SIMULATION OF RADIOACTIVE DECAY USING ROLLING OF DICE

Size: px
Start display at page:

Download "SIMULATION OF RADIOACTIVE DECAY USING ROLLING OF DICE"

Transcription

1 185 Experiment-342 A SIMULATION OF RADIOACTIVE DECAY USING ROLLING OF DICE Mrs. Sarmista Sahu Department of Physics, Maharani Laxmi Ammani College for women, Malleswaram, Bengaluru , INDIA. sarmista.sahu@gmail.com Abstract Using six-faced cubic dice, radioactive decay is simulated by rolling them and removing a certain number from them after each round of rolling on the basis of statistical probability. The decay constant is determined for a single species as well as for two different species. The uncertainties in the various measurements are determined using Poisson statistics. Introduction Natural radioactivity or nuclear decay is a radioactive decay process in which at a given time a certain number of atoms disintegrate spontaneously. In this process unstable atoms emit ionizing particles or radiations and eventually reach a stable state. Basically there are three types of nuclear decay, namely 1. Alpha decay 2. Beta decay 3. Gama decay The particle radiations resulting from radioactive decay are rather easy to detect experimentally. In fact, their discovery in 1890 s accelerated research in nuclear physics. As the radioactive decay processes are of statistical nature, understanding of the decay at the + 2 level would be rather presumptuous. Secondly, the radioactive sources cannot be handled with bare hands without taking adequate protection. Further their handling requires special permission from relevant Government authorities concerned with radiation monitoring/protection. Special housing is required to store radioactive sources and materials, involving a small isolated room lined on its interior walls as well as ceiling with slabs of lead that act as shield protecting the experimenter against exposure to harmful radiation. Moreover, the syllabus in higher classes (graduate/post-graduate levels) includes nuclear physics experiments. In view of these considerations, in this experiment it is aimed to give a theoretical background and familiarize students with the analysis of the data involved in

2 186 nuclear physics experiments, which also includes estimation of errors by means of appropriate statistical methods. Theory of radioactive decay In a radioactive decay process, the rate at which atoms undergo decay is proportional to the number of atoms initially present at a given instant of time; the governing equation being = λn...1 where the decay constant λ is related to the probability of decay of an atom of a given radioactive element. One can easily solve the above first order equation and obtain the well known exponential law of radioactive decay as N(t)=N e λ...2 where N o is initial number of atoms present N(t) is number of atom present at a certain time, t ; and λ is a measure of the rate of decay, called as the decay constant, which is constant for a given radioactive element. The half life of an element undergoing radioactive decay is the time for the amount to become half of its initial value. Thus, half life of a radioactive element is given by T 1/2 =. 3 The nuclear decay process can be simulated by rolling of dice repeatedly, taking out a particular species of dice each time from the lot. In this simulation, N o represents the initial number of dice taken (100 or 200 number of similar dice), N(t) is the number dice remaining after each round of rolling (decay) and t corresponds to the number of rounds rolled ( equivalent to time). The decay Equation-2 can be further simplified to obtain the decay constant. Taking natural logarithm of both the sides, Equation-2 becomes ln N(t) = ln N o λt 4 This equation represents a straight line in ln N (t) versus t, with slope λ and Y intercept as ln (N o ). Hence both λ and N o can be determined by studying the rolling of dice. If a six faced die is used to simulate the decay process, then the probability of finding one side up (say for example with number-6) is 1/6. Probability, p, of finding the side with number six up is given by Probability of finding one side up p = 5 where f is number of faces in the die.

3 187 Decay through two species Some radionuclides may follow several different paths of decay. For example, approximately 36% of bismuth-212 decays by alpha-emission to thallium-208 while the remaining 64% decays by beta-emission to polonium-212. Both thallium-208 and polonium-212 are radioactive daughter products of bismuth-212 and both decay chains ultimately lead to lead- 208 which are stable. Such a process can be simulated by taking two different numbers of dice after each roll. In such a case the probability becomes 2/6 for a six faced cube die. In this mode the decay is faster. If λ 1 is decay constant of species-1 and λ 2 is the decay constant of species-2, the total decay constant of the process is the sum of the two independent decay constants, as given by λ= λ 1 + λ 2 6 In general, for radioactive decay of n species, one can write λ= λ 1 + λ 2 +λ 3 + +λ N 7 Half life of a decay process involving multiple species is given by = + + / ( ) / ( ) / ( )/ 8 where (T 1 ) 1/2 is the half life of species-1 (T 2 ) 1/2 is the half life of species-2, etc. Such a decay process can be tested using the same set of six faced dice. In this case instead of looking for a particular number up in each round of rolling of dice, one can select two numbers, say the face with number-2 orresponding to species-1 and number-3 up corresponding to species-2 in each round of rolling of dice. Error in the simulation process Most of the counting experiments follow the Poisson statistics in which events occur randomly, but at a definite rate on an average. Examples in physics, besides radioactive decay, include particle lifetime measurement, and photon counting. Similar to the Gaussian distribution, the Poisson distribution is a special case of the Binomial distribution (which is employed to determine probability of successes in tossing of a coin, whether one gets a head or a tail as the outcome). In fact, when the mean of a Poisson distribution is large, it approximates a Gaussian distribution. The important fact to note about the Poisson distribution, however, is that its standard error equals the square root of the mean σ x = <> 3 where σ x is the standard error in the simulation. It can be the number of atoms, N (t), remaining after each rolling of dice or the number of atoms (n) that have decayed in the process. In this experiment, an exponential decay may be expected for the trend whose

4 188 individual data points are distributed about the mean (in which one measurement is made for each point) by employing the Poisson statistics. Dice used in the experiment One can make use of a two faced coin (probability 1/2), or a four faced die (1/4) or a six faced (1/6) die to perform this simulation. We have taken six- faced cubical dice for our experiment. It can be used to simulate 6 different species of decay. Figure-1 shows the die used in this experiment. If six faced dice are used for simulation, and decay occurs if the face with number six is up, then from probability considerations Decay constant, λ= p = =0.166/ round of rolling of dice T 1/2 =. =.. =4.17 Materials used Figure-1: The six faced cubic die used in the experiment Six-faced dice, a large board for rolling of the dice, as shown in Figure-2, and two buckets for collecting the dice Figure-2: The dice and a large board used for rolling the dice on it

5 189 Experimental procedure The experiments consists of two parts, namely Part-A: Decay with one species Part-B: Decay with two species Part-A: Decay with one species 1. About 100 numbers of six faced cubic dice (similar to the one shown in Figure-1) are taken in a bucket. The exact number of dice taken is counted. This is the initial number of atoms N o =95 2. The dice are rolled on a large board so that none of them overlap or interact (i.e., touch) with each other on the board after rolling. This is the first round of rolling of dice, i.e. r =1, for which all the dice with the face six-up are collected and counted. Their number (n) gives the number of decayed atoms. 3. All the dice with the face six-up are collected, counted and placed in a separate bucket Number of dice with the face six-up, n =15 Hence number of dice (atoms) remaining after the first round, N (t) = 95-15=80. As given by Equation-2, the number of atoms remaining is given by N(t)=N e λ =95e. for six faced dice =0.166 N(t) = 95e = This shows that 80 atoms remain after the first round of rolling of dice or 80 atoms remained after a time of t. These numbers match with the number obtained (80) after the first round of rolling, as shown in Table The number of dice remaining on the board is now collected and rolled again. In the second round of rolling the number of dice with their six-up face is removed from the board, counted and kept separately. The number of remaining dice is counted and rolled on the board again. The number of dice with the face six-up and the number of remaining dice are recorded in Table Rolling of dice is continued for rounds (until about 10% of the dice initially taken are left on the board). To determine the decay constant experimentally, a graph

6 190 is drawn between the natural logarithm of the experimental values of atoms remaining versus the number of rounds dice have been rolled, as shown in Figure-3. Table-1 No. of No. of atoms decayed (n) No. of atoms remaining N(t) lnn(t) roll (t) Expt. Thet. Expt. Thet. Expt Number of atoms decayed and remaining after each round of rolling ln N(t) Number of rounds rolled (t) Figure-3: The linear decay equation Slope of the straight line,. λ = =0.1875

7 191 The experimental value of the decay constant is quite close to the theoretical value which is The half life of the decay can be calculated using Equation-3 T 1/2 =. =.. =3.70 This is close to the theoretical value of half life which is Poisson s error The Poisson s error is calculated for the number of atoms remaining after each decay as N(t) = Average N(t) = /15=32.16 σ x = <> = = 5.67 atoms per decay This is within 5% of the total number of atoms taken. Part-B: Decay with two species In this case the original atom can decay to give rise to two daughter atoms with different decay constants, λ 1 and λ 2. To identify the two different species, we shall label the face with number-2 up as species-1 with decay constant λ 1 ; and the number-3 face up as species-2 with decay constant λ 2. The theoretical values of the decay constants for these two species are the same, viz. λ 1 = λ 2 = 1/6 =0.167 λ 1 + λ 2 = 2/6 =0.33 ( ) / =. =.. =0.24 (T 1 ) 1/2 = 4.14 = (T 2 ) 1/2 = + = + = =0.480 / ( ) / ( ) /... (T) 1/2 = 2.08 This is half of the value for the previous case; hence it decays at a faster rate. Total number of dice taken, N 0 = The dice are rolled once again. From the rolled dice, those with number-2 face up are collected and counted. This gives the number of species-1 that have decayed.

8 Similarly from the rolled dice, dice with number-3 face up are collected and counted. This is the number of species-2 that have decayed. 8. The dice remaining on the board after picking out species-1 and species-2 atoms are counted. This number is N(1)=58 9. The remaining dice are rolled again. The decayed atoms are separated out as before and recorded in Table-2. The trial is continued up to 5-6 rounds of rolling until the number of atoms that remain on the board is about 10. A graph showing the number of rounds of rolling versus the natural logarithm of number of atoms remaining is shown in Figure-4. From the graph, the slope of the straight line is calculated which gives the experimental decay constant for the case with two species. λ=λ 1 + λ 2 = Slope of the line = (1/3) = Similarly, the half life is calculated and compared with the corresponding theoretical value (T) 1/2 = 0.693/0.333=2.08 The half life of the decay process with two species is exactly equal to its corresponding theoretical value. Table-2 No. of rolls No. of atoms decayed (n) No. atoms remaining (N t ) ln N(t) (t) Expt. Thet.* Expt. Thet.* Expt. Thet* Expt. 0 Species-1 Species Simulation of decay for the case of the two species Poisson s error The error on the number of atoms remaining after each decay is calculated, employing the Poisson statistics, as N(t) =244, Average N(t) = 48.8 σ x = <> = 48.8 = 6.98 atoms per decay This is within 7% of the number of atoms initially present.

9 ln N(t) Number of rounds rolled (t) Figure-4: Variation of ln N(t) with the number of rounds dice are rolled in two-species decay Results The results obtained are tabulated in Table-3. Table-3 Decay with Parameter One species Two species Expt. Thet. Expt. Thet. Decay constant (λ) Half life (roll) Poisson s error (%) Experimental results Discussion This experimental simulation of nuclear decay is a simple, yet illustrative experiment. One can perform this simple experiment before actually performing any other complex nuclear physics experiment. The accuracy in the determination of decay constant and half life can be further improved by taking larger number of dice (about 200). The same simulation can also be done on a computer using appropriate software programs. Reference [1] Simulated radioactive decay using dice, helios.augustana.edu/~jvh/courses/350/dice10.pdf

Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics

Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics PART I Geiger Tube: Optimal Operating Voltage and Resolving Time Objective: To become acquainted with the operation and characteristics

More information

8.7 Exponential Growth and Decay

8.7 Exponential Growth and Decay Section 8.7 Exponential Growth and Decay 847 8.7 Exponential Growth and Decay Exponential Growth Models Recalling the investigations in Section 8.3, we started by developing a formula for discrete compound

More information

Antoine Henri Becquerel was born in Paris on December 15, 1852

Antoine Henri Becquerel was born in Paris on December 15, 1852 Discovery Antoine Henri Becquerel was born in Paris on December 15, 1852 Summit Environmental Technologies, Inc. Analytical Laboratories 3310 Win Street Cuyahoga Falls, Ohio 44223 Fax: 1-330-253-4489 Call

More information

Main properties of atoms and nucleus

Main properties of atoms and nucleus Main properties of atoms and nucleus. Atom Structure.... Structure of Nuclei... 3. Definition of Isotopes... 4. Energy Characteristics of Nuclei... 5. Laws of Radioactive Nuclei Transformation... 3. Atom

More information

Section 1.4. Difference Equations

Section 1.4. Difference Equations Difference Equations to Differential Equations Section 1.4 Difference Equations At this point almost all of our sequences have had explicit formulas for their terms. That is, we have looked mainly at sequences

More information

Basics of Nuclear Physics and Fission

Basics of Nuclear Physics and Fission Basics of Nuclear Physics and Fission A basic background in nuclear physics for those who want to start at the beginning. Some of the terms used in this factsheet can be found in IEER s on-line glossary.

More information

Experiment 10. Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado

Experiment 10. Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado 1 Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado Introduction Some radioactive isotopes formed billions of years ago have half- lives so long that they are

More information

STRUTS: Statistical Rules of Thumb. Seattle, WA

STRUTS: Statistical Rules of Thumb. Seattle, WA STRUTS: Statistical Rules of Thumb Gerald van Belle Departments of Environmental Health and Biostatistics University ofwashington Seattle, WA 98195-4691 Steven P. Millard Probability, Statistics and Information

More information

AP Physics 1 and 2 Lab Investigations

AP Physics 1 and 2 Lab Investigations AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks

More information

Midterm 2 Review Problems (the first 7 pages) Math 123-5116 Intermediate Algebra Online Spring 2013

Midterm 2 Review Problems (the first 7 pages) Math 123-5116 Intermediate Algebra Online Spring 2013 Midterm Review Problems (the first 7 pages) Math 1-5116 Intermediate Algebra Online Spring 01 Please note that these review problems are due on the day of the midterm, Friday, April 1, 01 at 6 p.m. in

More information

Chapter 18: The Structure of the Atom

Chapter 18: The Structure of the Atom Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.

More information

Basic Nuclear Concepts

Basic Nuclear Concepts Section 7: In this section, we present a basic description of atomic nuclei, the stored energy contained within them, their occurrence and stability Basic Nuclear Concepts EARLY DISCOVERIES [see also Section

More information

Note on growth and growth accounting

Note on growth and growth accounting CHAPTER 0 Note on growth and growth accounting 1. Growth and the growth rate In this section aspects of the mathematical concept of the rate of growth used in growth models and in the empirical analysis

More information

CURVE FITTING LEAST SQUARES APPROXIMATION

CURVE FITTING LEAST SQUARES APPROXIMATION CURVE FITTING LEAST SQUARES APPROXIMATION Data analysis and curve fitting: Imagine that we are studying a physical system involving two quantities: x and y Also suppose that we expect a linear relationship

More information

2 Binomial, Poisson, Normal Distribution

2 Binomial, Poisson, Normal Distribution 2 Binomial, Poisson, Normal Distribution Binomial Distribution ): We are interested in the number of times an event A occurs in n independent trials. In each trial the event A has the same probability

More information

Calculation of Source-detector Solid Angle, Using Monte Carlo Method, for Radioactive Sources with Various Geometries and Cylindrical Detector

Calculation of Source-detector Solid Angle, Using Monte Carlo Method, for Radioactive Sources with Various Geometries and Cylindrical Detector International Journal of Pure and Applied Physics ISSN 0973-1776 Volume 3, Number 2 (2007), pp. 201 208 Research India Publications http://www.ripublication.com/ijpap.htm Calculation of Source-detector

More information

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information

............... [2] At the time of purchase of a Strontium-90 source, the activity is 3.7 10 6 Bq.

............... [2] At the time of purchase of a Strontium-90 source, the activity is 3.7 10 6 Bq. 1 Strontium-90 decays with the emission of a β-particle to form Yttrium-90. The reaction is represented by the equation 90 38 The decay constant is 0.025 year 1. 90 39 0 1 Sr Y + e + 0.55 MeV. (a) Suggest,

More information

Experiment #1, Analyze Data using Excel, Calculator and Graphs.

Experiment #1, Analyze Data using Excel, Calculator and Graphs. Physics 182 - Fall 2014 - Experiment #1 1 Experiment #1, Analyze Data using Excel, Calculator and Graphs. 1 Purpose (5 Points, Including Title. Points apply to your lab report.) Before we start measuring

More information

Decay of Radioactivity. Radioactive decay. The Math of Radioactive decay. Robert Miyaoka, PhD. Radioactive decay:

Decay of Radioactivity. Radioactive decay. The Math of Radioactive decay. Robert Miyaoka, PhD. Radioactive decay: Decay of Radioactivity Robert Miyaoka, PhD rmiyaoka@u.washington.edu Nuclear Medicine Basic Science Lectures https://www.rad.washington.edu/research/research/groups/irl/ed ucation/basic-science-resident-lectures/2011-12-basic-scienceresident-lectures

More information

Atomic and Nuclear Physics Laboratory (Physics 4780)

Atomic and Nuclear Physics Laboratory (Physics 4780) Gamma Ray Spectroscopy Week of September 27, 2010 Atomic and Nuclear Physics Laboratory (Physics 4780) The University of Toledo Instructor: Randy Ellingson Gamma Ray Production: Co 60 60 60 27Co28Ni *

More information

Physics 1104 Midterm 2 Review: Solutions

Physics 1104 Midterm 2 Review: Solutions Physics 114 Midterm 2 Review: Solutions These review sheets cover only selected topics from the chemical and nuclear energy chapters and are not meant to be a comprehensive review. Topics covered in these

More information

Review of Fundamental Mathematics

Review of Fundamental Mathematics Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

More information

Random variables, probability distributions, binomial random variable

Random variables, probability distributions, binomial random variable Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that

More information

4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions 4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

More information

Forecast. Forecast is the linear function with estimated coefficients. Compute with predict command

Forecast. Forecast is the linear function with estimated coefficients. Compute with predict command Forecast Forecast is the linear function with estimated coefficients T T + h = b0 + b1timet + h Compute with predict command Compute residuals Forecast Intervals eˆ t = = y y t+ h t+ h yˆ b t+ h 0 b Time

More information

CHI-SQUARE: TESTING FOR GOODNESS OF FIT

CHI-SQUARE: TESTING FOR GOODNESS OF FIT CHI-SQUARE: TESTING FOR GOODNESS OF FIT In the previous chapter we discussed procedures for fitting a hypothesized function to a set of experimental data points. Such procedures involve minimizing a quantity

More information

Motor and Household Insurance: Pricing to Maximise Profit in a Competitive Market

Motor and Household Insurance: Pricing to Maximise Profit in a Competitive Market Motor and Household Insurance: Pricing to Maximise Profit in a Competitive Market by Tom Wright, Partner, English Wright & Brockman 1. Introduction This paper describes one way in which statistical modelling

More information

Radioactivity III: Measurement of Half Life.

Radioactivity III: Measurement of Half Life. PHY 192 Half Life 1 Radioactivity III: Measurement of Half Life. Introduction This experiment will once again use the apparatus of the first experiment, this time to measure radiation intensity as a function

More information

Lecture 2 Binomial and Poisson Probability Distributions

Lecture 2 Binomial and Poisson Probability Distributions Lecture 2 Binomial and Poisson Probability Distributions Binomial Probability Distribution l Consider a situation where there are only two possible outcomes (a Bernoulli trial) H Example: u flipping a

More information

CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises

CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises CHAPTER FIVE 5.1 SOLUTIONS 265 Solutions for Section 5.1 Skill Refresher S1. Since 1,000,000 = 10 6, we have x = 6. S2. Since 0.01 = 10 2, we have t = 2. S3. Since e 3 = ( e 3) 1/2 = e 3/2, we have z =

More information

Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard

Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express

More information

Contemporary Mathematics- MAT 130. Probability. a) What is the probability of obtaining a number less than 4?

Contemporary Mathematics- MAT 130. Probability. a) What is the probability of obtaining a number less than 4? Contemporary Mathematics- MAT 30 Solve the following problems:. A fair die is tossed. What is the probability of obtaining a number less than 4? What is the probability of obtaining a number less than

More information

Environmental Health and Safety Radiation Safety. Module 1. Radiation Safety Fundamentals

Environmental Health and Safety Radiation Safety. Module 1. Radiation Safety Fundamentals Environmental Health and Safety Radiation Safety Module 1 Radiation Safety Fundamentals Atomic Structure Atoms are composed of a variety of subatomic particles. The three of interest to Health Physics

More information

7.S.8 Interpret data to provide the basis for predictions and to establish

7.S.8 Interpret data to provide the basis for predictions and to establish 7 th Grade Probability Unit 7.S.8 Interpret data to provide the basis for predictions and to establish experimental probabilities. 7.S.10 Predict the outcome of experiment 7.S.11 Design and conduct an

More information

Characteristics of Binomial Distributions

Characteristics of Binomial Distributions Lesson2 Characteristics of Binomial Distributions In the last lesson, you constructed several binomial distributions, observed their shapes, and estimated their means and standard deviations. In Investigation

More information

Structure and Properties of Atoms

Structure and Properties of Atoms PS-2.1 Compare the subatomic particles (protons, neutrons, electrons) of an atom with regard to mass, location, and charge, and explain how these particles affect the properties of an atom (including identity,

More information

WEB APPENDIX. Calculating Beta Coefficients. b Beta Rise Run Y 7.1 1 8.92 X 10.0 0.0 16.0 10.0 1.6

WEB APPENDIX. Calculating Beta Coefficients. b Beta Rise Run Y 7.1 1 8.92 X 10.0 0.0 16.0 10.0 1.6 WEB APPENDIX 8A Calculating Beta Coefficients The CAPM is an ex ante model, which means that all of the variables represent before-thefact, expected values. In particular, the beta coefficient used in

More information

RADON AND HEALTH. INFORMATION SHEET October 2002. What is radon and where does it come from?

RADON AND HEALTH. INFORMATION SHEET October 2002. What is radon and where does it come from? INFORMATION SHEET October 2 FINAL RADON AND HEALTH What is radon and where does it come from? Radon is a natural radioactive gas without odour, colour or taste. It cannot be detected without special equipment.

More information

Introduction to Geiger Counters

Introduction to Geiger Counters Introduction to Geiger Counters A Geiger counter (Geiger-Muller tube) is a device used for the detection and measurement of all types of radiation: alpha, beta and gamma radiation. Basically it consists

More information

Radiation and the Universe Higher Exam revision questions and answers

Radiation and the Universe Higher Exam revision questions and answers Radiation and the Universe Higher Exam revision questions and answers Madeley High School Q.The names of three different processes are given in List A. Where these processes happen is given in List B.

More information

Lab 11. Simulations. The Concept

Lab 11. Simulations. The Concept Lab 11 Simulations In this lab you ll learn how to create simulations to provide approximate answers to probability questions. We ll make use of a particular kind of structure, called a box model, that

More information

General Physics Lab: Atwood s Machine

General Physics Lab: Atwood s Machine General Physics Lab: Atwood s Machine Introduction One may study Newton s second law using a device known as Atwood s machine, shown below. It consists of a pulley and two hanging masses. The difference

More information

2. Discrete random variables

2. Discrete random variables 2. Discrete random variables Statistics and probability: 2-1 If the chance outcome of the experiment is a number, it is called a random variable. Discrete random variable: the possible outcomes can be

More information

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for

More information

WEEK #23: Statistics for Spread; Binomial Distribution

WEEK #23: Statistics for Spread; Binomial Distribution WEEK #23: Statistics for Spread; Binomial Distribution Goals: Study measures of central spread, such interquartile range, variance, and standard deviation. Introduce standard distributions, including the

More information

Chapter 5. Random variables

Chapter 5. Random variables Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like

More information

STT 200 LECTURE 1, SECTION 2,4 RECITATION 7 (10/16/2012)

STT 200 LECTURE 1, SECTION 2,4 RECITATION 7 (10/16/2012) STT 200 LECTURE 1, SECTION 2,4 RECITATION 7 (10/16/2012) TA: Zhen (Alan) Zhang zhangz19@stt.msu.edu Office hour: (C500 WH) 1:45 2:45PM Tuesday (office tel.: 432-3342) Help-room: (A102 WH) 11:20AM-12:30PM,

More information

Nuclear Fusion and Radiation

Nuclear Fusion and Radiation Nuclear Fusion and Radiation Lecture 8 (Meetings 19, 20, 21 & 22) Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Nuclear Fusion and Radiation p. 1/66 The discovery

More information

The Graphical Method: An Example

The Graphical Method: An Example The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,

More information

Solving Exponential Equations

Solving Exponential Equations Solving Exponential Equations Deciding How to Solve Exponential Equations When asked to solve an exponential equation such as x + 6 = or x = 18, the first thing we need to do is to decide which way is

More information

Algebra 1 Course Title

Algebra 1 Course Title Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

More information

Chapter 4: Exponential and Logarithmic Functions

Chapter 4: Exponential and Logarithmic Functions Chapter 4: Eponential and Logarithmic Functions Section 4.1 Eponential Functions... 15 Section 4. Graphs of Eponential Functions... 3 Section 4.3 Logarithmic Functions... 4 Section 4.4 Logarithmic Properties...

More information

Math 3C Homework 3 Solutions

Math 3C Homework 3 Solutions Math 3C Homework 3 s Ilhwan Jo and Akemi Kashiwada ilhwanjo@math.ucla.edu, akashiwada@ucla.edu Assignment: Section 2.3 Problems 2, 7, 8, 9,, 3, 5, 8, 2, 22, 29, 3, 32 2. You draw three cards from a standard

More information

1 Solving LPs: The Simplex Algorithm of George Dantzig

1 Solving LPs: The Simplex Algorithm of George Dantzig Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

More information

For convenience, we may consider an atom in two parts: the nucleus and the electrons.

For convenience, we may consider an atom in two parts: the nucleus and the electrons. Atomic structure A. Introduction: In 1808, an English scientist called John Dalton proposed an atomic theory based on experimental findings. (1) Elements are made of extremely small particles called atoms.

More information

Week 4: Standard Error and Confidence Intervals

Week 4: Standard Error and Confidence Intervals Health Sciences M.Sc. Programme Applied Biostatistics Week 4: Standard Error and Confidence Intervals Sampling Most research data come from subjects we think of as samples drawn from a larger population.

More information

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS Chapter NP-5 Nuclear Physics Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 2.0 NEUTRON INTERACTIONS 2.1 ELASTIC SCATTERING 2.2 INELASTIC SCATTERING 2.3 RADIATIVE CAPTURE 2.4 PARTICLE

More information

Sample lab procedure and report. The Simple Pendulum

Sample lab procedure and report. The Simple Pendulum Sample lab procedure and report The Simple Pendulum In this laboratory, you will investigate the effects of a few different physical variables on the period of a simple pendulum. The variables we consider

More information

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities

Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned

More information

GAMMA-RAY SPECTRA REFERENCES

GAMMA-RAY SPECTRA REFERENCES GAMMA-RAY SPECTRA REFERENCES 1. K. Siegbahn, Alpha, Beta and Gamma-Ray Spectroscopy, Vol. I, particularly Chapts. 5, 8A. 2. Nucleonics Data Sheets, Nos. 1-45 (available from the Resource Centre) 3. H.E.

More information

Lecture 2: Discrete Distributions, Normal Distributions. Chapter 1

Lecture 2: Discrete Distributions, Normal Distributions. Chapter 1 Lecture 2: Discrete Distributions, Normal Distributions Chapter 1 Reminders Course website: www. stat.purdue.edu/~xuanyaoh/stat350 Office Hour: Mon 3:30-4:30, Wed 4-5 Bring a calculator, and copy Tables

More information

99.37, 99.38, 99.38, 99.39, 99.39, 99.39, 99.39, 99.40, 99.41, 99.42 cm

99.37, 99.38, 99.38, 99.39, 99.39, 99.39, 99.39, 99.40, 99.41, 99.42 cm Error Analysis and the Gaussian Distribution In experimental science theory lives or dies based on the results of experimental evidence and thus the analysis of this evidence is a critical part of the

More information

PROBABILITY AND SAMPLING DISTRIBUTIONS

PROBABILITY AND SAMPLING DISTRIBUTIONS PROBABILITY AND SAMPLING DISTRIBUTIONS SEEMA JAGGI AND P.K. BATRA Indian Agricultural Statistics Research Institute Library Avenue, New Delhi - 0 0 seema@iasri.res.in. Introduction The concept of probability

More information

5.1 Radical Notation and Rational Exponents

5.1 Radical Notation and Rational Exponents Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots

More information

Nuclear Physics and Radioactivity

Nuclear Physics and Radioactivity Nuclear Physics and Radioactivity 1. The number of electrons in an atom of atomic number Z and mass number A is 1) A 2) Z 3) A+Z 4) A-Z 2. The repulsive force between the positively charged protons does

More information

Teaching the, Gaussian Distribution with Computers in Senior High School

Teaching the, Gaussian Distribution with Computers in Senior High School Teaching the, Gaussian Distribution with Computers in Senior High School Reishin Nakamura - Nagoya-city, Japan 1. Background features In keeping pace with the development of information science and technology,

More information

Radiometric Dating. Dating Methods for Igneous Rocks

Radiometric Dating. Dating Methods for Igneous Rocks Radiometric Dating why radiometric? although several different dating techniques are employed, all but radiometric dating is able to estimate ages in timescales relevant to astronomers. How it works Radiometric

More information

Programming Your Calculator Casio fx-7400g PLUS

Programming Your Calculator Casio fx-7400g PLUS Programming Your Calculator Casio fx-7400g PLUS Barry Kissane Programming Your Calculator: Casio fx-7400g PLUS Published by Shriro Australia Pty Limited 72-74 Gibbes Street, Chatswood NSW 2067, Australia

More information

The normal approximation to the binomial

The normal approximation to the binomial The normal approximation to the binomial In order for a continuous distribution (like the normal) to be used to approximate a discrete one (like the binomial), a continuity correction should be used. There

More information

Homework #1 Solutions

Homework #1 Solutions Homework #1 Solutions Problems Section 1.1: 8, 10, 12, 14, 16 Section 1.2: 2, 8, 10, 12, 16, 24, 26 Extra Problems #1 and #2 1.1.8. Find f (5) if f (x) = 10x x 2. Solution: Setting x = 5, f (5) = 10(5)

More information

Chapter 4. Probability and Probability Distributions

Chapter 4. Probability and Probability Distributions Chapter 4. robability and robability Distributions Importance of Knowing robability To know whether a sample is not identical to the population from which it was selected, it is necessary to assess the

More information

WHERE DOES THE 10% CONDITION COME FROM?

WHERE DOES THE 10% CONDITION COME FROM? 1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay

More information

TIME SERIES ANALYSIS & FORECASTING

TIME SERIES ANALYSIS & FORECASTING CHAPTER 19 TIME SERIES ANALYSIS & FORECASTING Basic Concepts 1. Time Series Analysis BASIC CONCEPTS AND FORMULA The term Time Series means a set of observations concurring any activity against different

More information

Chemical Kinetics. 2. Using the kinetics of a given reaction a possible reaction mechanism

Chemical Kinetics. 2. Using the kinetics of a given reaction a possible reaction mechanism 1. Kinetics is the study of the rates of reaction. Chemical Kinetics 2. Using the kinetics of a given reaction a possible reaction mechanism 3. What is a reaction mechanism? Why is it important? A reaction

More information

The overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES

The overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES INTRODUCTION TO CHANCE VARIABILITY WHAT DOES THE LAW OF AVERAGES SAY? 4 coins were tossed 1600 times each, and the chance error number of heads half the number of tosses was plotted against the number

More information

POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,

More information

MAS108 Probability I

MAS108 Probability I 1 QUEEN MARY UNIVERSITY OF LONDON 2:30 pm, Thursday 3 May, 2007 Duration: 2 hours MAS108 Probability I Do not start reading the question paper until you are instructed to by the invigilators. The paper

More information

PHYA5/1. General Certificate of Education Advanced Level Examination June 2012. Unit 5 Nuclear and Thermal Physics Section A

PHYA5/1. General Certificate of Education Advanced Level Examination June 2012. Unit 5 Nuclear and Thermal Physics Section A Centre Number Surname Candidate Number For Examinerʼs Use Other Names Candidate Signature Examinerʼs Initials General Certificate of Education Advanced Level Examination June 2012 Question 1 2 Mark Physics

More information

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations

More information

Binomial Probability Distribution

Binomial Probability Distribution Binomial Probability Distribution In a binomial setting, we can compute probabilities of certain outcomes. This used to be done with tables, but with graphing calculator technology, these problems are

More information

HSC Mathematics - Extension 1. Workshop E4

HSC Mathematics - Extension 1. Workshop E4 HSC Mathematics - Extension 1 Workshop E4 Presented by Richard D. Kenderdine BSc, GradDipAppSc(IndMaths), SurvCert, MAppStat, GStat School of Mathematics and Applied Statistics University of Wollongong

More information

Simple linear regression

Simple linear regression Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between

More information

Prelab Exercises: Hooke's Law and the Behavior of Springs

Prelab Exercises: Hooke's Law and the Behavior of Springs 59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

More information

You flip a fair coin four times, what is the probability that you obtain three heads.

You flip a fair coin four times, what is the probability that you obtain three heads. Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.

More information

MATH 140 Lab 4: Probability and the Standard Normal Distribution

MATH 140 Lab 4: Probability and the Standard Normal Distribution MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes

More information

5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives.

5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives. The Normal Distribution C H 6A P T E R The Normal Distribution Outline 6 1 6 2 Applications of the Normal Distribution 6 3 The Central Limit Theorem 6 4 The Normal Approximation to the Binomial Distribution

More information

1 Error in Euler s Method

1 Error in Euler s Method 1 Error in Euler s Method Experience with Euler s 1 method raises some interesting questions about numerical approximations for the solutions of differential equations. 1. What determines the amount of

More information

Tutorial 4.6 Gamma Spectrum Analysis

Tutorial 4.6 Gamma Spectrum Analysis Tutorial 4.6 Gamma Spectrum Analysis Slide 1. Gamma Spectrum Analysis In this module, we will apply the concepts that were discussed in Tutorial 4.1, Interactions of Radiation with Matter. Slide 2. Learning

More information

Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory

Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory PAM1014 Introduction to Radiation Physics Basic Atomic Theory Objectives Introduce and Molecules The periodic Table Electronic Energy Levels Atomic excitation & de-excitation Ionisation Molecules Constituents

More information

Introduction to the Monte Carlo method

Introduction to the Monte Carlo method Some history Simple applications Radiation transport modelling Flux and Dose calculations Variance reduction Easy Monte Carlo Pioneers of the Monte Carlo Simulation Method: Stanisław Ulam (1909 1984) Stanislaw

More information

We begin by presenting the current situation of women s representation in physics departments. Next, we present the results of simulations that

We begin by presenting the current situation of women s representation in physics departments. Next, we present the results of simulations that Report A publication of the AIP Statistical Research Center One Physics Ellipse College Park, MD 20740 301.209.3070 stats@aip.org July 2013 Number of Women in Physics Departments: A Simulation Analysis

More information

6.3 Conditional Probability and Independence

6.3 Conditional Probability and Independence 222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

More information

Radiation Detection and Measurement

Radiation Detection and Measurement Radiation Detection and Measurement June 2008 Tom Lewellen Tkldog@u.washington.edu Types of radiation relevant to Nuclear Medicine Particle Symbol Mass (MeV/c 2 ) Charge Electron e-,! - 0.511-1 Positron

More information

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions. Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

More information

This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

This is a square root. The number under the radical is 9. (An asterisk * means multiply.) Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

More information

Nuclear Physics. Nuclear Physics comprises the study of:

Nuclear Physics. Nuclear Physics comprises the study of: Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions

More information