Sound and Music. Skin vibrating. Air vibrating

Size: px
Start display at page:

Download "Sound and Music. Skin vibrating. Air vibrating"

Transcription

1 Sound and Music Sound Waves Sound is all around us. All sounds have one thing in common; they are all produced by a vibrating object. Examining musical instruments is a useful way to show what is vibrating. String vibrating Air vibrating Reed vibrating Skin vibrating When a vibration occurs, sound waves are produced. These sound waves carry energy from the vibrating object to our ears. It is receiving this energy that allows us to hear the sound. Sounds can be identified by their frequency. In the same way as radio waves [Telecommunications Unit] sound wave frequency means the number of waves produced per second. In music the word pitch is used to describe sounds. A high pitch is the same as a high frequency.

2 The apparatus shown can be used to examine the electrical signal that produces sound from a loudspeaker. The shape of the signal generator speaker oscilloscope pattern produced by the oscilloscope depends on the frequency of the sound and also on its loudness. This is the pattern produced when a sound is played through the loudspeaker. This is the pattern produced when a louder sound of the same frequency is played through the loudspeaker. The number of waves in the pattern has not changed. The height of the waves has increased. This is the pattern produced when a sound of the same loudness but increased frequency is played through the loudspeaker. The number of waves in the pattern has increased The height of the waves has stayed the same.

3 Louder sounds always have waves that go higher up the oscilloscope screen. Higher frequency sounds always have more waves on the oscilloscope screen. There is a special way of describing a frequency that doubles or halves. Frequencies are said to be one octave apart if their frequency changes by a factor of two. It is called an octave because eight white keys separate these frequency changes on a piano keyboard. 128 Hz 256 Hz 512 Hz Original frequency 256 Hz One octave higher: frequency = 256 x 2 = 512 Hz One octave lower: frequency = = 128 Hz The frequency of a vibrating string can be increased in two ways. One way is to increase the tightness of the string. Performers often do this when they are tuning their instruments. Another way is to shorten the length of the string. Performers do this when they play stringed instruments, moving their fingers along the fretboard.

4 Musical instruments that use air as their vibrating material produce higher notes by decreasing the length of the air column. The trombone is a good example of this. Trombone B will produce a higher note than trombone A because the vibrating air column is shorter. A B Speed of Sound Sound travels through air in the form of waves. These waves take time to travel from one place to another. Sound travels quickly through air but light travels even faster. An example of this is when there is a thunderstorm. Lightning and thunder are produced at exactly the same time in the cloud. You will always see the flash of lightning before you hear the rumble of thunder. [If you get both at the same time you ve just been struck by lightning!!!]

5 We can measure the speed of sound in air by doing an experiment. In the experiment we have to measure the distance that the sound travels. That is distance d in the diagram below. We also have to measure how long it takes for the sound to travel that distance. The electronic timer measures the time for the sound to go from one microphone to the other. screwdriver bottle timer microphone microphone d When we have both of these measurements, the speed can be calculated using the equation distance speed = time Example: distance = 1.5 m time = s speed = distance 1.5 = time = 341 m/s Any method used to measure speed of sound must measure both a distance and a time.

6 Using Sound Sound can travel through solids, liquids and gases. Sound will travel along the string in a string telephone. Dolphins communicate by passing sound through water. We can hear people singing because the sound travels through the air. Sound cannot travel through a vacuum.

7 Range of Hearing Humans are not able to hear every sound that is produced. If a sound is produced outside the frequency range Hz then we will not hear it. Other animals are able to hear sounds outside this range. up to Hz up to Hz up to Hz If a sound has a higher frequency than humans can hear [above Hz] it is called Ultrasound. Cats, dogs and whales can all hear some ultrasound. Ultrasound is used in medicine to examine unborn children. Ultrasound is used in industry to help metals plate better.

8 It is important that sound level values are kept to a reasonable level. If the sound level is too high then it is possible that hearing could be damaged. Sound levels are measured in the unit called the decibel (db). Some common sounds with their decibel levels are shown below. 0 db The softest sound a person can hear with normal hearing 10 db normal breathing 20 db whispering at 5 feet 30 db soft whisper 60 db normal conversation 80 db ringing telephone 110 db shouting in ear 120 db thunder 150 db jet engine taking off If sound levels are above 85 db then damage will occur if no protection is used. Ear defenders should be used in situations where the sound level is above 85 db. If there is a source of loud noise that causes a disturbance it is known as noise pollution. Some examples of this could be airport noise, roadworks, heavy traffic, and noisy neighbours.

9 Amplified Sound An amplifier can be used to make a sound louder. An amplifier is used as part of the school tannoy system; it allows the headteacher to speak to everybody in the school without having to shout. The amplifier only makes the sound louder; it does not change its frequency. We know this because we can recognise the voice that comes through the tannoy. Amplifiers are also used in music performances, public address systems [in airports or railway stations] The system is made up of three parts: 1. Microphone: changes sound energy into electrical energy 2. Amplifier: gives the electrical signal more energy 3. Loudspeaker: changes the electrical signal back into sound. A measure of how much louder a sound can be made is by finding out the voltage gain of the amplifier. This is how many times bigger the voltage is made. To calculate this value we need to know the voltage going into the amplifier, called the input voltage. We also need to know the voltage coming out of the amplifier, called the output voltage. voltage gain = output voltage input voltage

10 Example: A cassette player amplifier has an input voltage of 0.02 volts. The voltage from the amplifier to the loudspeaker is 3.0 volts. Calculate the voltage gain. voltage gain = output voltage input voltage 3.0 = = Your voice If you hear a recording of your voice it sounds different to how you normally hear your voice when you speak. The reason for this is that normally the energy from your voice travels through your skull to your ears and the recorded sound energy is travelling through air. This is why singers wear earphones when recording songs so that they can hear how they actually sound. CD versus Cassette CDs have become more popular than cassettes as a way of listening to music. There are various reasons for this 1. The quality of sound reproduction from a CD is better. 2. CDs do not wear away each time you play them. 3. CDs cannot be damaged by magnets.

11 Sound waves All sounds are produced by vibrations Sounds travel as waves and carry energy from one point to another The frequency of a sound is the number of waves produced every second. Frequencies are measured in the unit the hertz (Hz) High frequency sounds can also be described as being high pitched On oscilloscope screens a wave with a larger amplitude(height) has a louder sound On oscilloscope screens the pattern with a larger number of waves has a higher frequency A difference of an octave between sounds means that the frequency of one sound is double the other For a vibrating string 1. Tighter string higher frequency 2. Shorter string higher frequency The longer a vibrating air column the lower the frequency Speed of sound Sound waves travel slower in air than light waves To measure the speed of sound you need to 1. measure the distance the sound travels(d) 2. measure the time it takes the sound to travel that distance(t) The speed of sound can be calculated using distance speed = time

12 Using sound Sound is able to pass through solids, liquids and gases Sound cannot pass through a vacuum Humans can normally hear sounds in the frequency range Hz Sounds that are above the highest frequency that humans can hear are called ultrasounds Ultrasound is used in medicine for 1. Scanning unborn babies in the mother s womb 2. Speeding up healing of soft tissue injuries Ultrasound is used outside medicine for 1. Welding plastics 2. Cleaning objects in waterbaths Excessive sound levels can be a problem, this is called sound pollution 1. Heavy traffic 2. Loud neighbours Excessive sound levels can damage hearing. Amplified sound Amplifiers make the energy of a signal larger but do not change its frequency A speech amplification system [the tannoy] needs three parts 1. microphone to change sound into electrical energy 2. amplifier to increase energy of electrical signal 3. loudspeaker to change electrical back into sound energy The number of times bigger the amplifier makes the input voltage is called the voltage gain of the amplifier Voltage gain = output voltage input voltage

13 Your own voice sounds different to you because the vibrations carry through the bones in your skull instead of through the air. Compact discs are less prone to interference than cassette tapes and can store more information Questions 1.(a) For the instruments above say what vibrates to produce sound. (i)horn (ii)violin (iii)drum (b) The horn produces a sound with a pitch of 280 Hz. (i) There is another word that can be used instead of pitch. What is it? (ii) What does 280 Hz tell you about the vibration of the air in the horn? 2. A piano key when pressed produces a sound of frequency 300 Hz. A key one octave higher is now pressed. What is the frequency of this new note? 3. Trumpet A Trumpet B Which of the two trumpets shown above will produce the highest note? Explain your answer.

14 4.. Two sounds are passed into a microphone. The trace produced on an oscilloscope from each sound is shown below. Trace P Trace Q (a) Which trace represents the quieter sound? (b) Which trace represents the higher pitched sound? 5. Two students want to measure the speed of sound. One student sets off a firework at one end of the playing field. The second student is at the other end of the playing field. The second student sees the explosion then later hears the sound. (a)why is there a delay between seeing the explosion and hearing the sound? (b)what measuring instruments would the students need to do this experiment? (c)the length of the field is 200 metres. The sound takes 0.58 seconds to travel this distance. Calculate the speed of sound.

15 6. A student uses a sound meter to measure a range of sounds. When they drew up their table they were very careless. They mixed up the sound levels and the noises. They also forgot to put headings into the table. normal conversation 120 a quiet room 60 heavy traffic 30 jet plane 90 (a)redraw the table putting in headings, units where needed and match up the values to the correct noises. (b) Why is it important that we are not exposed to excessive noise? (c) Give two examples of noise pollution. 7.(a) What is the highest frequency normally heard by humans? (b) What do we call frequencies of sound above this value? (c) Give one medical and one non-medical use for these frequencies of sound. 8. A student is investigating the working of an amplifier. They measure the input voltage and the output voltage. The measurements are given below Input voltage = 0.5 volts Output voltage = 4.5 volts (a)calculate the voltage gain of the amplifier. (b) The frequency of the output signal from the amplifier is 400 hertz. What is the frequency of the input signal? 9. Explain why your voice sounds different to you when you hear it played back from a tape.

16 10. Give two advantages of listening to or recording music on a CD instead of a cassette tape.

Chapter 21 Study Questions Name: Class:

Chapter 21 Study Questions Name: Class: Chapter 21 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. If a fire engine is traveling toward you, the Doppler

More information

DIGITAL MUSIC DAY 1 WHAT IS SOUND? ANALOG AND DIGITAL EARLY RECORDING WAX FOR YOUR EARS ROUND BUT FLAT WIRE AND TAPE PURE SOUND

DIGITAL MUSIC DAY 1 WHAT IS SOUND? ANALOG AND DIGITAL EARLY RECORDING WAX FOR YOUR EARS ROUND BUT FLAT WIRE AND TAPE PURE SOUND DIGITAL MUSIC DAY 1 WHAT IS SOUND? 1. Making a sound playing a musical instrument, moves the surrounding the instrument. 2. Making a sound sends out air which hit your ears. 3. Waves of changing air pressure

More information

Trigonometric functions and sound

Trigonometric functions and sound Trigonometric functions and sound The sounds we hear are caused by vibrations that send pressure waves through the air. Our ears respond to these pressure waves and signal the brain about their amplitude

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Chapter 20. Traveling Waves You may not realize it, but you are surrounded by waves. The waviness of a water wave is readily apparent, from the ripples on a pond to ocean waves large enough to surf. It

More information

Dr. Abdel Aziz Hussein Lecturer of Physiology Mansoura Faculty of Medicine

Dr. Abdel Aziz Hussein Lecturer of Physiology Mansoura Faculty of Medicine Physiological Basis of Hearing Tests By Dr. Abdel Aziz Hussein Lecturer of Physiology Mansoura Faculty of Medicine Introduction Def: Hearing is the ability to perceive certain pressure vibrations in the

More information

Audible Alarm Basics Everything you wanted to know, but were afraid to ask by Dan O Brien, Sales Engineer, Mallory Sonalert Products, Inc.

Audible Alarm Basics Everything you wanted to know, but were afraid to ask by Dan O Brien, Sales Engineer, Mallory Sonalert Products, Inc. Audible Alarm Basics Everything you wanted to know, but were afraid to ask by Dan O Brien, Sales Engineer, Mallory Sonalert Products, Inc. From smoke detectors to automobiles, audible alarms (also known

More information

www.ptg.org Visit the Piano Learning Center of the Piano Technicians Guild at www.ptg.org for more fun ways to learn about the piano.

www.ptg.org Visit the Piano Learning Center of the Piano Technicians Guild at www.ptg.org for more fun ways to learn about the piano. Piano Science Connect Music and Science Age: Elementary, Middle School The piano is one of the most interesting musical instruments you can learn to play. www.ptg.org It is also one of the most versatile

More information

Review of Chapter 25. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Review of Chapter 25. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Review of Chapter 25 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The time needed for a wave to make one complete cycle is its b. velocity.

More information

Waves Sound and Light

Waves Sound and Light Waves Sound and Light r2 c:\files\courses\1710\spr12\wavetrans.doc Ron Robertson The Nature of Waves Waves are a type of energy transmission that results from a periodic disturbance (vibration). They are

More information

Ultrasonic Gas Leak Detection

Ultrasonic Gas Leak Detection Ultrasonic Gas Leak Detection What is it and How Does it Work? Because every life has a purpose... Ultrasonic Gas Leak Detection Introduction Ultrasonic gas leak detection (UGLD) is a comparatively recent

More information

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

More information

Responsibility of all areas which could be addressed in this learning journey: Sciences experiences and outcomes:

Responsibility of all areas which could be addressed in this learning journey: Sciences experiences and outcomes: 1 Through this learning journey, learners will be given the opportunity to explore the nature of sound, waves and wave characteristics using a variety of ICT. The learning journey offers opportunities

More information

v = λ f this is the Golden Rule for waves transverse & longitudinal waves Harmonic waves The golden rule for waves Example: wave on a string Review

v = λ f this is the Golden Rule for waves transverse & longitudinal waves Harmonic waves The golden rule for waves Example: wave on a string Review L 23 Vibrations and Waves [3] resonance clocks pendulum springs harmonic motion mechanical waves sound waves golden rule for waves musical instruments The Doppler effect Doppler radar radar guns Review

More information

The Sonometer The Resonant String and Timbre Change after plucking

The Sonometer The Resonant String and Timbre Change after plucking The Sonometer The Resonant String and Timbre Change after plucking EQUIPMENT Pasco sonometers (pick up 5 from teaching lab) and 5 kits to go with them BK Precision function generators and Tenma oscilloscopes

More information

Tuning Subwoofers - Calibrating Subwoofers

Tuning Subwoofers - Calibrating Subwoofers Tuning Subwoofers - Calibrating Subwoofers WHY The purpose of a subwoofer is to fill in the bottom octaves below the capabilities of the mains speakers. There are many reasons to use a subwoofer to do

More information

Waves-Wave Characteristics

Waves-Wave Characteristics 1. What is the wavelength of a 256-hertz sound wave in air at STP? 1. 1.17 10 6 m 2. 1.29 m 3. 0.773 m 4. 8.53 10-7 m 2. The graph below represents the relationship between wavelength and frequency of

More information

Noise at work a guide for health and safety representatives

Noise at work a guide for health and safety representatives Noise at work a guide for health and safety representatives Hearing problems caused by noise at work are far too common. The HSE estimates that 170,000 people in the UK suffer deafness, tinnitus or other

More information

The Tuning CD Using Drones to Improve Intonation By Tom Ball

The Tuning CD Using Drones to Improve Intonation By Tom Ball The Tuning CD Using Drones to Improve Intonation By Tom Ball A drone is a sustained tone on a fixed pitch. Practicing while a drone is sounding can help musicians improve intonation through pitch matching,

More information

Guideline for Hearing Conservation and Noise Control

Guideline for Hearing Conservation and Noise Control EVERYONE'S RESPONSIBILITY Guideline for Hearing Conservation and Noise Control February 2007 Guideline for Hearing Conservation and Noise Control Workplace Safety & Health Division 200 401 York Avenue

More information

Yerkes Summer Institute 2002

Yerkes Summer Institute 2002 Before we begin our investigations into radio waves you should review the following material on your trip up to Yerkes. For some of you this will be a refresher, but others may want to spend more time

More information

Hearing Tests And Your Child

Hearing Tests And Your Child HOW EARLY CAN A CHILD S HEARING BE TESTED? Most parents can remember the moment they first realized that their child could not hear. Louise Tracy has often told other parents of the time she went onto

More information

Sound and stringed instruments

Sound and stringed instruments Sound and stringed instruments Lecture 14: Sound and strings Reminders/Updates: HW 6 due Monday, 10pm. Exam 2, a week today! 1 Sound so far: Sound is a pressure or density fluctuation carried (usually)

More information

Sound and Music. Drum. Drum. Guitar. Flute. Guitar. Trumpet. Flute. Trumpet

Sound and Music. Drum. Drum. Guitar. Flute. Guitar. Trumpet. Flute. Trumpet Sound and Music Look at the drawings above. Read the names of the parts of each instrument. Answer the following questions. 1. Which part creates the sound for each of these instruments? Drum Guitar Flute

More information

Hear Better With FM. Get more from everyday situations. Life is on. www.phonak.com

Hear Better With FM. Get more from everyday situations. Life is on. www.phonak.com Hear Better With FM Get more from everyday situations Life is on We are sensitive to the needs of everyone who depends on our knowledge, ideas and care. And by creatively challenging the limits of technology,

More information

Describing Sound Waves. Period. Frequency. Parameters used to completely characterize a sound wave. Chapter 3. Period Frequency Amplitude Power

Describing Sound Waves. Period. Frequency. Parameters used to completely characterize a sound wave. Chapter 3. Period Frequency Amplitude Power Parameters used to completely characterize a sound wave Describing Sound Waves Chapter 3 Period Frequency Amplitude Power Intensity Speed Wave Length Period Defined as the time it take one wave vibrate

More information

Summary Our science project is an investigation into the varying levels of damage that different types of earphones and mp3 players cause to hearing.

Summary Our science project is an investigation into the varying levels of damage that different types of earphones and mp3 players cause to hearing. Meet The Team Ella Lyons is our team leader. Whilst we were doing our experiment Ella was the main operator of the data logging device. Ella took charge in any part of our experiment which involved computers

More information

Hearing Tests And Your Child

Hearing Tests And Your Child How Early Can A Child s Hearing Be Tested? Most parents can remember the moment they first realized that their child could not hear. Louise Tracy has often told other parents of the time she went onto

More information

PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.)

PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.) PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.) Sound Waves Test -- each multiple choice question is worth 3 points. 1. Sound waves are

More information

Noise and Hearing Protection

Noise and Hearing Protection Noise and Hearing Protection Noise and Hearing Safety Training This training module is designed to teach you about the purpose and benefits of a hearing conservation program. After completing the training,

More information

Hearcentres Guide to Hearing Aid Terminology

Hearcentres Guide to Hearing Aid Terminology Hearcentres Guide to Hearing Aid Terminology Sophisticated modern hearing aids use a number of complicated technologies and techniques to ensure great improvements in hearing. Not only are the terms used

More information

PHYSICS 202 Practice Exam Waves, Sound, Reflection and Refraction. Name. Constants and Conversion Factors

PHYSICS 202 Practice Exam Waves, Sound, Reflection and Refraction. Name. Constants and Conversion Factors PHYSICS 202 Practice Exam Waves, Sound, Reflection and Refraction Name Constants and Conversion Factors Speed of sound in Air œ $%!7Î= "'!*7/>/

More information

A Tutorial on the Decibel

A Tutorial on the Decibel A Tutorial on the Decibel This tutorial combines information from several authors, including Bob DeVarney, W1ICW; Walter Bahnzaf, WB1ANE; and Ward Silver, NØAX Decibels are part of many questions in the

More information

P1 4. Waves and their uses

P1 4. Waves and their uses P 4. Waves and their uses P 8 minutes 8 marks Answer all questions using any and all resources. Page of 38 Q. Diagram shows four of the seven types of wave in the electromagnetic spectrum. Diagram J K

More information

Resonance in a Closed End Pipe

Resonance in a Closed End Pipe Experiment 12 Resonance in a Closed End Pipe 12.1 Objectives Determine the relationship between frequency and wavelength for sound waves. Verify the relationship between the frequency of the sound, the

More information

TV hearing aid BL-8008A BL-8008B. Manual

TV hearing aid BL-8008A BL-8008B. Manual TV hearing aid BL-8008A BL-8008B Manual A. Product instruction 1. What is TV hearing aid 2. Theory 3. Features 4. Functions 4.1 TV hearing aid function 4.2 Normal hearing aid function 4.3 Wired hearing

More information

UNIVERSITY OF CALICUT

UNIVERSITY OF CALICUT UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION BMMC (2011 Admission) V SEMESTER CORE COURSE AUDIO RECORDING & EDITING QUESTION BANK 1. Sound measurement a) Decibel b) frequency c) Wave 2. Acoustics

More information

Kinetic Theory. Energy. Transfers and Efficiency. The National Grid

Kinetic Theory. Energy. Transfers and Efficiency. The National Grid AQA P1 Revision Infrared Radiation Heating and Insulating Buildings Kinetic Theory Energy Transfers and Efficiency Energy Transfer by Heating Transferring Electrical Energy Generating Electricity The National

More information

What Is Sound? 20 minutes. Materials For the teacher. 1 pr. *cymbals, large 1 pr. cymbals, small 1 xylophone *Not provided in kit

What Is Sound? 20 minutes. Materials For the teacher. 1 pr. *cymbals, large 1 pr. cymbals, small 1 xylophone *Not provided in kit Share with Your Students Vocabulary pitch STUDENT RESOURCE 1.1 INFORMATION SHEET how high or low a sound is What Is Sound? 1. Make copies of Student Resource 1.1, Vocabulary, and cut it up to make flashcards.

More information

Solution Derivations for Capa #13

Solution Derivations for Capa #13 Solution Derivations for Capa #13 1 Identify the following waves as T-Transverse, or L-Longitudinal. If the first is T and the rets L, enter TLLL. QUESTION: A The WAVE made by fans at sports events. B

More information

Audio Editing. Using Audacity Matthew P. Fritz, DMA Associate Professor of Music Elizabethtown College

Audio Editing. Using Audacity Matthew P. Fritz, DMA Associate Professor of Music Elizabethtown College Audio Editing Using Audacity Matthew P. Fritz, DMA Associate Professor of Music Elizabethtown College What is sound? Sounds are pressure waves of air Pressure pushes air molecules outwards in all directions

More information

Sound and music. Key concepts of sound and music

Sound and music. Key concepts of sound and music Sound and music Introduction Why do we see lightning before we hear the thunder? How do we amplify sound and how do we reduce it? How is it we can hear at all? Sound is all around us every day and it is

More information

ReSound Unite TV FREQUENTLY ASKED QUESTIONS. Setup & Configuration. Use & Operation. Troubleshooting

ReSound Unite TV FREQUENTLY ASKED QUESTIONS. Setup & Configuration. Use & Operation. Troubleshooting Tip for use of FAQ: Click on questions to go to answer. Setup & Configuration How do I pair the hearing aids to the Unite TV?... 2 What is the latency of the streamed signal?... 2 Does the Unite TV use

More information

Current Thinking Guide to

Current Thinking Guide to Current Thinking Guide to Audio Frequency Induction Loop Systems (AFILS) Induction Loops (AFILS) use a feature provided by all hearing aids (both analogue and digital types) which carry NHS or similar

More information

The Design and Implementation of Multimedia Software

The Design and Implementation of Multimedia Software Chapter 10 Auditory Content The Design and Implementation of Multimedia Software David Bernstein Jones and Bartlett Publishers www.jbpub.com David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett

More information

with the new portables

with the new portables WHITE PAPER MAY 2012 ADVANCING TO THE NEXT STAGE IN AUDIO PERFORMANCE with the new motorola tetra portables Clear voice communications in stressful and noisy situations remains a primary requirement for

More information

Music Theory: Explanation and Basic Principles

Music Theory: Explanation and Basic Principles Music Theory: Explanation and Basic Principles Musical Scales Musical scales have developed in all cultures throughout the world to provide a basis for music to be played on instruments or sung by the

More information

So you ve had your hearing tested. What s next?

So you ve had your hearing tested. What s next? So you ve had your hearing tested. What s next? Nancy is wearing micro behind-the-ear hearing aids Hearing matters By recently having your hearing tested, you ve taken a very important step. Discovering

More information

The Physics of Guitar Strings

The Physics of Guitar Strings The Physics of Guitar Strings R. R. McNeil 1. Introduction The guitar makes a wonderful device to demonstrate the physics of waves on a stretched string. This is because almost every student has seen a

More information

Noise at work. Introduction. What harm can noise cause? A brief guide to controlling the risks. What is this leaflet about?

Noise at work. Introduction. What harm can noise cause? A brief guide to controlling the risks. What is this leaflet about? Noise at work A brief guide to controlling the risks Introduction What is this leaflet about? Loud noise at work can damage people s hearing and lead to risks to safety. This leaflet explains what you,

More information

Days. Day 1. Reflection Teacher Responsibilities. Lesson Plans

Days. Day 1. Reflection Teacher Responsibilities. Lesson Plans Days Day 1 Lesson Plans Call the students to the carpet by the number of letters in their names. If your name has less than 5 letters, come to the carpet. If your name has more than 5 letters, come to

More information

Your Hearing ILLUMINATED

Your Hearing ILLUMINATED Your Hearing ILLUMINATED INFORMATION FROM YOUR HEARING CARE PROFESSIONAL REDISCOVER your hearing and reconnect 1 with the important things you might have been missing. Your sense of hearing is a vital

More information

physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves

physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves Chapter 20 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 20 Traveling Waves Chapter Goal: To learn the basic properties of traveling waves. Slide

More information

ARTICLE. Sound in surveillance Adding audio to your IP video solution

ARTICLE. Sound in surveillance Adding audio to your IP video solution ARTICLE Sound in surveillance Adding audio to your IP video solution Table of contents 1. First things first 4 2. Sound advice 4 3. Get closer 5 4. Back and forth 6 5. Get to it 7 Introduction Using audio

More information

Single Transistor FM Transmitter Design

Single Transistor FM Transmitter Design Single Transistor FM Transmitter Design In telecommunications, frequency modulation (FM) conveys information over a carrier wave by varying its frequency. FM is commonly used at VHF radio frequencies for

More information

The Physics of Music: Brass Instruments. James Bernhard

The Physics of Music: Brass Instruments. James Bernhard The Physics of Music: Brass Instruments James Bernhard As a first approximation, brass instruments can be modeled as closed cylindrical pipes, where closed means closed at one end, open at the other Here

More information

Exploring Sounds Environmental Sounds

Exploring Sounds Environmental Sounds Exploring Sounds Environmental Sounds Ideas and activities for exploring environmental sounds for all classes Strand : Listening and responding Strand unit: Exploring sounds Exploring sounds involves listening

More information

Generic - Hearing Loop - (AFILS) U.S. System Specification

Generic - Hearing Loop - (AFILS) U.S. System Specification This document is a generic specification for any Hearing Loop (Audio Frequency Induction Loop System). For the remainder of the document, we will refer to using the term Hearing Loop rather than Audio

More information

Understanding Hearing Loss 404.591.1884. www.childrensent.com

Understanding Hearing Loss 404.591.1884. www.childrensent.com Understanding Hearing Loss 404.591.1884 www.childrensent.com You just found out your child has a hearing loss. You know what the Audiologist explained to you, but it is hard to keep track of all the new

More information

MUSIC. Syllabus for Primary Schools. Curriculum Department, Floriana Year 3 19

MUSIC. Syllabus for Primary Schools. Curriculum Department, Floriana Year 3 19 MUSIC Syllabus for Primary Schools Curriculum Department, Floriana Year 3 19 YEAR 3 Curriculum Department, Floriana Year 3 20 LEARNING OUTCOMES for YEAR 3 Curriculum Department, Floriana Year 3 21 3.1

More information

Chapter 17: Change of Phase

Chapter 17: Change of Phase Chapter 17: Change of Phase Conceptual Physics, 10e (Hewitt) 3) Evaporation is a cooling process and condensation is A) a warming process. B) a cooling process also. C) neither a warming nor cooling process.

More information

AGES 8+ b e g g i n ʼ f o r t h e b e a t USER S GUIDE

AGES 8+ b e g g i n ʼ f o r t h e b e a t USER S GUIDE AGES 8+ b e g g i n ʼ f o r t h e b e a t USER S GUIDE Thank you for purchasing I-DOG. Be sure to read and follow all instructions carefully before using this product. Feed this robotic pooch your music

More information

Electromagnetic (EM) waves. Electric and Magnetic Fields. L 30 Electricity and Magnetism [7] James Clerk Maxwell (1831-1879)

Electromagnetic (EM) waves. Electric and Magnetic Fields. L 30 Electricity and Magnetism [7] James Clerk Maxwell (1831-1879) L 30 Electricity and Magnetism [7] ELECTROMAGNETIC WAVES Faraday laid the groundwork with his discovery of electromagnetic induction Maxwell added the last piece of the puzzle Heinrich Hertz made the experimental

More information

Unit 12.3 Waves Topic 1: Types of waves

Unit 12.3 Waves Topic 1: Types of waves Unit 12.3 Waves Topic 1: Types of waves Topic 1 deals with the properties and types of waves (see Syllabus pp. 28 29). It covers: Longitudinal waves. Transverse waves. Electromagnetic waves. Sound waves.

More information

AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity.

AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity. 1. A fire truck is moving at a fairly high speed, with its siren emitting sound at a specific pitch. As the fire truck recedes from you which of the following characteristics of the sound wave from the

More information

Welcome to the United States Patent and TradeMark Office

Welcome to the United States Patent and TradeMark Office Welcome to the United States Patent and TradeMark Office an Agency of the United States Department of Commerce United States Patent 5,159,703 Lowery October 27, 1992 Silent subliminal presentation system

More information

Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide)

Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide) Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide) OVERVIEW Students will measure a sound wave by placing the Ward s DataHub microphone near one tuning fork A440 (f=440hz). Then

More information

Guidelines for video conferencing room acoustics. D14377.01 September 2010

Guidelines for video conferencing room acoustics. D14377.01 September 2010 Guidelines for video conferencing room acoustics D14377.01 September 2010 Video conferencing room acoustics Does the audio quality fail to meet your expectations? Do you feel tired when spending longer

More information

Mobile use, radio signals and health

Mobile use, radio signals and health Mobile use, radio signals and health Mobile use, radio signals and health How does the mobile network work? Since the 1970s, the use of various types of radio transmitters has risen dramatically, to the

More information

KEYBOARD EXTENDED RANGE. Sixty Owner, s Manual P/N 049254

KEYBOARD EXTENDED RANGE. Sixty Owner, s Manual P/N 049254 THE SOUND THAT CREATES LEGENDS KEYBOARD EXTENDED RANGE Sixty Owner, s Manual P/N 049254 INTRODUCTION Your new Fender KXR 60 Keyboard Amplifier is the result of Fender s ongoing dialog with many of today

More information

General Thoughts on Generator Set - Acoustic Solutions & Noise Control

General Thoughts on Generator Set - Acoustic Solutions & Noise Control t: 023 81 290160 www.excelpowerltd.co.uk f: 023 81 290260 info@excelpowerltd.co.uk General Thoughts on Generator Set - Acoustic Solutions & Noise Control Written By Steve Delaney A.M.I.O.A. of TAS Ltd

More information

1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude.

1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude. practice wave test.. Name Use the text to make use of any equations you might need (e.g., to determine the velocity of waves in a given material) MULTIPLE CHOICE. Choose the one alternative that best completes

More information

Addressing Quietness on Units Best Practice Implementation Guide. A quiet environment is a healing environment

Addressing Quietness on Units Best Practice Implementation Guide. A quiet environment is a healing environment Addressing Quietness on Units Best Practice Implementation Guide A quiet environment is a healing environment Introduction Hospitals can be noisy Hospitals are extremely busy places and patients need assistance

More information

Mathematical Harmonies Mark Petersen

Mathematical Harmonies Mark Petersen 1 Mathematical Harmonies Mark Petersen What is music? When you hear a flutist, a signal is sent from her fingers to your ears. As the flute is played, it vibrates. The vibrations travel through the air

More information

Comfort Contego User Manual

Comfort Contego User Manual Comfort Contego User Manual Please read the User Manual before using this product. Comfort Contego T900 Transmitter English Comfort Contego R900 Receiver DO NOT USE the COMFORT CONTEGO if you have a PACEMAKER

More information

FREQUENCY RESPONSE OF AN AUDIO AMPLIFIER

FREQUENCY RESPONSE OF AN AUDIO AMPLIFIER 2014 Amplifier - 1 FREQUENCY RESPONSE OF AN AUDIO AMPLIFIER The objectives of this experiment are: To understand the concept of HI-FI audio equipment To generate a frequency response curve for an audio

More information

Playing By Ear Who Can Play By Ear?... 2 How To Play By Ear... 3 Happy Birthday To You (By Ear)... 4 Match Tones... 5 Add Chords...

Playing By Ear Who Can Play By Ear?... 2 How To Play By Ear... 3 Happy Birthday To You (By Ear)... 4 Match Tones... 5 Add Chords... Playing By Ear Who Can Play By Ear?... 2 How To Play By Ear... 3 Happy Birthday To You (By Ear)... 4 Match Tones... 5 Add Chords... 6 Allcanplay TM Piano * MaxLearning.Net 2009 * Playing By Ear * 4/6/2009

More information

CONVERSip EP100 Digital Endpoint. User Guide

CONVERSip EP100 Digital Endpoint. User Guide CONVERSip EP100 Digital Endpoint User Guide TABLE OF CONTENTS OVERVIEW...15 1.2 Positioning Your EP100...22 1.3 Setting Display Contrast...23 1.4 Setting a Personal Ringing Tone...24 1.5 Setting Volume

More information

FIFTH GRADE WORKBOOK

FIFTH GRADE WORKBOOK FIFTH GRADE WORKBOOK students Math/Science Nucleus 1990,2001 APPLIED SCIENCE - SCIENCE AND MATH (5A) PROBLEM: Can you learn how to estimate? PREDICTION: MATERIALS: 3 containers filled with items given

More information

INTERFERENCE OF SOUND WAVES

INTERFERENCE OF SOUND WAVES 1/2016 Sound 1/8 INTERFERENCE OF SOUND WAVES PURPOSE: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves and to observe interference phenomena with ultrasonic sound waves.

More information

Interference to Hearing Aids by Digital Mobile Telephones Operating in the 1800 MHz Band.

Interference to Hearing Aids by Digital Mobile Telephones Operating in the 1800 MHz Band. Interference to Hearing Aids by Digital Mobile Telephones Operating in the 1800 MHz Band. Reference: EB968 Date: January 2008 Author: Eric Burwood (National Acoustic Laboratories) Collaborator: Walter

More information

Basics of Digital Recording

Basics of Digital Recording Basics of Digital Recording CONVERTING SOUND INTO NUMBERS In a digital recording system, sound is stored and manipulated as a stream of discrete numbers, each number representing the air pressure at a

More information

USER GUIDE ELLIPSE AURA RETAIL

USER GUIDE ELLIPSE AURA RETAIL USER GUIDE ELLIPSE AURA RETAIL Welcome Thank you for making Fishman a part of your acoustic experience. We are proud to offer you the finest acoustic amplification products available; high-quality professional-grade

More information

So, how do we hear? outer middle ear inner ear

So, how do we hear? outer middle ear inner ear The ability to hear is critical to understanding the world around us. The human ear is a fully developed part of our bodies at birth and responds to sounds that are very faint as well as sounds that are

More information

Active Monitor Box McCrypt S.T.E.V.E. 15. Order No. 30 17 06

Active Monitor Box McCrypt S.T.E.V.E. 15. Order No. 30 17 06 Active Monitor Box McCrypt S.T.E.V.E. 15 Order No. 30 17 06 1 McCrypt Active Monitor 15 Introduction Dear Customer, Thank you for purchasing this McCrypt Active Monitor. You have chosen a quality product

More information

TROUBLESHOOTING RECEIVERS

TROUBLESHOOTING RECEIVERS TROUBLESHOOTING RECEIVERS The four methods of troubleshooting are: 1. Circuit Disturbance 2. Signal Substitution 3. Signal Tracing 4. Measurement of Circuit Parameters Definition of Terms: Circuit Disturbance

More information

Ch 25 Chapter Review Q & A s

Ch 25 Chapter Review Q & A s Ch 25 Chapter Review Q & A s a. a wiggle in time is called? b. a wiggle in space & time is called? a. vibration b. wave What is the period of a pendulum? The period is the time for 1 cycle (back & forth)

More information

Consumer Decision Making Study Materials

Consumer Decision Making Study Materials Selecting Headphones Consumer Decision Making Study Materials There are many different types of headphones, all ranging in price as well as style and comfort. When looking to buy a new pair of headphones

More information

What are the causes of presbycusis? What can be done? How can I communicate with someone who has a hearing loss? How does hearing work?

What are the causes of presbycusis? What can be done? How can I communicate with someone who has a hearing loss? How does hearing work? This e-book will answer the following questions: What is presbycusis? What are the symptoms of presbycusis? What are the causes of presbycusis? What can be done? How can I communicate with someone who

More information

Big bang, red shift and doppler effect

Big bang, red shift and doppler effect Big bang, red shift and doppler effect 73 minutes 73 marks Page of 26 Q. (a) Scientists have observed that the wavelengths of the light from galaxies moving away from the Earth are longer than expected.

More information

What Is Energy? Energy and Work: Working Together. 124 Chapter 5 Energy and Energy Resources

What Is Energy? Energy and Work: Working Together. 124 Chapter 5 Energy and Energy Resources 1 What You Will Learn Explain the relationship between energy and work. Compare kinetic and potential energy. Describe the different forms of energy. Vocabulary energy kinetic energy potential energy mechanical

More information

CA Unified Communications Monitor

CA Unified Communications Monitor CA Unified Communications Monitor Addressing Echo in VoIP Systems Understanding and Monitoring Echo Cancellation for Optimal VoIP Performance This Documentation, which includes embedded help systems and

More information

PS 29M DUAL CHANNEL BELTPACK IN METAL CASE

PS 29M DUAL CHANNEL BELTPACK IN METAL CASE PS 29M DUAL CHANNEL BELTPACK IN METAL CASE USER MANUAL October 2013 This product is designed and manufactured by: ASL Intercom BV Zonnebaan 42 3542 EG Utrecht The Netherlands Phone: +31 (0)30 2411901 Fax:

More information

The Effects of Ultrasonic Sound Generated by Ultrasonic Cleaning Systems on Human Hearing and Physiology

The Effects of Ultrasonic Sound Generated by Ultrasonic Cleaning Systems on Human Hearing and Physiology The Effects of Ultrasonic Sound Generated by Ultrasonic Cleaning Systems on Human Hearing and Physiology Questions about the effects of ultrasonic energy on hearing and other human physiology arise from

More information

Hearing Loss and Older Adults

Hearing Loss and Older Adults Hearing Loss and Older Adults Hearing loss is one of the most common conditions affecting older adults. One in three people older than 60 and half of those older than 85 have hearing loss. Hearing problems

More information

SYSTEM DESIGN AND THE IMPORTANCE OF ACOUSTICS

SYSTEM DESIGN AND THE IMPORTANCE OF ACOUSTICS SYSTEM DESIGN AND THE IMPORTANCE OF ACOUSTICS n Will your communication or emergency notification system broadcast intelligible speech messages in addition to alarm tones? n Will your system include multiple

More information

David s Heart: David Praises God

David s Heart: David Praises God Teacher s Guide: Ages 4-5 Kings & Kingdoms Part 2: Judges through Esther Unit 8, Lesson 41 David s Heart: David Praises God Lesson Aim: To explore ways to praise the Lord. THE WORSHIP Who God is: The King

More information

OSHA Scripts. Hearing Protection CBT Script

OSHA Scripts. Hearing Protection CBT Script Hearing Protection CBT Script Welcome / Splash Screen Welcome to the Florida Department of Transportation s computer-based training series on OSHA Construction Awareness Training. This is Chapter 3 Hearing

More information

Engineering with Sound Lesson Plan

Engineering with Sound Lesson Plan Type of lesson: Challenge Teaching Plan: Engineering with Sound Lesson Plan Goal The goal of this lesson is to introduce the students to sound and its properties and have them apply what they learn to

More information

Advanced Techniques for the Walkingbass

Advanced Techniques for the Walkingbass Advanced Techniques for the Walkingbass I have seen guys with 5 string basses who can t get half the sounds that you are getting out of just three. -Buddy Fo of the Invitations If you have read the Beginners

More information

A PRACTICAL GUIDE TO db CALCULATIONS

A PRACTICAL GUIDE TO db CALCULATIONS A PRACTICAL GUIDE TO db CALCULATIONS This is a practical guide to doing db (decibel) calculations, covering most common audio situations. You see db numbers all the time in audio. You may understand that

More information