GPU Hardware and Programming Models. Jeremy Appleyard, September 2015

Size: px
Start display at page:

Download "GPU Hardware and Programming Models. Jeremy Appleyard, September 2015"

Transcription

1 GPU Hardware and Programming Models Jeremy Appleyard, September 2015

2 A brief history of GPUs In this talk Hardware Overview Programming Models Ask questions at any point! 2

3 A Brief History of GPUs 3

4 Once upon a time (1997)... GPU: Graphical Processing Unit Originated as specialized hardware for 3D games. Why a different processor? Rendering is the most computationally intense part of a game. CPU is not an ideal device for computer graphics rendering Quake Software Rendering Quake Hardware Rendering Freed CPU allows more complex AI, dynamic world generation, realistic dynamics. 4

5 Evolution of GPUs Kepler 7B xtors RIVA 128 3M xtors GeForce M xtors GeForce 3 60M xtors GeForce FX 250M xtors GeForce M xtors Fixed function Programmable shaders General-programmable 5

6 NVIDIA Kepler NVIDIA Kepler K TFLOP/s double precision 8.74 TFLOP/s single precision 480 GB/s memory bandwidth 4,992 Functional Units (cores) 24 GB DRAM About 2x faster than #1 on Top500 in 1997 NVIDIA GK110 - Kepler 6

7 Tesla K80: 10x Faster on Scientific Apps 15x 10x K80 CPU 5x 0x Benchmarks Molecular Dynamics Quantum Chemistry CPU: 12 cores, 2.70GHz. 64GB System Memory, CentOS 6.2 GPU: Single Tesla K80, Boost enabled Physics 7

8 TITAN: World s Fastest Open Science Supercomputer 18,688 Tesla K20X GPUs 27 Petaflops Peak, 17.6 Petaflops on Linpack 90% of Performance from GPUs Top500 Ranked 2 nd, June

9 Hardware Overview 9

10 Accelerated Computing CPU Optimized for Serial Tasks GPU Accelerator Optimized for Parallel Tasks 10

11 Low Latency or High Throughput? CPU Optimized for low-latency access to cached data sets Control logic for out-of-order and speculative execution GPU Optimized for data-parallel, throughput computation Architecture tolerant of memory latency More transistors dedicated to computation 11

12 Low Latency or High Throughput Design leads to performance CPU architecture must minimize latency within each thread GPU architecture hides latency with computation (data-parallelism, 10+k threads!) GPU High Throughput Processor Computation Thread T 1 T 2 T 3 T 4 T n Processing Waiting for data CPU core Low Latency Processor T 1 T 2 T 3 T 4 Ready to be processed 12

13 Work Pattern GPU as a coprocessor Application Code GPU Compute-Intensive Functions Rest of Sequential CPU Code CPU + 13

14 Simple Processing Flow PCI Bus 14

15 Simple Processing Flow PCI Bus 1. Copy input data from CPU memory to to GPU memory 15

16 Simple Processing Flow PCI Bus 1. Copy input data from CPU memory to GPU memory 2. Execute GPU program. Results stored in GPU memory. 16

17 Simple Processing Flow PCI Bus 1. Copy input data from CPU memory to GPU memory 2. Execute GPU program. Results stored in GPU memory. 3. Copy results from GPU memory to CPU memory 17

18 System Diagram Single GPU PCI Bus 18

19 System Diagram Many GPUs PCI Bus PCI Bus 19

20 Programming Models 20

21 Three Ways to Accelerate Applications Applications Libraries OpenACC Directives Language Extensions Drop-in Acceleration Easily Accelerate Applications Maximum Flexibility 21

22 Sparse Matrix-Vector Multiply y = Ax CSR format to store A Used in many applications Fluid dynamics Circuit Simulation Structural Mechanics 22

23 Three Ways to Accelerate Applications Applications Libraries OpenACC Directives Language Extensions Drop-in Acceleration Easily Accelerate Applications Maximum Flexibility 23

24 Libraries cusparse cusparse<t>csrmv() Performs a matrix-vector multiply using a matrix in csr format Maintained library: Bug free High performance Performance portable 24

25 Three Ways to Accelerate Applications Applications Libraries OpenACC Directives Language Extensions Drop-in Acceleration Easily Accelerate Applications Maximum Flexibility 25

26 OpenACC The Standard for Massively Parallel Directives Simple: Directives are the easy path to accelerate compute intensive applications Open: OpenACC is an open GPU directives standard, making GPU programming straightforward and portable across parallel and multi-core processors Powerful: GPU Directives allow complete access to the massive parallel power of a GPU 26

27 Standard Fortran subroutine spmv_cpu(rowstart, col, val, invec, outvec, n) INTEGER, dimension(:), intent(in) :: rowstart, col REAL, dimension(:), intent(in) :: val, invec REAL, dimension(:), intent(out) :: outvec INTEGER, intent(in) :: n REAL :: rowsum INTEGER :: i, index do i=1,n rowsum = 0. do index=rowstart(i),rowstart(i+1)-1 rowsum = rowsum + val(index)*invec(col(index)) end do outvec(i) = rowsum end do end subroutine spmv_cpu... call spmv_cpu(rowstart, col, val, invec, outvec, ) 27

28 OpenACC subroutine spmv_acc(rowstart, col, val, invec, outvec, n) INTEGER, dimension(:), intent(in) :: rowstart, col REAL, dimension(:), intent(in) :: val, invec REAL, dimension(:), intent(out) :: outvec INTEGER, intent(in) :: n REAL :: rowsum INTEGER :: i, index!$acc kernels do i=1,n rowsum = 0. do index=rowstart(i),rowstart(i+1)-1 rowsum = rowsum + val(index)*invec(col(index)) end do outvec(i) = rowsum end do!$acc end kernels end subroutine spmv_acc... call spmv_acc(rowstart, col, val, invec, outvec, ) 28

29 Three Ways to Accelerate Applications Applications Libraries OpenACC Directives Language Extensions Drop-in Acceleration Easily Accelerate Applications Maximum Flexibility 29

30 GPU Language Extensions CUDA CUDA is available through C/C++, Fortran, Python, Matlab, CUDA Fortran Based on industry-standard Fortran Small set of extensions to enable heterogeneous programming Straightforward APIs to manage devices, memory etc. 30

31 Standard Fortran subroutine spmv_cpu(rowstart, col, val, invec, outvec, n) INTEGER, dimension(:), intent(in) :: rowstart, col REAL, dimension(:), intent(in) :: val, invec REAL, dimension(:), intent(out) :: outvec INTEGER, intent(in) :: n REAL :: rowsum INTEGER :: i, index do i=1,n rowsum = 0. do index=rowstart(i),rowstart(i+1)-1 rowsum = rowsum + val(index)*invec(col(index)) end do outvec(i) = rowsum end do end subroutine spmv_cpu... call spmv_cpu(rowstart, col, val, invec, outvec, ) 31

32 CUDA Fortran attributes(global) subroutine spmv_cuda(rowstart, col, val, invec, outvec, n) INTEGER, dimension(:), intent(in) :: rowstart, col REAL, dimension(:), intent(in) :: val, invec REAL, dimension(:), intent(out) :: outvec INTEGER, value, intent(in) :: n REAL :: rowsum INTEGER :: i, index i = (blockidx%x - 1) * blockdim%x + threadidx%x if (i <= n) then rowsum = 0. do index=rowstart(i),rowstart(i+1)-1 rowsum = rowsum + val(index)*invec(col(index)) end do outvec(i) = rowsum endif end subroutine spmv_cuda... call spmv_cuda<<< 1000,256 >>>(rowstart, col, val, invec, outvec, ) 32

33 Three Ways to Accelerate Applications Applications Libraries OpenACC Directives Language Extensions Drop-in Acceleration Easily Accelerate Applications Maximum Flexibility 33

HETEROGENEOUS HPC, ARCHITECTURE OPTIMIZATION, AND NVLINK

HETEROGENEOUS HPC, ARCHITECTURE OPTIMIZATION, AND NVLINK HETEROGENEOUS HPC, ARCHITECTURE OPTIMIZATION, AND NVLINK Steve Oberlin CTO, Accelerated Computing US to Build Two Flagship Supercomputers SUMMIT SIERRA Partnership for Science 100-300 PFLOPS Peak Performance

More information

Introduction to GP-GPUs. Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1

Introduction to GP-GPUs. Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1 Introduction to GP-GPUs Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1 GPU Architectures: How do we reach here? NVIDIA Fermi, 512 Processing Elements (PEs) 2 What Can It Do?

More information

Introduction to GPU hardware and to CUDA

Introduction to GPU hardware and to CUDA Introduction to GPU hardware and to CUDA Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) GPU introduction 1 / 37 Course outline Introduction to GPU hardware

More information

GPU Parallel Computing Architecture and CUDA Programming Model

GPU Parallel Computing Architecture and CUDA Programming Model GPU Parallel Computing Architecture and CUDA Programming Model John Nickolls Outline Why GPU Computing? GPU Computing Architecture Multithreading and Arrays Data Parallel Problem Decomposition Parallel

More information

Programming models for heterogeneous computing. Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga

Programming models for heterogeneous computing. Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga Programming models for heterogeneous computing Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga Talk outline [30 slides] 1. Introduction [5 slides] 2.

More information

HPC with Multicore and GPUs

HPC with Multicore and GPUs HPC with Multicore and GPUs Stan Tomov Electrical Engineering and Computer Science Department University of Tennessee, Knoxville CS 594 Lecture Notes March 4, 2015 1/18 Outline! Introduction - Hardware

More information

ultra fast SOM using CUDA

ultra fast SOM using CUDA ultra fast SOM using CUDA SOM (Self-Organizing Map) is one of the most popular artificial neural network algorithms in the unsupervised learning category. Sijo Mathew Preetha Joy Sibi Rajendra Manoj A

More information

Parallel Programming Survey

Parallel Programming Survey Christian Terboven 02.09.2014 / Aachen, Germany Stand: 26.08.2014 Version 2.3 IT Center der RWTH Aachen University Agenda Overview: Processor Microarchitecture Shared-Memory

More information

Next Generation GPU Architecture Code-named Fermi

Next Generation GPU Architecture Code-named Fermi Next Generation GPU Architecture Code-named Fermi The Soul of a Supercomputer in the Body of a GPU Why is NVIDIA at Super Computing? Graphics is a throughput problem paint every pixel within frame time

More information

Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming

Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming Overview Lecture 1: an introduction to CUDA Mike Giles mike.giles@maths.ox.ac.uk hardware view software view Oxford University Mathematical Institute Oxford e-research Centre Lecture 1 p. 1 Lecture 1 p.

More information

GPU System Architecture. Alan Gray EPCC The University of Edinburgh

GPU System Architecture. Alan Gray EPCC The University of Edinburgh GPU System Architecture EPCC The University of Edinburgh Outline Why do we want/need accelerators such as GPUs? GPU-CPU comparison Architectural reasons for GPU performance advantages GPU accelerated systems

More information

Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip.

Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip. Lecture 11: Multi-Core and GPU Multi-core computers Multithreading GPUs General Purpose GPUs Zebo Peng, IDA, LiTH 1 Multi-Core System Integration of multiple processor cores on a single chip. To provide

More information

Introduction to GPU Programming Languages

Introduction to GPU Programming Languages CSC 391/691: GPU Programming Fall 2011 Introduction to GPU Programming Languages Copyright 2011 Samuel S. Cho http://www.umiacs.umd.edu/ research/gpu/facilities.html Maryland CPU/GPU Cluster Infrastructure

More information

HIGH PERFORMANCE CONSULTING COURSE OFFERINGS

HIGH PERFORMANCE CONSULTING COURSE OFFERINGS Performance 1(6) HIGH PERFORMANCE CONSULTING COURSE OFFERINGS LEARN TO TAKE ADVANTAGE OF POWERFUL GPU BASED ACCELERATOR TECHNOLOGY TODAY 2006 2013 Nvidia GPUs Intel CPUs CONTENTS Acronyms and Terminology...

More information

Graphics Cards and Graphics Processing Units. Ben Johnstone Russ Martin November 15, 2011

Graphics Cards and Graphics Processing Units. Ben Johnstone Russ Martin November 15, 2011 Graphics Cards and Graphics Processing Units Ben Johnstone Russ Martin November 15, 2011 Contents Graphics Processing Units (GPUs) Graphics Pipeline Architectures 8800-GTX200 Fermi Cayman Performance Analysis

More information

GPGPU for Real-Time Data Analytics: Introduction. Nanyang Technological University, Singapore 2

GPGPU for Real-Time Data Analytics: Introduction. Nanyang Technological University, Singapore 2 GPGPU for Real-Time Data Analytics: Introduction Bingsheng He 1, Huynh Phung Huynh 2, Rick Siow Mong Goh 2 1 Nanyang Technological University, Singapore 2 A*STAR Institute of High Performance Computing,

More information

The Evolution of Computer Graphics. SVP, Content & Technology, NVIDIA

The Evolution of Computer Graphics. SVP, Content & Technology, NVIDIA The Evolution of Computer Graphics Tony Tamasi SVP, Content & Technology, NVIDIA Graphics Make great images intricate shapes complex optical effects seamless motion Make them fast invent clever techniques

More information

NVIDIA CUDA Software and GPU Parallel Computing Architecture. David B. Kirk, Chief Scientist

NVIDIA CUDA Software and GPU Parallel Computing Architecture. David B. Kirk, Chief Scientist NVIDIA CUDA Software and GPU Parallel Computing Architecture David B. Kirk, Chief Scientist Outline Applications of GPU Computing CUDA Programming Model Overview Programming in CUDA The Basics How to Get

More information

E6895 Advanced Big Data Analytics Lecture 14:! NVIDIA GPU Examples and GPU on ios devices

E6895 Advanced Big Data Analytics Lecture 14:! NVIDIA GPU Examples and GPU on ios devices E6895 Advanced Big Data Analytics Lecture 14: NVIDIA GPU Examples and GPU on ios devices Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science IBM Chief Scientist,

More information

Case Study on Productivity and Performance of GPGPUs

Case Study on Productivity and Performance of GPGPUs Case Study on Productivity and Performance of GPGPUs Sandra Wienke wienke@rz.rwth-aachen.de ZKI Arbeitskreis Supercomputing April 2012 Rechen- und Kommunikationszentrum (RZ) RWTH GPU-Cluster 56 Nvidia

More information

ST810 Advanced Computing

ST810 Advanced Computing ST810 Advanced Computing Lecture 17: Parallel computing part I Eric B. Laber Hua Zhou Department of Statistics North Carolina State University Mar 13, 2013 Outline computing Hardware computing overview

More information

Introduction to Numerical General Purpose GPU Computing with NVIDIA CUDA. Part 1: Hardware design and programming model

Introduction to Numerical General Purpose GPU Computing with NVIDIA CUDA. Part 1: Hardware design and programming model Introduction to Numerical General Purpose GPU Computing with NVIDIA CUDA Part 1: Hardware design and programming model Amin Safi Faculty of Mathematics, TU dortmund January 22, 2016 Table of Contents Set

More information

Computer Graphics Hardware An Overview

Computer Graphics Hardware An Overview Computer Graphics Hardware An Overview Graphics System Monitor Input devices CPU/Memory GPU Raster Graphics System Raster: An array of picture elements Based on raster-scan TV technology The screen (and

More information

Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing

Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing Innovation Intelligence Devin Jensen August 2012 Altair Knows HPC Altair is the only company that: makes HPC tools

More information

CUDA Optimization with NVIDIA Tools. Julien Demouth, NVIDIA

CUDA Optimization with NVIDIA Tools. Julien Demouth, NVIDIA CUDA Optimization with NVIDIA Tools Julien Demouth, NVIDIA What Will You Learn? An iterative method to optimize your GPU code A way to conduct that method with Nvidia Tools 2 What Does the Application

More information

Accelerating CFD using OpenFOAM with GPUs

Accelerating CFD using OpenFOAM with GPUs Accelerating CFD using OpenFOAM with GPUs Authors: Saeed Iqbal and Kevin Tubbs The OpenFOAM CFD Toolbox is a free, open source CFD software package produced by OpenCFD Ltd. Its user base represents a wide

More information

Parallel Computing with MATLAB

Parallel Computing with MATLAB Parallel Computing with MATLAB Scott Benway Senior Account Manager Jiro Doke, Ph.D. Senior Application Engineer 2013 The MathWorks, Inc. 1 Acceleration Strategies Applied in MATLAB Approach Options Best

More information

Introduction to GPGPU. Tiziano Diamanti t.diamanti@cineca.it

Introduction to GPGPU. Tiziano Diamanti t.diamanti@cineca.it t.diamanti@cineca.it Agenda From GPUs to GPGPUs GPGPU architecture CUDA programming model Perspective projection Vectors that connect the vanishing point to every point of the 3D model will intersecate

More information

Introduction GPU Hardware GPU Computing Today GPU Computing Example Outlook Summary. GPU Computing. Numerical Simulation - from Models to Software

Introduction GPU Hardware GPU Computing Today GPU Computing Example Outlook Summary. GPU Computing. Numerical Simulation - from Models to Software GPU Computing Numerical Simulation - from Models to Software Andreas Barthels JASS 2009, Course 2, St. Petersburg, Russia Prof. Dr. Sergey Y. Slavyanov St. Petersburg State University Prof. Dr. Thomas

More information

GPU Computing with CUDA Lecture 2 - CUDA Memories. Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile

GPU Computing with CUDA Lecture 2 - CUDA Memories. Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile GPU Computing with CUDA Lecture 2 - CUDA Memories Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile 1 Outline of lecture Recap of Lecture 1 Warp scheduling CUDA Memory hierarchy

More information

Introduction to the CUDA Toolkit for Building Applications. Adam DeConinck HPC Systems Engineer, NVIDIA

Introduction to the CUDA Toolkit for Building Applications. Adam DeConinck HPC Systems Engineer, NVIDIA Introduction to the CUDA Toolkit for Building Applications Adam DeConinck HPC Systems Engineer, NVIDIA ! What this talk will cover: The CUDA 5 Toolkit as a toolchain for HPC applications, focused on the

More information

#OpenPOWERSummit. Join the conversation at #OpenPOWERSummit 1

#OpenPOWERSummit. Join the conversation at #OpenPOWERSummit 1 XLC/C++ and GPU Programming on Power Systems Kelvin Li, Kit Barton, John Keenleyside IBM {kli, kbarton, keenley}@ca.ibm.com John Ashley NVIDIA jashley@nvidia.com #OpenPOWERSummit Join the conversation

More information

Texture Cache Approximation on GPUs

Texture Cache Approximation on GPUs Texture Cache Approximation on GPUs Mark Sutherland Joshua San Miguel Natalie Enright Jerger {suther68,enright}@ece.utoronto.ca, joshua.sanmiguel@mail.utoronto.ca 1 Our Contribution GPU Core Cache Cache

More information

Applications to Computational Financial and GPU Computing. May 16th. Dr. Daniel Egloff +41 44 520 01 17 +41 79 430 03 61

Applications to Computational Financial and GPU Computing. May 16th. Dr. Daniel Egloff +41 44 520 01 17 +41 79 430 03 61 F# Applications to Computational Financial and GPU Computing May 16th Dr. Daniel Egloff +41 44 520 01 17 +41 79 430 03 61 Today! Why care about F#? Just another fashion?! Three success stories! How Alea.cuBase

More information

The GPU Accelerated Data Center. Marc Hamilton, August 27, 2015

The GPU Accelerated Data Center. Marc Hamilton, August 27, 2015 The GPU Accelerated Data Center Marc Hamilton, August 27, 2015 THE GPU-ACCELERATED DATA CENTER HPC DEEP LEARNING PC VIRTUALIZATION CLOUD GAMING RENDERING 2 Product design FROM ADVANCED RENDERING TO VIRTUAL

More information

GPUs for Scientific Computing

GPUs for Scientific Computing GPUs for Scientific Computing p. 1/16 GPUs for Scientific Computing Mike Giles mike.giles@maths.ox.ac.uk Oxford-Man Institute of Quantitative Finance Oxford University Mathematical Institute Oxford e-research

More information

Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com

Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com CSCI-GA.3033-012 Graphics Processing Units (GPUs): Architecture and Programming Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com Modern GPU

More information

Evaluation of CUDA Fortran for the CFD code Strukti

Evaluation of CUDA Fortran for the CFD code Strukti Evaluation of CUDA Fortran for the CFD code Strukti Practical term report from Stephan Soller High performance computing center Stuttgart 1 Stuttgart Media University 2 High performance computing center

More information

L20: GPU Architecture and Models

L20: GPU Architecture and Models L20: GPU Architecture and Models scribe(s): Abdul Khalifa 20.1 Overview GPUs (Graphics Processing Units) are large parallel structure of processing cores capable of rendering graphics efficiently on displays.

More information

GPU Computing - CUDA

GPU Computing - CUDA GPU Computing - CUDA A short overview of hardware and programing model Pierre Kestener 1 1 CEA Saclay, DSM, Maison de la Simulation Saclay, June 12, 2012 Atelier AO and GPU 1 / 37 Content Historical perspective

More information

NVIDIA GeForce GTX 580 GPU Datasheet

NVIDIA GeForce GTX 580 GPU Datasheet NVIDIA GeForce GTX 580 GPU Datasheet NVIDIA GeForce GTX 580 GPU Datasheet 3D Graphics Full Microsoft DirectX 11 Shader Model 5.0 support: o NVIDIA PolyMorph Engine with distributed HW tessellation engines

More information

HP ProLiant SL270s Gen8 Server. Evaluation Report

HP ProLiant SL270s Gen8 Server. Evaluation Report HP ProLiant SL270s Gen8 Server Evaluation Report Thomas Schoenemeyer, Hussein Harake and Daniel Peter Swiss National Supercomputing Centre (CSCS), Lugano Institute of Geophysics, ETH Zürich schoenemeyer@cscs.ch

More information

GPGPU Computing. Yong Cao

GPGPU Computing. Yong Cao GPGPU Computing Yong Cao Why Graphics Card? It s powerful! A quiet trend Copyright 2009 by Yong Cao Why Graphics Card? It s powerful! Processor Processing Units FLOPs per Unit Clock Speed Processing Power

More information

Parallel Computing. Introduction

Parallel Computing. Introduction Parallel Computing Introduction Thorsten Grahs, 14. April 2014 Administration Lecturer Dr. Thorsten Grahs (that s me) t.grahs@tu-bs.de Institute of Scientific Computing Room RZ 120 Lecture Monday 11:30-13:00

More information

HPC Wales Skills Academy Course Catalogue 2015

HPC Wales Skills Academy Course Catalogue 2015 HPC Wales Skills Academy Course Catalogue 2015 Overview The HPC Wales Skills Academy provides a variety of courses and workshops aimed at building skills in High Performance Computing (HPC). Our courses

More information

www.xenon.com.au STORAGE HIGH SPEED INTERCONNECTS HIGH PERFORMANCE COMPUTING VISUALISATION GPU COMPUTING

www.xenon.com.au STORAGE HIGH SPEED INTERCONNECTS HIGH PERFORMANCE COMPUTING VISUALISATION GPU COMPUTING www.xenon.com.au STORAGE HIGH SPEED INTERCONNECTS HIGH PERFORMANCE COMPUTING GPU COMPUTING VISUALISATION XENON Accelerating Exploration Mineral, oil and gas exploration is an expensive and challenging

More information

OpenCL Optimization. San Jose 10/2/2009 Peng Wang, NVIDIA

OpenCL Optimization. San Jose 10/2/2009 Peng Wang, NVIDIA OpenCL Optimization San Jose 10/2/2009 Peng Wang, NVIDIA Outline Overview The CUDA architecture Memory optimization Execution configuration optimization Instruction optimization Summary Overall Optimization

More information

Mixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms

Mixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms Mixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms Björn Rocker Hamburg, June 17th 2010 Engineering Mathematics and Computing Lab (EMCL) KIT University of the State

More information

NVIDIA GPUs in the Cloud

NVIDIA GPUs in the Cloud NVIDIA GPUs in the Cloud 4 EVOLVING CLOUD REQUIREMENTS On premises Off premises Hybrid Cloud Connecting clouds New workloads Components to disrupt 5 GLOBAL CLOUD PLATFORM Unified architecture enabled by

More information

Intro to GPU computing. Spring 2015 Mark Silberstein, 048661, Technion 1

Intro to GPU computing. Spring 2015 Mark Silberstein, 048661, Technion 1 Intro to GPU computing Spring 2015 Mark Silberstein, 048661, Technion 1 Serial vs. parallel program One instruction at a time Multiple instructions in parallel Spring 2015 Mark Silberstein, 048661, Technion

More information

CUDA programming on NVIDIA GPUs

CUDA programming on NVIDIA GPUs p. 1/21 on NVIDIA GPUs Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute for Quantitative Finance Oxford eresearch Centre p. 2/21 Overview hardware view

More information

Cray Gemini Interconnect. Technical University of Munich Parallel Programming Class of SS14 Denys Sobchyshak

Cray Gemini Interconnect. Technical University of Munich Parallel Programming Class of SS14 Denys Sobchyshak Cray Gemini Interconnect Technical University of Munich Parallel Programming Class of SS14 Denys Sobchyshak Outline 1. Introduction 2. Overview 3. Architecture 4. Gemini Blocks 5. FMA & BTA 6. Fault tolerance

More information

Lecture 1: an introduction to CUDA

Lecture 1: an introduction to CUDA Lecture 1: an introduction to CUDA Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford e-research Centre Lecture 1 p. 1 Overview hardware view software view CUDA programming

More information

The Fastest, Most Efficient HPC Architecture Ever Built

The Fastest, Most Efficient HPC Architecture Ever Built Whitepaper NVIDIA s Next Generation TM CUDA Compute Architecture: TM Kepler GK110 The Fastest, Most Efficient HPC Architecture Ever Built V1.0 Table of Contents Kepler GK110 The Next Generation GPU Computing

More information

OpenCL Programming for the CUDA Architecture. Version 2.3

OpenCL Programming for the CUDA Architecture. Version 2.3 OpenCL Programming for the CUDA Architecture Version 2.3 8/31/2009 In general, there are multiple ways of implementing a given algorithm in OpenCL and these multiple implementations can have vastly different

More information

GPGPU accelerated Computational Fluid Dynamics

GPGPU accelerated Computational Fluid Dynamics t e c h n i s c h e u n i v e r s i t ä t b r a u n s c h w e i g Carl-Friedrich Gauß Faculty GPGPU accelerated Computational Fluid Dynamics 5th GACM Colloquium on Computational Mechanics Hamburg Institute

More information

Building a Top500-class Supercomputing Cluster at LNS-BUAP

Building a Top500-class Supercomputing Cluster at LNS-BUAP Building a Top500-class Supercomputing Cluster at LNS-BUAP Dr. José Luis Ricardo Chávez Dr. Humberto Salazar Ibargüen Dr. Enrique Varela Carlos Laboratorio Nacional de Supercómputo Benemérita Universidad

More information

Graphic Processing Units: a possible answer to High Performance Computing?

Graphic Processing Units: a possible answer to High Performance Computing? 4th ABINIT Developer Workshop RESIDENCE L ESCANDILLE AUTRANS HPC & Graphic Processing Units: a possible answer to High Performance Computing? Luigi Genovese ESRF - Grenoble 26 March 2009 http://inac.cea.fr/l_sim/

More information

GPU Computing with CUDA Lecture 4 - Optimizations. Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile

GPU Computing with CUDA Lecture 4 - Optimizations. Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile GPU Computing with CUDA Lecture 4 - Optimizations Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile 1 Outline of lecture Recap of Lecture 3 Control flow Coalescing Latency hiding

More information

GPU-accelerated Large Scale Analytics using MapReduce Model

GPU-accelerated Large Scale Analytics using MapReduce Model , pp.375-380 http://dx.doi.org/10.14257/ijhit.2015.8.6.36 GPU-accelerated Large Scale Analytics using MapReduce Model RadhaKishan Yadav 1, Robin Singh Bhadoria 2 and Amit Suri 3 1 Research Assistant 2

More information

Towards Large-Scale Molecular Dynamics Simulations on Graphics Processors

Towards Large-Scale Molecular Dynamics Simulations on Graphics Processors Towards Large-Scale Molecular Dynamics Simulations on Graphics Processors Joe Davis, Sandeep Patel, and Michela Taufer University of Delaware Outline Introduction Introduction to GPU programming Why MD

More information

Guided Performance Analysis with the NVIDIA Visual Profiler

Guided Performance Analysis with the NVIDIA Visual Profiler Guided Performance Analysis with the NVIDIA Visual Profiler Identifying Performance Opportunities NVIDIA Nsight Eclipse Edition (nsight) NVIDIA Visual Profiler (nvvp) nvprof command-line profiler Guided

More information

Data Parallel Computing on Graphics Hardware. Ian Buck Stanford University

Data Parallel Computing on Graphics Hardware. Ian Buck Stanford University Data Parallel Computing on Graphics Hardware Ian Buck Stanford University Brook General purpose Streaming language DARPA Polymorphous Computing Architectures Stanford - Smart Memories UT Austin - TRIPS

More information

Trends in High-Performance Computing for Power Grid Applications

Trends in High-Performance Computing for Power Grid Applications Trends in High-Performance Computing for Power Grid Applications Franz Franchetti ECE, Carnegie Mellon University www.spiral.net Co-Founder, SpiralGen www.spiralgen.com This talk presents my personal views

More information

10- High Performance Compu5ng

10- High Performance Compu5ng 10- High Performance Compu5ng (Herramientas Computacionales Avanzadas para la Inves6gación Aplicada) Rafael Palacios, Fernando de Cuadra MRE Contents Implemen8ng computa8onal tools 1. High Performance

More information

ME964 High Performance Computing for Engineering Applications

ME964 High Performance Computing for Engineering Applications ME964 High Performance Computing for Engineering Applications Intro, GPU Computing February 9, 2012 Dan Negrut, 2012 ME964 UW-Madison "The Internet is a great way to get on the net. US Senator Bob Dole

More information

CLOUD GAMING WITH NVIDIA GRID TECHNOLOGIES Franck DIARD, Ph.D., SW Chief Software Architect GDC 2014

CLOUD GAMING WITH NVIDIA GRID TECHNOLOGIES Franck DIARD, Ph.D., SW Chief Software Architect GDC 2014 CLOUD GAMING WITH NVIDIA GRID TECHNOLOGIES Franck DIARD, Ph.D., SW Chief Software Architect GDC 2014 Introduction Cloud ification < 2013 2014+ Music, Movies, Books Games GPU Flops GPUs vs. Consoles 10,000

More information

Parallel Algorithm Engineering

Parallel Algorithm Engineering Parallel Algorithm Engineering Kenneth S. Bøgh PhD Fellow Based on slides by Darius Sidlauskas Outline Background Current multicore architectures UMA vs NUMA The openmp framework Examples Software crisis

More information

This Unit: Putting It All Together. CIS 501 Computer Architecture. Sources. What is Computer Architecture?

This Unit: Putting It All Together. CIS 501 Computer Architecture. Sources. What is Computer Architecture? This Unit: Putting It All Together CIS 501 Computer Architecture Unit 11: Putting It All Together: Anatomy of the XBox 360 Game Console Slides originally developed by Amir Roth with contributions by Milo

More information

GPU Architectures. A CPU Perspective. Data Parallelism: What is it, and how to exploit it? Workload characteristics

GPU Architectures. A CPU Perspective. Data Parallelism: What is it, and how to exploit it? Workload characteristics GPU Architectures A CPU Perspective Derek Hower AMD Research 5/21/2013 Goals Data Parallelism: What is it, and how to exploit it? Workload characteristics Execution Models / GPU Architectures MIMD (SPMD),

More information

Graphical Processing Units to Accelerate Orthorectification, Atmospheric Correction and Transformations for Big Data

Graphical Processing Units to Accelerate Orthorectification, Atmospheric Correction and Transformations for Big Data Graphical Processing Units to Accelerate Orthorectification, Atmospheric Correction and Transformations for Big Data Amanda O Connor, Bryan Justice, and A. Thomas Harris IN52A. Big Data in the Geosciences:

More information

Accelerating Intensity Layer Based Pencil Filter Algorithm using CUDA

Accelerating Intensity Layer Based Pencil Filter Algorithm using CUDA Accelerating Intensity Layer Based Pencil Filter Algorithm using CUDA Dissertation submitted in partial fulfillment of the requirements for the degree of Master of Technology, Computer Engineering by Amol

More information

Summit and Sierra Supercomputers:

Summit and Sierra Supercomputers: Whitepaper Summit and Sierra Supercomputers: An Inside Look at the U.S. Department of Energy s New Pre-Exascale Systems November 2014 1 Contents New Flagship Supercomputers in U.S. to Pave Path to Exascale

More information

Lecture 3: Evaluating Computer Architectures. Software & Hardware: The Virtuous Cycle?

Lecture 3: Evaluating Computer Architectures. Software & Hardware: The Virtuous Cycle? Lecture 3: Evaluating Computer Architectures Announcements - Reminder: Homework 1 due Thursday 2/2 Last Time technology back ground Computer elements Circuits and timing Virtuous cycle of the past and

More information

GPU File System Encryption Kartik Kulkarni and Eugene Linkov

GPU File System Encryption Kartik Kulkarni and Eugene Linkov GPU File System Encryption Kartik Kulkarni and Eugene Linkov 5/10/2012 SUMMARY. We implemented a file system that encrypts and decrypts files. The implementation uses the AES algorithm computed through

More information

CUDA SKILLS. Yu-Hang Tang. June 23-26, 2015 CSRC, Beijing

CUDA SKILLS. Yu-Hang Tang. June 23-26, 2015 CSRC, Beijing CUDA SKILLS Yu-Hang Tang June 23-26, 2015 CSRC, Beijing day1.pdf at /home/ytang/slides Referece solutions coming soon Online CUDA API documentation http://docs.nvidia.com/cuda/index.html Yu-Hang Tang @

More information

QuickSpecs. NVIDIA Quadro K5200 8GB Graphics INTRODUCTION. NVIDIA Quadro K5200 8GB Graphics. Technical Specifications

QuickSpecs. NVIDIA Quadro K5200 8GB Graphics INTRODUCTION. NVIDIA Quadro K5200 8GB Graphics. Technical Specifications J3G90AA INTRODUCTION The NVIDIA Quadro K5200 gives you amazing application performance and capability, making it faster and easier to accelerate 3D models, render complex scenes, and simulate large datasets.

More information

LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR

LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR Frédéric Kuznik, frederic.kuznik@insa lyon.fr 1 Framework Introduction Hardware architecture CUDA overview Implementation details A simple case:

More information

Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Intel Xeon Processor E7 v2 Family-Based Platforms

Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Intel Xeon Processor E7 v2 Family-Based Platforms Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Family-Based Platforms Executive Summary Complex simulations of structural and systems performance, such as car crash simulations,

More information

Stream Processing on GPUs Using Distributed Multimedia Middleware

Stream Processing on GPUs Using Distributed Multimedia Middleware Stream Processing on GPUs Using Distributed Multimedia Middleware Michael Repplinger 1,2, and Philipp Slusallek 1,2 1 Computer Graphics Lab, Saarland University, Saarbrücken, Germany 2 German Research

More information

Introduction to Cloud Computing

Introduction to Cloud Computing Introduction to Cloud Computing Parallel Processing I 15 319, spring 2010 7 th Lecture, Feb 2 nd Majd F. Sakr Lecture Motivation Concurrency and why? Different flavors of parallel computing Get the basic

More information

5x in 5 hours Porting SEISMIC_CPML using the PGI Accelerator Model

5x in 5 hours Porting SEISMIC_CPML using the PGI Accelerator Model 5x in 5 hours Porting SEISMIC_CPML using the PGI Accelerator Model C99, C++, F2003 Compilers Optimizing Vectorizing Parallelizing Graphical parallel tools PGDBG debugger PGPROF profiler Intel, AMD, NVIDIA

More information

Auto-Tuning TRSM with an Asynchronous Task Assignment Model on Multicore, GPU and Coprocessor Systems

Auto-Tuning TRSM with an Asynchronous Task Assignment Model on Multicore, GPU and Coprocessor Systems Auto-Tuning TRSM with an Asynchronous Task Assignment Model on Multicore, GPU and Coprocessor Systems Murilo Boratto Núcleo de Arquitetura de Computadores e Sistemas Operacionais, Universidade do Estado

More information

CUDA Basics. Murphy Stein New York University

CUDA Basics. Murphy Stein New York University CUDA Basics Murphy Stein New York University Overview Device Architecture CUDA Programming Model Matrix Transpose in CUDA Further Reading What is CUDA? CUDA stands for: Compute Unified Device Architecture

More information

GPU Computing. The GPU Advantage. To ExaScale and Beyond. The GPU is the Computer

GPU Computing. The GPU Advantage. To ExaScale and Beyond. The GPU is the Computer GU Computing 1 2 3 The GU Advantage To ExaScale and Beyond The GU is the Computer The GU Advantage The GU Advantage A Tale of Two Machines Tianhe-1A at NSC Tianjin Tianhe-1A at NSC Tianjin The World s

More information

Performance Evaluations of Graph Database using CUDA and OpenMP Compatible Libraries

Performance Evaluations of Graph Database using CUDA and OpenMP Compatible Libraries Performance Evaluations of Graph Database using CUDA and OpenMP Compatible Libraries Shin Morishima 1 and Hiroki Matsutani 1,2,3 1Keio University, 3 14 1 Hiyoshi, Kohoku ku, Yokohama, Japan 2National Institute

More information

GPU Accelerated Monte Carlo Simulations and Time Series Analysis

GPU Accelerated Monte Carlo Simulations and Time Series Analysis GPU Accelerated Monte Carlo Simulations and Time Series Analysis Institute of Physics, Johannes Gutenberg-University of Mainz Center for Polymer Studies, Department of Physics, Boston University Artemis

More information

QuickSpecs. NVIDIA Quadro K5200 8GB Graphics INTRODUCTION. NVIDIA Quadro K5200 8GB Graphics. Overview. NVIDIA Quadro K5200 8GB Graphics J3G90AA

QuickSpecs. NVIDIA Quadro K5200 8GB Graphics INTRODUCTION. NVIDIA Quadro K5200 8GB Graphics. Overview. NVIDIA Quadro K5200 8GB Graphics J3G90AA Overview J3G90AA INTRODUCTION The NVIDIA Quadro K5200 gives you amazing application performance and capability, making it faster and easier to accelerate 3D models, render complex scenes, and simulate

More information

Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi

Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi ICPP 6 th International Workshop on Parallel Programming Models and Systems Software for High-End Computing October 1, 2013 Lyon, France

More information

QuickSpecs. NVIDIA Quadro K4200 4GB Graphics INTRODUCTION. NVIDIA Quadro K4200 4GB Graphics. Overview

QuickSpecs. NVIDIA Quadro K4200 4GB Graphics INTRODUCTION. NVIDIA Quadro K4200 4GB Graphics. Overview Overview J3G89AA INTRODUCTION The NVIDIA Quadro K4200 delivers incredible 3D application performance and capability, allowing you to take advantage of dual copy-engines for seamless data movement within

More information

PARALLEL JAVASCRIPT. Norm Rubin (NVIDIA) Jin Wang (Georgia School of Technology)

PARALLEL JAVASCRIPT. Norm Rubin (NVIDIA) Jin Wang (Georgia School of Technology) PARALLEL JAVASCRIPT Norm Rubin (NVIDIA) Jin Wang (Georgia School of Technology) JAVASCRIPT Not connected with Java Scheme and self (dressed in c clothing) Lots of design errors (like automatic semicolon

More information

In-Memory Databases Algorithms and Data Structures on Modern Hardware. Martin Faust David Schwalb Jens Krüger Jürgen Müller

In-Memory Databases Algorithms and Data Structures on Modern Hardware. Martin Faust David Schwalb Jens Krüger Jürgen Müller In-Memory Databases Algorithms and Data Structures on Modern Hardware Martin Faust David Schwalb Jens Krüger Jürgen Müller The Free Lunch Is Over 2 Number of transistors per CPU increases Clock frequency

More information

22S:295 Seminar in Applied Statistics High Performance Computing in Statistics

22S:295 Seminar in Applied Statistics High Performance Computing in Statistics 22S:295 Seminar in Applied Statistics High Performance Computing in Statistics Luke Tierney Department of Statistics & Actuarial Science University of Iowa August 30, 2007 Luke Tierney (U. of Iowa) HPC

More information

AGENDA. Overview GPU Video Encoding NVIDIA Video Encoding Capabilities. Software API Performance & Quality. Kepler vs Maxwell GPU capabilities Roadmap

AGENDA. Overview GPU Video Encoding NVIDIA Video Encoding Capabilities. Software API Performance & Quality. Kepler vs Maxwell GPU capabilities Roadmap HIGH PERFORMANCE VIDEO ENCODING USING NVIDIA GPUS Abhijit Patait Sr. Manager, GPU Multimedia SW AGENDA Overview GPU Video Encoding NVIDIA Video Encoding Capabilities Kepler vs Maxwell GPU capabilities

More information

15-418 Final Project Report. Trading Platform Server

15-418 Final Project Report. Trading Platform Server 15-418 Final Project Report Yinghao Wang yinghaow@andrew.cmu.edu May 8, 214 Trading Platform Server Executive Summary The final project will implement a trading platform server that provides back-end support

More information

Deep Learning and GPUs. Julie Bernauer

Deep Learning and GPUs. Julie Bernauer Deep Learning and GPUs Julie Bernauer GPU Computing 2 GPU Computing x86 3 CUDA Framework to Program NVIDIA GPUs A simple sum of two vectors (arrays) in C void vector_add(int n, const float *a, const float

More information

NVIDIA GeForce GTX 750 Ti

NVIDIA GeForce GTX 750 Ti Whitepaper NVIDIA GeForce GTX 750 Ti Featuring First-Generation Maxwell GPU Technology, Designed for Extreme Performance per Watt V1.1 Table of Contents Table of Contents... 1 Introduction... 3 The Soul

More information

64-Bit versus 32-Bit CPUs in Scientific Computing

64-Bit versus 32-Bit CPUs in Scientific Computing 64-Bit versus 32-Bit CPUs in Scientific Computing Axel Kohlmeyer Lehrstuhl für Theoretische Chemie Ruhr-Universität Bochum March 2004 1/25 Outline 64-Bit and 32-Bit CPU Examples

More information

CS 352H: Computer Systems Architecture

CS 352H: Computer Systems Architecture CS 352H: Computer Systems Architecture Topic 14: Multicores, Multiprocessors, and Clusters University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell Introduction Goal:

More information

Hardware Acceleration for CST MICROWAVE STUDIO

Hardware Acceleration for CST MICROWAVE STUDIO Hardware Acceleration for CST MICROWAVE STUDIO Chris Mason Product Manager Amy Dewis Channel Manager Agenda 1. Introduction 2. Why use Hardware Acceleration? 3. Hardware Acceleration Technologies 4. Current

More information