallel Programming (SCPP) group at the University of Murcia: Auto-Tuning of parallel routines and applications of parallelism ( domingo/investigacion.html) In this presentation we summarize our on-going work on auto-tuning a hybrid-parallel linear algebra routine: Triangular Linear Systems Solver (TRSM)

8 Applications: Linear algebra Basic routines: matrix multiplication, factorizations... with OpenMP+BLAS+MAGMA parallelism to be used in large computational problems (electromagnetism, statistic models...) Related with: J. Cuenca, L. P. García, D. Giménez, F. J. Herrera: Empirical Modeling: an Auto-tuning Method for Linear Algebra Routines on CPU+multiGPUs Platforms, CMMSE16. M. Boratto, P. Alonso, D. Giménez, A. Lastovetsky: Automatic Tuning to Performance Modelling of Matrix Polynomials on Multicore and Multi-GPU Systems, CMMSE15, The Journal of Supercomputing.

9 Computational systems: CPU+GPU+Coprocessor Combination of Multicores + GPU + Coprocessor Preliminary analysis on the combination of the three types of systems Modeling or empirical installation? Goal Auto-Tuning methodology for nested parallelism (OpenMP+BLAS+MAGMA), experiments with the TRSM routine.

10 TRSM

11 TRSM The TRSM routine solves the linear equation AX = B, where A is an upper or lower triangular matrix and B is a known matrix, called right-hand side matrix. Implementation with a block algorithm in parallel, with solution of small triangular systems with TRSM and matrix multiplications with GEMM. 00 TRSM 10 GEMM 11 TRSM Distribution of blocks to the computational components with a estructure of tasks T1 T2 2 1 T3 20 GEMM GEMM TRSM = Task done 0 = Task waiting to be done 1 = Task with single dependency 2 = Task with double dependency Producer Thread Consumer Thread Thread waiting for Task T1 T2 T3 L10 L20 L30 GEMM GEMM GEMM TRSM

12 Auto-Tuning

13 Auto-Tuning Auto-Tuning is a software technique that is expected to fulfill its requirements at runtime, in response to changes in the system (different system configurations) or the problem (size and particular input). The principal objectives are: Self-configuration Self-optimization

14 Auto-Tuning Methodology

15 Empirical Installation To run some selected executions at installation time: Experiment with parameters of the model A large installation time may be needed For some problem sizes, search for the best parameters combination: exhaustive search / guided search (search in the most promising directions). Experiments with: Some problem sizes: Installation set and values of the algorithmic parameters: Parameters set The equation that predicts the execution time is generated, or the preferred parameters are stored.

16 Experimental Results

17 Table: Execution Environment: Hardware and Software Processor IntelRCore (TM) Memory 12GB Clock 3.60GHz Number of Processors 2 Cores per Processor 8 GPU Type NVIDIA TESLA C2070 Number of GPUs 2 CUDA cores per GPU 2496 GPU Memory per GPU 5GB GRR3 Version CUDA 4.0 MIC Intel Xeon Phi Number of MIC 1 Cores per MIC 57

18 Installation Algorithmic parameters: c: number of threads w: block size Installation set={100, 200, 300, 400, 500} Parameters set={2,4,6,8,10,12,14,16} {16,32,64} The best parameters combination if obtained, (12, 64), and the equation that predicts the execution time is generated

19 Execution Time Execution time with different parameters values (in seconds). Platform n = n = n = n = c w time w time w time w time

20 Perspectives

21 Perspectives Modelling can help in the auto-tuning of basic parallel routines and scientific codes, so contributing to the efficient use of parallel programs. Hybrid parallelism (different types of parallelism, different paradigms...) introduces additional difficulties. Sometimes the theoretical models are combined with empirical analysis. Satisfactory results with a TRSM routine, but better modeling techniques are needed, especially for complex scientific problems in more complex (hybrid, heterogeneous, hierarchical) systems.

Optimizing a 3D-FWT code in a cluster of CPUs+GPUs

Optimizing a 3D-FWT code in a cluster of CPUs+GPUs Optimizing a 3D-FWT code in a cluster of CPUs+GPUs Gregorio Bernabé Javier Cuenca Domingo Giménez Universidad de Murcia Scientific Computing and Parallel Programming Group XXIX Simposium Nacional de la

More information

GPU System Architecture. Alan Gray EPCC The University of Edinburgh

GPU System Architecture. Alan Gray EPCC The University of Edinburgh GPU System Architecture EPCC The University of Edinburgh Outline Why do we want/need accelerators such as GPUs? GPU-CPU comparison Architectural reasons for GPU performance advantages GPU accelerated systems

More information

Accelerating CFD using OpenFOAM with GPUs

Accelerating CFD using OpenFOAM with GPUs Accelerating CFD using OpenFOAM with GPUs Authors: Saeed Iqbal and Kevin Tubbs The OpenFOAM CFD Toolbox is a free, open source CFD software package produced by OpenCFD Ltd. Its user base represents a wide

More information

HIGH PERFORMANCE CONSULTING COURSE OFFERINGS

HIGH PERFORMANCE CONSULTING COURSE OFFERINGS Performance 1(6) HIGH PERFORMANCE CONSULTING COURSE OFFERINGS LEARN TO TAKE ADVANTAGE OF POWERFUL GPU BASED ACCELERATOR TECHNOLOGY TODAY 2006 2013 Nvidia GPUs Intel CPUs CONTENTS Acronyms and Terminology...

More information

Retargeting PLAPACK to Clusters with Hardware Accelerators

Retargeting PLAPACK to Clusters with Hardware Accelerators Retargeting PLAPACK to Clusters with Hardware Accelerators Manuel Fogué 1 Francisco Igual 1 Enrique S. Quintana-Ortí 1 Robert van de Geijn 2 1 Departamento de Ingeniería y Ciencia de los Computadores.

More information

GPU Hardware and Programming Models. Jeremy Appleyard, September 2015

GPU Hardware and Programming Models. Jeremy Appleyard, September 2015 GPU Hardware and Programming Models Jeremy Appleyard, September 2015 A brief history of GPUs In this talk Hardware Overview Programming Models Ask questions at any point! 2 A Brief History of GPUs 3 Once

More information

High Performance Matrix Inversion with Several GPUs

High Performance Matrix Inversion with Several GPUs High Performance Matrix Inversion on a Multi-core Platform with Several GPUs Pablo Ezzatti 1, Enrique S. Quintana-Ortí 2 and Alfredo Remón 2 1 Centro de Cálculo-Instituto de Computación, Univ. de la República

More information

Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing

Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing Innovation Intelligence Devin Jensen August 2012 Altair Knows HPC Altair is the only company that: makes HPC tools

More information

Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o igiro7o@ictp.it

Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o igiro7o@ictp.it Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o igiro7o@ictp.it Informa(on & Communica(on Technology Sec(on (ICTS) Interna(onal Centre for Theore(cal Physics (ICTP) Mul(ple Socket

More information

GPUs for Scientific Computing

GPUs for Scientific Computing GPUs for Scientific Computing p. 1/16 GPUs for Scientific Computing Mike Giles mike.giles@maths.ox.ac.uk Oxford-Man Institute of Quantitative Finance Oxford University Mathematical Institute Oxford e-research

More information

Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms

Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms Amani AlOnazi, David E. Keyes, Alexey Lastovetsky, Vladimir Rychkov Extreme Computing Research Center,

More information

Mixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms

Mixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms Mixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms Björn Rocker Hamburg, June 17th 2010 Engineering Mathematics and Computing Lab (EMCL) KIT University of the State

More information

High Performance Computing in CST STUDIO SUITE

High Performance Computing in CST STUDIO SUITE High Performance Computing in CST STUDIO SUITE Felix Wolfheimer GPU Computing Performance Speedup 18 16 14 12 10 8 6 4 2 0 Promo offer for EUC participants: 25% discount for K40 cards Speedup of Solver

More information

Overview of HPC Resources at Vanderbilt

Overview of HPC Resources at Vanderbilt Overview of HPC Resources at Vanderbilt Will French Senior Application Developer and Research Computing Liaison Advanced Computing Center for Research and Education June 10, 2015 2 Computing Resources

More information

Building a Top500-class Supercomputing Cluster at LNS-BUAP

Building a Top500-class Supercomputing Cluster at LNS-BUAP Building a Top500-class Supercomputing Cluster at LNS-BUAP Dr. José Luis Ricardo Chávez Dr. Humberto Salazar Ibargüen Dr. Enrique Varela Carlos Laboratorio Nacional de Supercómputo Benemérita Universidad

More information

Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers

Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers Haohuan Fu haohuan@tsinghua.edu.cn High Performance Geo-Computing (HPGC) Group Center for Earth System Science Tsinghua University

More information

HPC with Multicore and GPUs

HPC with Multicore and GPUs HPC with Multicore and GPUs Stan Tomov Electrical Engineering and Computer Science Department University of Tennessee, Knoxville CS 594 Lecture Notes March 4, 2015 1/18 Outline! Introduction - Hardware

More information

CORRIGENDUM TO TENDER FOR HIGH PERFORMANCE SERVER

CORRIGENDUM TO TENDER FOR HIGH PERFORMANCE SERVER CORRIGENDUM TO TENDER FOR HIGH PERFORMANCE SERVER Tender Notice No. 3/2014-15 dated 29.12.2014 (IIT/CE/ENQ/COM/HPC/2014-15/569) Tender Submission Deadline Last date for submission of sealed bids is extended

More information

ST810 Advanced Computing

ST810 Advanced Computing ST810 Advanced Computing Lecture 17: Parallel computing part I Eric B. Laber Hua Zhou Department of Statistics North Carolina State University Mar 13, 2013 Outline computing Hardware computing overview

More information

Assessing the Performance of OpenMP Programs on the Intel Xeon Phi

Assessing the Performance of OpenMP Programs on the Intel Xeon Phi Assessing the Performance of OpenMP Programs on the Intel Xeon Phi Dirk Schmidl, Tim Cramer, Sandra Wienke, Christian Terboven, and Matthias S. Müller schmidl@rz.rwth-aachen.de Rechen- und Kommunikationszentrum

More information

Introduction to GPU Programming Languages

Introduction to GPU Programming Languages CSC 391/691: GPU Programming Fall 2011 Introduction to GPU Programming Languages Copyright 2011 Samuel S. Cho http://www.umiacs.umd.edu/ research/gpu/facilities.html Maryland CPU/GPU Cluster Infrastructure

More information

Graphic Processing Units: a possible answer to High Performance Computing?

Graphic Processing Units: a possible answer to High Performance Computing? 4th ABINIT Developer Workshop RESIDENCE L ESCANDILLE AUTRANS HPC & Graphic Processing Units: a possible answer to High Performance Computing? Luigi Genovese ESRF - Grenoble 26 March 2009 http://inac.cea.fr/l_sim/

More information

A quick tutorial on Intel's Xeon Phi Coprocessor

A quick tutorial on Intel's Xeon Phi Coprocessor A quick tutorial on Intel's Xeon Phi Coprocessor www.cism.ucl.ac.be damien.francois@uclouvain.be Architecture Setup Programming The beginning of wisdom is the definition of terms. * Name Is a... As opposed

More information

GPU-BASED TUNING OF QUANTUM-INSPIRED GENETIC ALGORITHM FOR A COMBINATORIAL OPTIMIZATION PROBLEM

GPU-BASED TUNING OF QUANTUM-INSPIRED GENETIC ALGORITHM FOR A COMBINATORIAL OPTIMIZATION PROBLEM GPU-BASED TUNING OF QUANTUM-INSPIRED GENETIC ALGORITHM FOR A COMBINATORIAL OPTIMIZATION PROBLEM Robert Nowotniak, Jacek Kucharski Computer Engineering Department The Faculty of Electrical, Electronic,

More information

A Flexible Cluster Infrastructure for Systems Research and Software Development

A Flexible Cluster Infrastructure for Systems Research and Software Development Award Number: CNS-551555 Title: CRI: Acquisition of an InfiniBand Cluster with SMP Nodes Institution: Florida State University PIs: Xin Yuan, Robert van Engelen, Kartik Gopalan A Flexible Cluster Infrastructure

More information

Multicore Parallel Computing with OpenMP

Multicore Parallel Computing with OpenMP Multicore Parallel Computing with OpenMP Tan Chee Chiang (SVU/Academic Computing, Computer Centre) 1. OpenMP Programming The death of OpenMP was anticipated when cluster systems rapidly replaced large

More information

Introducing PgOpenCL A New PostgreSQL Procedural Language Unlocking the Power of the GPU! By Tim Child

Introducing PgOpenCL A New PostgreSQL Procedural Language Unlocking the Power of the GPU! By Tim Child Introducing A New PostgreSQL Procedural Language Unlocking the Power of the GPU! By Tim Child Bio Tim Child 35 years experience of software development Formerly VP Oracle Corporation VP BEA Systems Inc.

More information

Introduction to GPU hardware and to CUDA

Introduction to GPU hardware and to CUDA Introduction to GPU hardware and to CUDA Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) GPU introduction 1 / 37 Course outline Introduction to GPU hardware

More information

Case Study on Productivity and Performance of GPGPUs

Case Study on Productivity and Performance of GPGPUs Case Study on Productivity and Performance of GPGPUs Sandra Wienke wienke@rz.rwth-aachen.de ZKI Arbeitskreis Supercomputing April 2012 Rechen- und Kommunikationszentrum (RZ) RWTH GPU-Cluster 56 Nvidia

More information

Scalable and High Performance Computing for Big Data Analytics in Understanding the Human Dynamics in the Mobile Age

Scalable and High Performance Computing for Big Data Analytics in Understanding the Human Dynamics in the Mobile Age Scalable and High Performance Computing for Big Data Analytics in Understanding the Human Dynamics in the Mobile Age Xuan Shi GRA: Bowei Xue University of Arkansas Spatiotemporal Modeling of Human Dynamics

More information

Parallel Computing for Data Science

Parallel Computing for Data Science Parallel Computing for Data Science With Examples in R, C++ and CUDA Norman Matloff University of California, Davis USA (g) CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint

More information

Three Paths to Faster Simulations Using ANSYS Mechanical 16.0 and Intel Architecture

Three Paths to Faster Simulations Using ANSYS Mechanical 16.0 and Intel Architecture White Paper Intel Xeon processor E5 v3 family Intel Xeon Phi coprocessor family Digital Design and Engineering Three Paths to Faster Simulations Using ANSYS Mechanical 16.0 and Intel Architecture Executive

More information

ultra fast SOM using CUDA

ultra fast SOM using CUDA ultra fast SOM using CUDA SOM (Self-Organizing Map) is one of the most popular artificial neural network algorithms in the unsupervised learning category. Sijo Mathew Preetha Joy Sibi Rajendra Manoj A

More information

Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Intel Xeon Processor E7 v2 Family-Based Platforms

Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Intel Xeon Processor E7 v2 Family-Based Platforms Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Family-Based Platforms Executive Summary Complex simulations of structural and systems performance, such as car crash simulations,

More information

Turbomachinery CFD on many-core platforms experiences and strategies

Turbomachinery CFD on many-core platforms experiences and strategies Turbomachinery CFD on many-core platforms experiences and strategies Graham Pullan Whittle Laboratory, Department of Engineering, University of Cambridge MUSAF Colloquium, CERFACS, Toulouse September 27-29

More information

HETEROGENEOUS HPC, ARCHITECTURE OPTIMIZATION, AND NVLINK

HETEROGENEOUS HPC, ARCHITECTURE OPTIMIZATION, AND NVLINK HETEROGENEOUS HPC, ARCHITECTURE OPTIMIZATION, AND NVLINK Steve Oberlin CTO, Accelerated Computing US to Build Two Flagship Supercomputers SUMMIT SIERRA Partnership for Science 100-300 PFLOPS Peak Performance

More information

Purchase of High Performance Computing (HPC) Central Compute Resources by Northwestern Researchers

Purchase of High Performance Computing (HPC) Central Compute Resources by Northwestern Researchers Information Technology Purchase of High Performance Computing (HPC) Central Compute Resources by Northwestern Researchers Effective for FY2016 Purpose This document summarizes High Performance Computing

More information

Resource Scheduling Best Practice in Hybrid Clusters

Resource Scheduling Best Practice in Hybrid Clusters Available online at www.prace-ri.eu Partnership for Advanced Computing in Europe Resource Scheduling Best Practice in Hybrid Clusters C. Cavazzoni a, A. Federico b, D. Galetti a, G. Morelli b, A. Pieretti

More information

The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System

The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System Qingyu Meng, Alan Humphrey, Martin Berzins Thanks to: John Schmidt and J. Davison de St. Germain, SCI Institute Justin Luitjens

More information

Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi

Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi ICPP 6 th International Workshop on Parallel Programming Models and Systems Software for High-End Computing October 1, 2013 Lyon, France

More information

Trading Off Performance for Power-Energy in Dense Linear Algebra Operations

Trading Off Performance for Power-Energy in Dense Linear Algebra Operations Trading Off Performance for Power-Energy in Dense Linear Algebra Operations Peter Benner 1, Pablo Ezzatti 2, Enrique S. Quintana-Ortí 3, and Alfredo Remón 1 1 Max-Planck-Institute for Dynamics of Complex

More information

Parallel Programming Survey

Parallel Programming Survey Christian Terboven 02.09.2014 / Aachen, Germany Stand: 26.08.2014 Version 2.3 IT Center der RWTH Aachen University Agenda Overview: Processor Microarchitecture Shared-Memory

More information

HPC Wales Skills Academy Course Catalogue 2015

HPC Wales Skills Academy Course Catalogue 2015 HPC Wales Skills Academy Course Catalogue 2015 Overview The HPC Wales Skills Academy provides a variety of courses and workshops aimed at building skills in High Performance Computing (HPC). Our courses

More information

Dense Linear Algebra Solvers for Multicore with GPU Accelerators

Dense Linear Algebra Solvers for Multicore with GPU Accelerators Dense Linear Algebra Solvers for Multicore with GPU Accelerators Stanimire Tomov, Rajib Nath, Hatem Ltaief, and Jack Dongarra Department of Electrical Engineering and Computer Science, University of Tennessee,

More information

Big Data Visualization on the MIC

Big Data Visualization on the MIC Big Data Visualization on the MIC Tim Dykes School of Creative Technologies University of Portsmouth timothy.dykes@port.ac.uk Many-Core Seminar Series 26/02/14 Splotch Team Tim Dykes, University of Portsmouth

More information

Home Exam 3: Distributed Video Encoding using Dolphin PCI Express Networks. October 20 th 2015

Home Exam 3: Distributed Video Encoding using Dolphin PCI Express Networks. October 20 th 2015 INF5063: Programming heterogeneous multi-core processors because the OS-course is just to easy! Home Exam 3: Distributed Video Encoding using Dolphin PCI Express Networks October 20 th 2015 Håkon Kvale

More information

LS-DYNA Scalability on Cray Supercomputers. Tin-Ting Zhu, Cray Inc. Jason Wang, Livermore Software Technology Corp.

LS-DYNA Scalability on Cray Supercomputers. Tin-Ting Zhu, Cray Inc. Jason Wang, Livermore Software Technology Corp. LS-DYNA Scalability on Cray Supercomputers Tin-Ting Zhu, Cray Inc. Jason Wang, Livermore Software Technology Corp. WP-LS-DYNA-12213 www.cray.com Table of Contents Abstract... 3 Introduction... 3 Scalability

More information

GPU-accelerated Large Scale Analytics using MapReduce Model

GPU-accelerated Large Scale Analytics using MapReduce Model , pp.375-380 http://dx.doi.org/10.14257/ijhit.2015.8.6.36 GPU-accelerated Large Scale Analytics using MapReduce Model RadhaKishan Yadav 1, Robin Singh Bhadoria 2 and Amit Suri 3 1 Research Assistant 2

More information

In-Situ Bitmaps Generation and Efficient Data Analysis based on Bitmaps. Yu Su, Yi Wang, Gagan Agrawal The Ohio State University

In-Situ Bitmaps Generation and Efficient Data Analysis based on Bitmaps. Yu Su, Yi Wang, Gagan Agrawal The Ohio State University In-Situ Bitmaps Generation and Efficient Data Analysis based on Bitmaps Yu Su, Yi Wang, Gagan Agrawal The Ohio State University Motivation HPC Trends Huge performance gap CPU: extremely fast for generating

More information

Debugging in Heterogeneous Environments with TotalView. ECMWF HPC Workshop 30 th October 2014

Debugging in Heterogeneous Environments with TotalView. ECMWF HPC Workshop 30 th October 2014 Debugging in Heterogeneous Environments with TotalView ECMWF HPC Workshop 30 th October 2014 Agenda Introduction Challenges TotalView overview Advanced features Current work and future plans 2014 Rogue

More information

FPGA-based Multithreading for In-Memory Hash Joins

FPGA-based Multithreading for In-Memory Hash Joins FPGA-based Multithreading for In-Memory Hash Joins Robert J. Halstead, Ildar Absalyamov, Walid A. Najjar, Vassilis J. Tsotras University of California, Riverside Outline Background What are FPGAs Multithreaded

More information

Intro to GPU computing. Spring 2015 Mark Silberstein, 048661, Technion 1

Intro to GPU computing. Spring 2015 Mark Silberstein, 048661, Technion 1 Intro to GPU computing Spring 2015 Mark Silberstein, 048661, Technion 1 Serial vs. parallel program One instruction at a time Multiple instructions in parallel Spring 2015 Mark Silberstein, 048661, Technion

More information

Parallel Computing. Introduction

Parallel Computing. Introduction Parallel Computing Introduction Thorsten Grahs, 14. April 2014 Administration Lecturer Dr. Thorsten Grahs (that s me) t.grahs@tu-bs.de Institute of Scientific Computing Room RZ 120 Lecture Monday 11:30-13:00

More information

~ Greetings from WSU CAPPLab ~

~ Greetings from WSU CAPPLab ~ ~ Greetings from WSU CAPPLab ~ Multicore with SMT/GPGPU provides the ultimate performance; at WSU CAPPLab, we can help! Dr. Abu Asaduzzaman, Assistant Professor and Director Wichita State University (WSU)

More information

A Study on the Scalability of Hybrid LS-DYNA on Multicore Architectures

A Study on the Scalability of Hybrid LS-DYNA on Multicore Architectures 11 th International LS-DYNA Users Conference Computing Technology A Study on the Scalability of Hybrid LS-DYNA on Multicore Architectures Yih-Yih Lin Hewlett-Packard Company Abstract In this paper, the

More information

Part I Courses Syllabus

Part I Courses Syllabus Part I Courses Syllabus This document provides detailed information about the basic courses of the MHPC first part activities. The list of courses is the following 1.1 Scientific Programming Environment

More information

Next Generation GPU Architecture Code-named Fermi

Next Generation GPU Architecture Code-named Fermi Next Generation GPU Architecture Code-named Fermi The Soul of a Supercomputer in the Body of a GPU Why is NVIDIA at Super Computing? Graphics is a throughput problem paint every pixel within frame time

More information

GPGPU accelerated Computational Fluid Dynamics

GPGPU accelerated Computational Fluid Dynamics t e c h n i s c h e u n i v e r s i t ä t b r a u n s c h w e i g Carl-Friedrich Gauß Faculty GPGPU accelerated Computational Fluid Dynamics 5th GACM Colloquium on Computational Mechanics Hamburg Institute

More information

Dr. Raju Namburu Computational Sciences Campaign U.S. Army Research Laboratory. The Nation s Premier Laboratory for Land Forces UNCLASSIFIED

Dr. Raju Namburu Computational Sciences Campaign U.S. Army Research Laboratory. The Nation s Premier Laboratory for Land Forces UNCLASSIFIED Dr. Raju Namburu Computational Sciences Campaign U.S. Army Research Laboratory 21 st Century Research Continuum Theory Theory embodied in computation Hypotheses tested through experiment SCIENTIFIC METHODS

More information

Performance Characteristics of Large SMP Machines

Performance Characteristics of Large SMP Machines Performance Characteristics of Large SMP Machines Dirk Schmidl, Dieter an Mey, Matthias S. Müller schmidl@rz.rwth-aachen.de Rechen- und Kommunikationszentrum (RZ) Agenda Investigated Hardware Kernel Benchmark

More information

HPC enabling of OpenFOAM R for CFD applications

HPC enabling of OpenFOAM R for CFD applications HPC enabling of OpenFOAM R for CFD applications Towards the exascale: OpenFOAM perspective Ivan Spisso 25-27 March 2015, Casalecchio di Reno, BOLOGNA. SuperComputing Applications and Innovation Department,

More information

The High Performance Internet of Things: using GVirtuS for gluing cloud computing and ubiquitous connected devices

The High Performance Internet of Things: using GVirtuS for gluing cloud computing and ubiquitous connected devices WS on Models, Algorithms and Methodologies for Hierarchical Parallelism in new HPC Systems The High Performance Internet of Things: using GVirtuS for gluing cloud computing and ubiquitous connected devices

More information

Hardware-Aware Analysis and. Presentation Date: Sep 15 th 2009 Chrissie C. Cui

Hardware-Aware Analysis and. Presentation Date: Sep 15 th 2009 Chrissie C. Cui Hardware-Aware Analysis and Optimization of Stable Fluids Presentation Date: Sep 15 th 2009 Chrissie C. Cui Outline Introduction Highlights Flop and Bandwidth Analysis Mehrstellen Schemes Advection Caching

More information

Recent and Future Activities in HPC and Scientific Data Management Siegfried Benkner

Recent and Future Activities in HPC and Scientific Data Management Siegfried Benkner Recent and Future Activities in HPC and Scientific Data Management Siegfried Benkner Research Group Scientific Computing Faculty of Computer Science University of Vienna AUSTRIA http://www.par.univie.ac.at

More information

A Pattern-Based Comparison of OpenACC & OpenMP for Accelerators

A Pattern-Based Comparison of OpenACC & OpenMP for Accelerators A Pattern-Based Comparison of OpenACC & OpenMP for Accelerators Sandra Wienke 1,2, Christian Terboven 1,2, James C. Beyer 3, Matthias S. Müller 1,2 1 IT Center, RWTH Aachen University 2 JARA-HPC, Aachen

More information

A Case Study - Scaling Legacy Code on Next Generation Platforms

A Case Study - Scaling Legacy Code on Next Generation Platforms Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 00 (2015) 000 000 www.elsevier.com/locate/procedia 24th International Meshing Roundtable (IMR24) A Case Study - Scaling Legacy

More information

GPU Computing with CUDA Lecture 2 - CUDA Memories. Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile

GPU Computing with CUDA Lecture 2 - CUDA Memories. Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile GPU Computing with CUDA Lecture 2 - CUDA Memories Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile 1 Outline of lecture Recap of Lecture 1 Warp scheduling CUDA Memory hierarchy

More information

Analysis and Optimization of a Hybrid Linear Equation Solver using Task-Based Parallel Programming Models

Analysis and Optimization of a Hybrid Linear Equation Solver using Task-Based Parallel Programming Models Available online at www.prace-ri.eu Partnership for Advanced Computing in Europe Analysis and Optimization of a Hybrid Linear Equation Solver using Task-Based Parallel Programming Models Claudia Rosas,

More information

Optimizing Memory-Bound SYMV Kernel on GPU Hardware Accelerators

Optimizing Memory-Bound SYMV Kernel on GPU Hardware Accelerators Optimizing Memory-Bound SYMV Kernel on GPU Hardware Accelerators Ahmad Abdelfattah 1, Jack Dongarra 2, David Keyes 1, and Hatem Ltaief 3 1 KAUST Division of Mathematical and Computer Sciences and Engineering,

More information

Simulation Platform Overview

Simulation Platform Overview Simulation Platform Overview Build, compute, and analyze simulations on demand www.rescale.com CASE STUDIES Companies in the aerospace and automotive industries use Rescale to run faster simulations Aerospace

More information

HP ProLiant SL270s Gen8 Server. Evaluation Report

HP ProLiant SL270s Gen8 Server. Evaluation Report HP ProLiant SL270s Gen8 Server Evaluation Report Thomas Schoenemeyer, Hussein Harake and Daniel Peter Swiss National Supercomputing Centre (CSCS), Lugano Institute of Geophysics, ETH Zürich schoenemeyer@cscs.ch

More information

Parallelism and Cloud Computing

Parallelism and Cloud Computing Parallelism and Cloud Computing Kai Shen Parallel Computing Parallel computing: Process sub tasks simultaneously so that work can be completed faster. For instances: divide the work of matrix multiplication

More information

Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes

Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes Eric Petit, Loïc Thebault, Quang V. Dinh May 2014 EXA2CT Consortium 2 WPs Organization Proto-Applications

More information

Parallel Computing with MATLAB

Parallel Computing with MATLAB Parallel Computing with MATLAB Scott Benway Senior Account Manager Jiro Doke, Ph.D. Senior Application Engineer 2013 The MathWorks, Inc. 1 Acceleration Strategies Applied in MATLAB Approach Options Best

More information

Scalability and Classifications

Scalability and Classifications Scalability and Classifications 1 Types of Parallel Computers MIMD and SIMD classifications shared and distributed memory multicomputers distributed shared memory computers 2 Network Topologies static

More information

David Rioja Redondo Telecommunication Engineer Englobe Technologies and Systems

David Rioja Redondo Telecommunication Engineer Englobe Technologies and Systems David Rioja Redondo Telecommunication Engineer Englobe Technologies and Systems About me David Rioja Redondo Telecommunication Engineer - Universidad de Alcalá >2 years building and managing clusters UPM

More information

Optimizing Symmetric Dense Matrix-Vector Multiplication on GPUs

Optimizing Symmetric Dense Matrix-Vector Multiplication on GPUs Optimizing Symmetric Dense Matrix-Vector Multiplication on GPUs Rajib Nath Computer Science and Engineering University of California, San Diego rknath@ucsd.edu Stanimire Tomov Electrical Engineering and

More information

Introduction to GPU Computing

Introduction to GPU Computing Matthis Hauschild Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Technische Aspekte Multimodaler Systeme December 4, 2014 M. Hauschild - 1 Table of Contents 1. Architecture

More information

Introduction to GPGPU. Tiziano Diamanti t.diamanti@cineca.it

Introduction to GPGPU. Tiziano Diamanti t.diamanti@cineca.it t.diamanti@cineca.it Agenda From GPUs to GPGPUs GPGPU architecture CUDA programming model Perspective projection Vectors that connect the vanishing point to every point of the 3D model will intersecate

More information

GPU File System Encryption Kartik Kulkarni and Eugene Linkov

GPU File System Encryption Kartik Kulkarni and Eugene Linkov GPU File System Encryption Kartik Kulkarni and Eugene Linkov 5/10/2012 SUMMARY. We implemented a file system that encrypts and decrypts files. The implementation uses the AES algorithm computed through

More information

A CP Scheduler for High-Performance Computers

A CP Scheduler for High-Performance Computers A CP Scheduler for High-Performance Computers Thomas Bridi, Michele Lombardi, Andrea Bartolini, Luca Benini, and Michela Milano {thomas.bridi,michele.lombardi2,a.bartolini,luca.benini,michela.milano}@

More information

Evoluzione dell Infrastruttura di Calcolo e Data Analytics per la ricerca

Evoluzione dell Infrastruttura di Calcolo e Data Analytics per la ricerca Evoluzione dell Infrastruttura di Calcolo e Data Analytics per la ricerca Carlo Cavazzoni CINECA Supercomputing Application & Innovation www.cineca.it 21 Aprile 2015 FERMI Name: Fermi Architecture: BlueGene/Q

More information

High Performance. CAEA elearning Series. Jonathan G. Dudley, Ph.D. 06/09/2015. 2015 CAE Associates

High Performance. CAEA elearning Series. Jonathan G. Dudley, Ph.D. 06/09/2015. 2015 CAE Associates High Performance Computing (HPC) CAEA elearning Series Jonathan G. Dudley, Ph.D. 06/09/2015 2015 CAE Associates Agenda Introduction HPC Background Why HPC SMP vs. DMP Licensing HPC Terminology Types of

More information

Automatic CUDA Code Synthesis Framework for Multicore CPU and GPU architectures

Automatic CUDA Code Synthesis Framework for Multicore CPU and GPU architectures Automatic CUDA Code Synthesis Framework for Multicore CPU and GPU architectures 1 Hanwoong Jung, and 2 Youngmin Yi, 1 Soonhoi Ha 1 School of EECS, Seoul National University, Seoul, Korea {jhw7884, sha}@iris.snu.ac.kr

More information

GPGPU acceleration in OpenFOAM

GPGPU acceleration in OpenFOAM Carl-Friedrich Gauß Faculty GPGPU acceleration in OpenFOAM Northern germany OpenFoam User meeting Braunschweig Institute of Technology Thorsten Grahs Institute of Scientific Computing/move-csc 2nd October

More information

CUDA programming on NVIDIA GPUs

CUDA programming on NVIDIA GPUs p. 1/21 on NVIDIA GPUs Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute for Quantitative Finance Oxford eresearch Centre p. 2/21 Overview hardware view

More information

Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming

Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming Overview Lecture 1: an introduction to CUDA Mike Giles mike.giles@maths.ox.ac.uk hardware view software view Oxford University Mathematical Institute Oxford e-research Centre Lecture 1 p. 1 Lecture 1 p.

More information

COSCO 2015 Heterogeneous Computing Programming

COSCO 2015 Heterogeneous Computing Programming COSCO 2015 Heterogeneous Computing Programming Michael Meyer, Shunsuke Ishikuro Supporters: Kazuaki Sasamoto, Ryunosuke Murakami July 24th, 2015 Heterogeneous Computing Programming 1. Overview 2. Methodology

More information

Implementation of Stereo Matching Using High Level Compiler for Parallel Computing Acceleration

Implementation of Stereo Matching Using High Level Compiler for Parallel Computing Acceleration Implementation of Stereo Matching Using High Level Compiler for Parallel Computing Acceleration Jinglin Zhang, Jean François Nezan, Jean-Gabriel Cousin, Erwan Raffin To cite this version: Jinglin Zhang,

More information

ACCELERATING COMMERCIAL LINEAR DYNAMIC AND NONLINEAR IMPLICIT FEA SOFTWARE THROUGH HIGH- PERFORMANCE COMPUTING

ACCELERATING COMMERCIAL LINEAR DYNAMIC AND NONLINEAR IMPLICIT FEA SOFTWARE THROUGH HIGH- PERFORMANCE COMPUTING ACCELERATING COMMERCIAL LINEAR DYNAMIC AND Vladimir Belsky Director of Solver Development* Luis Crivelli Director of Solver Development* Matt Dunbar Chief Architect* Mikhail Belyi Development Group Manager*

More information

Experiences With Mobile Processors for Energy Efficient HPC

Experiences With Mobile Processors for Energy Efficient HPC Experiences With Mobile Processors for Energy Efficient HPC Nikola Rajovic, Alejandro Rico, James Vipond, Isaac Gelado, Nikola Puzovic, Alex Ramirez Barcelona Supercomputing Center Universitat Politècnica

More information

Trends in High-Performance Computing for Power Grid Applications

Trends in High-Performance Computing for Power Grid Applications Trends in High-Performance Computing for Power Grid Applications Franz Franchetti ECE, Carnegie Mellon University www.spiral.net Co-Founder, SpiralGen www.spiralgen.com This talk presents my personal views

More information

Parallel Image Processing with CUDA A case study with the Canny Edge Detection Filter

Parallel Image Processing with CUDA A case study with the Canny Edge Detection Filter Parallel Image Processing with CUDA A case study with the Canny Edge Detection Filter Daniel Weingaertner Informatics Department Federal University of Paraná - Brazil Hochschule Regensburg 02.05.2011 Daniel

More information

CFD Implementation with In-Socket FPGA Accelerators

CFD Implementation with In-Socket FPGA Accelerators CFD Implementation with In-Socket FPGA Accelerators Ivan Gonzalez UAM Team at DOVRES FuSim-E Programme Symposium: CFD on Future Architectures C 2 A 2 S 2 E DLR Braunschweig 14 th -15 th October 2009 Outline

More information

Using the Intel Xeon Phi (with the Stampede Supercomputer) ISC 13 Tutorial

Using the Intel Xeon Phi (with the Stampede Supercomputer) ISC 13 Tutorial Using the Intel Xeon Phi (with the Stampede Supercomputer) ISC 13 Tutorial Bill Barth, Kent Milfeld, Dan Stanzione Tommy Minyard Texas Advanced Computing Center Jim Jeffers, Intel June 2013, Leipzig, Germany

More information

Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging

Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging In some markets and scenarios where competitive advantage is all about speed, speed is measured in micro- and even nano-seconds.

More information

Towards Fast SQL Query Processing in DB2 BLU Using GPUs A Technology Demonstration. Sina Meraji sinamera@ca.ibm.com

Towards Fast SQL Query Processing in DB2 BLU Using GPUs A Technology Demonstration. Sina Meraji sinamera@ca.ibm.com Towards Fast SQL Query Processing in DB2 BLU Using GPUs A Technology Demonstration Sina Meraji sinamera@ca.ibm.com Please Note IBM s statements regarding its plans, directions, and intent are subject to

More information

Accelerator Beam Dynamics on Multicore, GPU and MIC Systems. James Amundson, Qiming Lu, and Panagiotis Spentzouris Fermilab

Accelerator Beam Dynamics on Multicore, GPU and MIC Systems. James Amundson, Qiming Lu, and Panagiotis Spentzouris Fermilab Accelerator Beam Dynamics on Multicore, GPU and MIC Systems James Amundson, Qiming Lu, and Panagiotis Spentzouris Fermilab Synergia Synergia: A comprehensive accelerator beam dynamics package http://web.fnal.gov/sites/synergia/sitepages/synergia%20home.aspx

More information

A GPU COMPUTING PLATFORM (SAGA) AND A CFD CODE ON GPU FOR AEROSPACE APPLICATIONS

A GPU COMPUTING PLATFORM (SAGA) AND A CFD CODE ON GPU FOR AEROSPACE APPLICATIONS A GPU COMPUTING PLATFORM (SAGA) AND A CFD CODE ON GPU FOR AEROSPACE APPLICATIONS SUDHAKARAN.G APCF, AERO, VSSC, ISRO 914712564742 g_suhakaran@vssc.gov.in THOMAS.C.BABU APCF, AERO, VSSC, ISRO 914712565833

More information

BIG CPU, BIG DATA. Solving the World s Toughest Computational Problems with Parallel Computing. Alan Kaminsky

BIG CPU, BIG DATA. Solving the World s Toughest Computational Problems with Parallel Computing. Alan Kaminsky Solving the World s Toughest Computational Problems with Parallel Computing Alan Kaminsky Solving the World s Toughest Computational Problems with Parallel Computing Alan Kaminsky Department of Computer

More information