NUMBER SENSE MAGIC BY LEO A. RAMIREZ, SR.


 Erik Dorsey
 2 years ago
 Views:
Transcription
1 NUMBER SENSE MAGIC BY LEO A. RAMIREZ, SR. Multiplying two numbers close to 100 (Both numbers are less than 100) Step # 1 : Step # : Example A : Find the difference of each number and 100. Multiply the result. This product will give the first two digits of the answer (the tens and units digits). If the product is greater than one hundred, carry the hundreds digit to Step #. Subtract the difference of one of the numbers and one hundred from the other number. Add any carryover from Step #1. This result will be the remaining digits of the answer. 95 x 98 = (10095)(10098) = 5() = 10 Step # : 95  (10098) = 95  = 93 Answer : 9310 Example B : 89 x 97 = (10089)(10097) = 11(3) = 33 Step # : 89  (10097) = 893 = 86 Answer : 8633 Example C : 96 x 95 = (10096)(10095) = 4(5) = 0 Step # : 96  (10095) = 965 = 91 Answer : 910 Example D : 87 x 88 = (10087)(10088) = 13(1) = 156 (Write Down the 56 and carryover the 1 to Step #. Step # : 87  (10088) + 1 (carryover) = =
2 76 Answer : 7656 Subtracting whole numbers In teaching students a method for subtracting faster, I recommend that they first practice subtracting two digis at a time. The first examples shown should not require borrowing from the hundreds place. Example A : = 453 = 13 Step # : 95 = 4 Answer : 413 Example B : = = 13 Step # : 8  = 6 Answer : 613 Example C : = 361 = 4 Step # : 95 = 4 Answer : 44 Example D : = 895 = 37 Step # : 71 = 6 Answer : 637 Exqmple E : = 361 = 15 Step # : 575 = 5 Answer : 515 Example D : =
3 918 = 11 Step # : = 4 Answer : 411 Now students need to learn how to handle situations where borrowing from the hundreds place is required. Example A : = Step #1: Try to find the difference of the first two digits of each number (the tens place and units place), If the number being subtracted is larger than the other number, find the difference of this number and one hundred and add this to the other number (10088) = = 5 Step # : Find the difference of the next two digits less 1. (7459)  1 = 151 = 14 Repeat Step #1 and Step # if necessary Answer : 145 Example B : = 67 + (10095) = = 7 Step # : (9  )  1 = 71 = 6 Answer : 67 Example C : = 05 + (10079) = = 6 Step # : (8  )  1 = 61 = 5 Answer : 56 Example D : = 56 + (10088) = = 68 Step # : (8775)  1 = 11 = 11 Answer : 1168
4 Example E : = 3 + (10091) = = 3 Step # : (7659)  1 = 171 = 16 Answer : 163 Example F : = 37 + (10065) = = 7 Step # : (653)  1 = 331 = 3 Answer : 37 Example G : = 87 + (10095) = = 9 Step # : (316)  1 = 51 = 4 Answer : 49 Example H : = 3 + (10083) = = 40 Step # : (9675)  1 = 11 = 0 Answer : 040 Example I : = 38 + (10069) = = 69 Step # : (563)  1 = 331 = 3 Answer : 369 Example J : = 59 + (10085) = = 74 Step # : (7867)  1 = 111 = 10 Answer : 1074
5 CHANGING FROM BASE 10 TO ANOTHER BASE Example A : 45 base 10 = base 6. The first digit of the answer (from right to left) is eq ual to the remainder when you divide the given number by the base = 7, remainder 3. Write down the 3. Step # : Divide the quotient in Step #1 by the base. The remainder Is the next digit of the answer. 7 6 = 1, remainder 1. Write down the 1. Continue dividing the quotient of the previous step by the base, always writing down the remainder until the final digit of the answer is found. 1 6 = 0, remainder 1. Write down the 1. Answer : 113 Example B : 73 base 10 = base 9. The first digit of the answer (from right to left) is eq ual to the remainder when you divide the given number by the base = 8, remainder 1. Write down the 1. Step # : Divide the quotient in Step #1 by the base. The remainder Is the next digit of the answer. 8 9 = 0, remainder 8. Write down the 8. Answer : 81 Example C : 38 base 10 = base 4. The first digit of the answer (from right to left) is eq ual to the remainder when you divide the given number by the base.
6 38 4 = 9, remainder. Write down the. Step # : Divide the quotient in Step #1 by the base. The remainder Is the next digit of the answer. 9 4 =, remainder 1. Write down the 1. Continue dividing the quotient of the previous step by the base, always writing down the remainder until the final digit of the answer is found. 9 = 0, remainder. Write down the. Answer : 1 Example D : 69 base 10 = base 6. The first digit of the answer (from right to left) is eq ual to the remainder when you divide the given number by the base = 11, remainder 3. Write down the 3. Step # : Divide the quotient in Step #1 by the base. The remainder Is the next digit of the answer = 1, remainder 5. Write down the 5. Continue dividing the quotient of the previous step by the base, always writing down the remainder until the final digit of the answer is found. 1 6 = 0, remainder 1. Write down the 1. Answer : 153
7 Special problems n =, Rule : n(n + 1) Example A : =. 10(10 + 1) = 110 = 55 Example B : =. 19(19 + 1) = 380 = 190 Example C : =. 15(15 + 1) = 40 = n =. Rule : n(n + ) 4 Example A : =. 0(0 + ) 4 = 0 ( ) = 10(11) = 110 Example B : =. 14(14 + ) 4 = 14 ( 16 ) = 7(8) = 56 Example C : =. 4(4 + ) = 4 4 ( 6 ) = 1(13) = 15
8 = (mixed number) Find the sum of the digits of the given number. This will be the numerator of a fraction whose denominator is 9. If the result is a proper fraction write this as part of the answer. If the result is an improper fraction, convert it into a mixed number ; write down the fractional part, then carry the whole number part to Step # = 7 9 Step # : Find the sum of the hundreds digit and the tens digit (plus any carryover from Step #1). This is the units digit of the answer. (4 + ) + 0 = 6 The hundreds digit of the number being divided by 9 (plus any carryover from Step #) will be the tens digit of the answer = 4 Answer : Example A : = (mixed number) = and carryover the = 4 3 = ; Write down the 1 3 Step # : (carryover) = (no carryover) = 4 Answer : Example B : 53 9 = (mixed number) = 10 9 = ; Write down the 1 9
9 and carryover the 1. Step # : (carryover) = (no carryover) = 5 Answer : Example C : 46 9 = (mixed number) = 1 = = and carryover the 1. 3 ; Write down the Step # : (carryover) = (no carryover) Answer : Example D : = (mixed number) = Step # : (no carryover) = (no carryover) = 3 Answer :
Accuplacer Arithmetic Study Guide
Testing Center Student Success Center Accuplacer Arithmetic Study Guide I. Terms Numerator: which tells how many parts you have (the number on top) Denominator: which tells how many parts in the whole
More informationnorth seattle community college
INTRODUCTION TO FRACTIONS If we divide a whole number into equal parts we get a fraction: For example, this circle is divided into quarters. Three quarters, or, of the circle is shaded. DEFINITIONS: The
More informationINTRODUCTION TO FRACTIONS
Tallahassee Community College 16 INTRODUCTION TO FRACTIONS Figure A (Use for 1 5) 1. How many parts are there in this circle?. How many parts of the circle are shaded?. What fractional part of the circle
More informationFRACTIONS MODULE Part I
FRACTIONS MODULE Part I I. Basics of Fractions II. Rewriting Fractions in the Lowest Terms III. Change an Improper Fraction into a Mixed Number IV. Change a Mixed Number into an Improper Fraction BMR.Fractions
More informationIntroduction to Fractions
Introduction to Fractions Fractions represent parts of a whole. The top part of a fraction is called the numerator, while the bottom part of a fraction is called the denominator. The denominator states
More informationPREPARATION FOR MATH TESTING at CityLab Academy
PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRETEST
More informationChapter 1: Order of Operations, Fractions & Percents
HOSP 1107 (Business Math) Learning Centre Chapter 1: Order of Operations, Fractions & Percents ORDER OF OPERATIONS When finding the value of an expression, the operations must be carried out in a certain
More informationHFCC Math Lab Arithmetic  4. Addition, Subtraction, Multiplication and Division of Mixed Numbers
HFCC Math Lab Arithmetic  Addition, Subtraction, Multiplication and Division of Mixed Numbers Part I: Addition and Subtraction of Mixed Numbers There are two ways of adding and subtracting mixed numbers.
More informationFRACTION WORKSHOP. Example: Equivalent Fractions fractions that have the same numerical value even if they appear to be different.
FRACTION WORKSHOP Parts of a Fraction: Numerator the top of the fraction. Denominator the bottom of the fraction. In the fraction the numerator is 3 and the denominator is 8. Equivalent Fractions: Equivalent
More informationMATH0910 Review Concepts (Haugen)
Unit 1 Whole Numbers and Fractions MATH0910 Review Concepts (Haugen) Exam 1 Sections 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, and 2.5 Dividing Whole Numbers Equivalent ways of expressing division: a b,
More informationParamedic Program PreAdmission Mathematics Test Study Guide
Paramedic Program PreAdmission Mathematics Test Study Guide 05/13 1 Table of Contents Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 Page 9 Page 10 Page 11 Page 12 Page 13 Page 14 Page 15 Page
More informationSequential Skills. Strands and Major Topics
Sequential Skills This set of charts lists, by strand, the skills that are assessed, taught, and practiced in the Skills Tutorial program. Each Strand ends with a Mastery Test. You can enter correlating
More informationFractions. If the top and bottom numbers of a fraction are the same then you have a whole one.
What do fractions mean? Fractions Academic Skills Advice Look at the bottom of the fraction first this tells you how many pieces the shape (or number) has been cut into. Then look at the top of the fraction
More informationMULTIPLICATION OF FRACTIONS AND MIXED NUMBERS. 1 of 6 objects, you make 2 (the denominator)
Tallahassee Community College 0 MULTIPLICATION OF FRACTIONS AND MIXED NUMBERS You know that of is. When you get of objects, you make (the denominator) equal groups of the objects and you take (the numerator)
More informationWelcome to Basic Math Skills!
Basic Math Skills Welcome to Basic Math Skills! Most students find the math sections to be the most difficult. Basic Math Skills was designed to give you a refresher on the basics of math. There are lots
More informationConnect Four Math Games
Connect Four Math Games Connect Four Addition Game (A) place two paper clips on two numbers on the Addend Strip whose sum is that desired square. Once they have chosen the two numbers, they can capture
More informationFRACTIONS OPERATIONS
FRACTIONS OPERATIONS Summary 1. Elements of a fraction... 1. Equivalent fractions... 1. Simplification of a fraction... 4. Rules for adding and subtracting fractions... 5. Multiplication rule for two fractions...
More informationMaths methods Key Stage 2: Year 3 and Year 4
Maths methods Key Stage 2: Year 3 and Year 4 Maths methods and strategies taught in school now are very different from those that many parents learned at school. This can often cause confusion when parents
More informationAdding Fractions. Adapted from MathisFun.com
Adding Fractions Adapted from MathisFun.com There are 3 Simple Steps to add fractions: Step 1: Make sure the bottom numbers (the denominators) are the same Step 2: Add the top numbers (the numerators).
More informationModule 2: Working with Fractions and Mixed Numbers. 2.1 Review of Fractions. 1. Understand Fractions on a Number Line
Module : Working with Fractions and Mixed Numbers.1 Review of Fractions 1. Understand Fractions on a Number Line Fractions are used to represent quantities between the whole numbers on a number line. A
More informationCancelling Fractions: Rules
Cancelling Fractions: Rules The process of cancelling involves taking fractions with large numerators and denominators (top and bottom numbers) and rewriting them with smaller numerators and denominators
More information3 cups ¾ ½ ¼ 2 cups ¾ ½ ¼. 1 cup ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼
cups cups cup Fractions are a form of division. When I ask what is / I am asking How big will each part be if I break into equal parts? The answer is. This a fraction. A fraction is part of a whole. The
More informationThe Euclidean Algorithm
The Euclidean Algorithm A METHOD FOR FINDING THE GREATEST COMMON DIVISOR FOR TWO LARGE NUMBERS To be successful using this method you have got to know how to divide. If this is something that you have
More informationARITHMETIC. Overview. Testing Tips
ARITHMETIC Overview The Arithmetic section of ACCUPLACER contains 17 multiple choice questions that measure your ability to complete basic arithmetic operations and to solve problems that test fundamental
More informationFractions to decimals
Worksheet.4 Fractions and Decimals Section Fractions to decimals The most common method of converting fractions to decimals is to use a calculator. A fraction represents a division so is another way of
More informationFractions. Cavendish Community Primary School
Fractions Children in the Foundation Stage should be introduced to the concept of halves and quarters through play and practical activities in preparation for calculation at Key Stage One. Y Understand
More informationKey. Introduction. What is a Fraction. Better Math Numeracy Basics Fractions. On screen content. Narration voiceover
Key On screen content Narration voiceover Activity Under the Activities heading of the online program Introduction This topic will cover how to: identify and distinguish between proper fractions, improper
More informationFRACTIONS COMMON MISTAKES
FRACTIONS COMMON MISTAKES 0/0/009 Fractions Changing Fractions to Decimals How to Change Fractions to Decimals To change fractions to decimals, you need to divide the numerator (top number) by the denominator
More information3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
More informationMaths Workshop for Parents 2. Fractions and Algebra
Maths Workshop for Parents 2 Fractions and Algebra What is a fraction? A fraction is a part of a whole. There are two numbers to every fraction: 2 7 Numerator Denominator 2 7 This is a proper (or common)
More information3.3 Addition and Subtraction of Rational Numbers
3.3 Addition and Subtraction of Rational Numbers In this section we consider addition and subtraction of both fractions and decimals. We start with addition and subtraction of fractions with the same denominator.
More informationMultiplying Fractions
. Multiplying Fractions. OBJECTIVES 1. Multiply two fractions. Multiply two mixed numbers. Simplify before multiplying fractions 4. Estimate products by rounding Multiplication is the easiest of the four
More informationHow do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.
The verbal answers to all of the following questions should be memorized before completion of prealgebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics
More information2 is the BASE 5 is the EXPONENT. Power Repeated Standard Multiplication. To evaluate a power means to find the answer in standard form.
Grade 9 Mathematics Unit : Powers and Exponent Rules Sec.1 What is a Power 5 is the BASE 5 is the EXPONENT The entire 5 is called a POWER. 5 = written as repeated multiplication. 5 = 3 written in standard
More informationAccuplacer Arithmetic Study Guide
Accuplacer Arithmetic Study Guide Section One: Terms Numerator: The number on top of a fraction which tells how many parts you have. Denominator: The number on the bottom of a fraction which tells how
More information2.5 Adding and Subtracting Fractions and Mixed Numbers with Like Denominators
2.5 Adding and Subtracting Fractions and Mixed Numbers with Like Denominators Learning Objective(s) Add fractions with like denominators. 2 Subtract fractions with like denominators. Add mixed numbers
More informationDecimals Adding and Subtracting
1 Decimals Adding and Subtracting Decimals are a group of digits, which express numbers or measurements in units, tens, and multiples of 10. The digits for units and multiples of 10 are followed by a decimal
More informationCancelling a Fraction: Rules
Cancelling a Fraction: Rules The process of canceling involves taking fractions with larger numbers on top and bottom and rewriting those fractions with smaller numbers ensuring the value of the fraction
More informationClick on the links below to jump directly to the relevant section
Click on the links below to jump directly to the relevant section Basic review Writing fractions in simplest form Comparing fractions Converting between Improper fractions and whole/mixed numbers Operations
More informationYOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR!
DETAILED SOLUTIONS AND CONCEPTS  DECIMALS AND WHOLE NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! YOU MUST
More informationNUMBER SYSTEMS. 1.1 Introduction
NUMBER SYSTEMS 1.1 Introduction There are several number systems which we normally use, such as decimal, binary, octal, hexadecimal, etc. Amongst them we are most familiar with the decimal number system.
More informationIntegrals of Rational Functions
Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t
More informationFactoring Whole Numbers
2.2 Factoring Whole Numbers 2.2 OBJECTIVES 1. Find the factors of a whole number 2. Find the prime factorization for any number 3. Find the greatest common factor (GCF) of two numbers 4. Find the GCF for
More informationTool 1. Greatest Common Factor (GCF)
Chapter 4: Factoring Review Tool 1 Greatest Common Factor (GCF) This is a very important tool. You must try to factor out the GCF first in every problem. Some problems do not have a GCF but many do. When
More informationWarmUp ( 454 3) 2 ( 454 + 2) 3
WarmUp ) 27 4 ST/HSEE: 4 th Grade ST Review: 4 th Grade ST t school, there are 704 desks to place into classrooms. If the same number of desks is placed in each classroom, how many desks will be in each
More informationSection 1.4 Place Value Systems of Numeration in Other Bases
Section.4 Place Value Systems of Numeration in Other Bases Other Bases The HinduArabic system that is used in most of the world today is a positional value system with a base of ten. The simplest reason
More informationPartial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:
Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than
More informationAdding and Subtracting Mixed Numbers and Improper Fractions
Just like our counting numbers (1, 2, 3, ), fractions can also be added and subtracted. When counting improper fractions and mixed numbers, we are counting the number wholes and parts. Note: The rules
More informationSimplifying SquareRoot Radicals Containing Perfect Square Factors
DETAILED SOLUTIONS AND CONCEPTS  OPERATIONS ON IRRATIONAL NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!
More informationSample Fraction Addition and Subtraction Concepts Activities 1 3
Sample Fraction Addition and Subtraction Concepts Activities 1 3 College and CareerReady Standard Addressed: Build fractions from unit fractions by applying and extending previous understandings of operations
More informationFraction Competency Packet
Fraction Competency Packet Developed by: Nancy Tufo Revised 00: Sharyn Sweeney Student Support Center North Shore Community College To use this booklet, review the glossary, study the examples, then work
More informationDon t Slow Me Down with that Calculator Cliff Petrak (Teacher Emeritus) Brother Rice H.S. Chicago cpetrak1@hotmail.com
Don t Slow Me Down with that Calculator Cliff Petrak (Teacher Emeritus) Brother Rice H.S. Chicago cpetrak1@hotmail.com In any computation, we have four ideal objectives to meet: 1) Arriving at the correct
More informationSection 1.5 Arithmetic in Other Bases
Section Arithmetic in Other Bases Arithmetic in Other Bases The operations of addition, subtraction, multiplication and division are defined for counting numbers independent of the system of numeration
More information2. Perform the division as if the numbers were whole numbers. You may need to add zeros to the back of the dividend to complete the division
Math Section 5. Dividing Decimals 5. Dividing Decimals Review from Section.: Quotients, Dividends, and Divisors. In the expression,, the number is called the dividend, is called the divisor, and is called
More informationPreCalculus II Factoring and Operations on Polynomials
Factoring... 1 Polynomials...1 Addition of Polynomials... 1 Subtraction of Polynomials...1 Multiplication of Polynomials... Multiplying a monomial by a monomial... Multiplying a monomial by a polynomial...
More informationNumerator Denominator
Fractions A fraction is any part of a group, number or whole. Fractions are always written as Numerator Denominator A unitary fraction is one where the numerator is always 1 e.g 1 1 1 1 1...etc... 2 3
More informationSession 21 Fraction Addition and Subtraction and Mixed Number Notation
Session Fraction Addition and Subtraction and Mixed Number Notation Solve and compare the following two problems. Kim made one out of three free throws in a game and one out of four free throws in the
More informationFactor Diamond Practice Problems
Factor Diamond Practice Problems 1. x 2 + 5x + 6 2. x 2 +7x + 12 3. x 2 + 9x + 8 4. x 2 + 9x +14 5. 2x 2 7x 4 6. 3x 2 x 4 7. 5x 2 + x 18 8. 2y 2 x 1 9. 613x + 6x 2 10. 15 + x 2x 2 Factor Diamond Practice
More informationCOMPASS Numerical Skills/PreAlgebra Preparation Guide. Introduction Operations with Integers Absolute Value of Numbers 13
COMPASS Numerical Skills/PreAlgebra Preparation Guide Please note that the guide is for reference only and that it does not represent an exact match with the assessment content. The Assessment Centre
More informationPreAlgebra Lecture 6
PreAlgebra Lecture 6 Today we will discuss Decimals and Percentages. Outline: 1. Decimals 2. Ordering Decimals 3. Rounding Decimals 4. Adding and subtracting Decimals 5. Multiplying and Dividing Decimals
More informationOrder of Operations  PEMDAS. Rules for Multiplying or Dividing Positive/Negative Numbers
Order of Operations  PEMDAS *When evaluating an expression, follow this order to complete the simplification: Parenthesis ( ) EX. (52)+3=6 (5 minus 2 must be done before adding 3 because it is in parenthesis.)
More informationQM0113 BASIC MATHEMATICS I (ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION)
SUBCOURSE QM0113 EDITION A BASIC MATHEMATICS I (ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION) BASIC MATHEMATICS I (ADDITION, SUBTRACTION, MULTIPLICATION AND DIVISION) Subcourse Number QM 0113 EDITION
More informationTHE BINARY NUMBER SYSTEM
THE BINARY NUMBER SYSTEM Dr. Robert P. Webber, Longwood University Our civilization uses the base 10 or decimal place value system. Each digit in a number represents a power of 10. For example, 365.42
More informationAdding and Subtracting Fractions. 1. The denominator of a fraction names the fraction. It tells you how many equal parts something is divided into.
Tallahassee Community College Adding and Subtracting Fractions Important Ideas:. The denominator of a fraction names the fraction. It tells you how many equal parts something is divided into.. The numerator
More informationNumerical and Algebraic Fractions
Numerical and Algebraic Fractions Aquinas Maths Department Preparation for AS Maths This unit covers numerical and algebraic fractions. In A level, solutions often involve fractions and one of the Core
More informationTraining Manual. PreEmployment Math. Version 1.1
Training Manual PreEmployment Math Version 1.1 Created April 2012 1 Table of Contents Item # Training Topic Page # 1. Operations with Whole Numbers... 3 2. Operations with Decimal Numbers... 4 3. Operations
More informationMath Circle Beginners Group October 18, 2015
Math Circle Beginners Group October 18, 2015 Warmup problem 1. Let n be a (positive) integer. Prove that if n 2 is odd, then n is also odd. (Hint: Use a proof by contradiction.) Suppose that n 2 is odd
More informationLSN 2 Number Systems. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology
LSN 2 Number Systems Department of Engineering Technology LSN 2 Decimal Number System Decimal number system has 10 digits (09) Base 10 weighting system... 10 5 10 4 10 3 10 2 10 1 10 0. 101 102 103
More informationOct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8
ECE Department Summer LECTURE #5: Number Systems EEL : Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz Decimal Number System: Our standard number system is base, also
More informationHFCC Math Lab Beginning Algebra 13 TRANSLATING ENGLISH INTO ALGEBRA: WORDS, PHRASE, SENTENCES
HFCC Math Lab Beginning Algebra 1 TRANSLATING ENGLISH INTO ALGEBRA: WORDS, PHRASE, SENTENCES Before being able to solve word problems in algebra, you must be able to change words, phrases, and sentences
More informationGrade 5 Mathematics Curriculum Guideline Scott Foresman  Addison Wesley 2008. Chapter 1: Place, Value, Adding, and Subtracting
Grade 5 Math Pacing Guide Page 1 of 9 Grade 5 Mathematics Curriculum Guideline Scott Foresman  Addison Wesley 2008 Test Preparation Timeline Recommendation: September  November Chapters 15 December
More informationProperty: Rule: Example:
Math 1 Unit 2, Lesson 4: Properties of Exponents Property: Rule: Example: Zero as an Exponent: a 0 = 1, this says that anything raised to the zero power is 1. Negative Exponent: Multiplying Powers with
More informationMultiplying and Dividing Fractions
Multiplying and Dividing Fractions 1 Overview Fractions and Mixed Numbers Factors and Prime Factorization Simplest Form of a Fraction Multiplying Fractions and Mixed Numbers Dividing Fractions and Mixed
More informationQuadratics  Build Quadratics From Roots
9.5 Quadratics  Build Quadratics From Roots Objective: Find a quadratic equation that has given roots using reverse factoring and reverse completing the square. Up to this point we have found the solutions
More informationMath Review. Numbers. Place Value. Rounding Whole Numbers. Place value thousands hundreds tens ones
Math Review Knowing basic math concepts and knowing when to apply them are essential skills. You should know how to add, subtract, multiply, divide, calculate percentages, and manipulate fractions. This
More informationDecimals and other fractions
Chapter 2 Decimals and other fractions How to deal with the bits and pieces When drugs come from the manufacturer they are in doses to suit most adult patients. However, many of your patients will be very
More informationModuMath Basic Math Basic Math 1.1  Naming Whole Numbers Basic Math 1.2  The Number Line Basic Math 1.3  Addition of Whole Numbers, Part I
ModuMath Basic Math Basic Math 1.1  Naming Whole Numbers 1) Read whole numbers. 2) Write whole numbers in words. 3) Change whole numbers stated in words into decimal numeral form. 4) Write numerals in
More information= = = = = = =2 3 10) = =1 2 12) = )
11 ) 11 11  1 1 1 1 1 19  1 10 11 91 11 111 10 91     1 11 1   1 11 1 91   1   1   11 1 11  110 9 1   1 1.. 1. 1... 10. 9. 9 10. 1 11. 1. 1. 1. 10 1. 1 1 1 110 9 1 9 0
More informationFraction Basics. 1. Identify the numerator and denominator of a
. Fraction Basics. OBJECTIVES 1. Identify the numerator and denominator of a fraction. Use fractions to name parts of a whole. Identify proper fractions. Write improper fractions as mixed numbers. Write
More informationSolve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.
Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. Solve word problems that call for addition of three whole numbers
More informationREVIEW SHEETS BASIC MATHEMATICS MATH 010
REVIEW SHEETS BASIC MATHEMATICS MATH 010 A Summary of Concepts Needed to be Successful in Mathematics The following sheets list the key concepts that are taught in the specified math course. The sheets
More informationActivity 1: Using base ten blocks to model operations on decimals
Rational Numbers 9: Decimal Form of Rational Numbers Objectives To use base ten blocks to model operations on decimal numbers To review the algorithms for addition, subtraction, multiplication and division
More informationExponents, Factors, and Fractions. Chapter 3
Exponents, Factors, and Fractions Chapter 3 Exponents and Order of Operations Lesson 31 Terms An exponent tells you how many times a number is used as a factor A base is the number that is multiplied
More informationSession 29 Scientific Notation and Laws of Exponents. If you have ever taken a Chemistry class, you may have encountered the following numbers:
Session 9 Scientific Notation and Laws of Exponents If you have ever taken a Chemistry class, you may have encountered the following numbers: There are approximately 60,4,79,00,000,000,000,000 molecules
More informationDirect Translation is the process of translating English words and phrases into numbers, mathematical symbols, expressions, and equations.
Section 1 Mathematics has a language all its own. In order to be able to solve many types of word problems, we need to be able to translate the English Language into Math Language. is the process of translating
More informationNUMBER SYSTEMS. William Stallings
NUMBER SYSTEMS William Stallings The Decimal System... The Binary System...3 Converting between Binary and Decimal...3 Integers...4 Fractions...5 Hexadecimal Notation...6 This document available at WilliamStallings.com/StudentSupport.html
More informationMath 0306 Final Exam Review
Math 006 Final Exam Review Problem Section Answers Whole Numbers 1. According to the 1990 census, the population of Nebraska is 1,8,8, the population of Nevada is 1,01,8, the population of New Hampshire
More informationPAYCHEX, INC. BASIC BUSINESS MATH TRAINING MODULE
PAYCHEX, INC. BASIC BUSINESS MATH TRAINING MODULE 1 Property of Paychex, Inc. Basic Business Math Table of Contents Overview...3 Objectives...3 Calculator...4 Basic Calculations...6 Order of Operation...9
More informationRadicals  Rationalize Denominators
8. Radicals  Rationalize Denominators Objective: Rationalize the denominators of radical expressions. It is considered bad practice to have a radical in the denominator of a fraction. When this happens
More information1.2 Linear Equations and Rational Equations
Linear Equations and Rational Equations Section Notes Page In this section, you will learn how to solve various linear and rational equations A linear equation will have an variable raised to a power of
More informationPositional Numbering System
APPENDIX B Positional Numbering System A positional numbering system uses a set of symbols. The value that each symbol represents, however, depends on its face value and its place value, the value associated
More informationNow that we have a handle on the integers, we will turn our attention to other types of numbers.
1.2 Rational Numbers Now that we have a handle on the integers, we will turn our attention to other types of numbers. We start with the following definitions. Definition: Rational Number any number that
More informationMEP Y9 Practice Book A
1 Base Arithmetic 1.1 Binary Numbers We normally work with numbers in base 10. In this section we consider numbers in base 2, often called binary numbers. In base 10 we use the digits 0, 1, 2, 3, 4, 5,
More informationRadicals  Multiply and Divide Radicals
8. Radicals  Multiply and Divide Radicals Objective: Multiply and divide radicals using the product and quotient rules of radicals. Multiplying radicals is very simple if the index on all the radicals
More informationFlorida Math 0018. Correlation of the ALEKS course Florida Math 0018 to the Florida Mathematics Competencies  Lower
Florida Math 0018 Correlation of the ALEKS course Florida Math 0018 to the Florida Mathematics Competencies  Lower Whole Numbers MDECL1: Perform operations on whole numbers (with applications, including
More informationExponents, Radicals, and Scientific Notation
General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x = x 5+ = x 7 (x m ) n = x mn Example : (x 5 ) = x 5 = x 10 (x m y n ) p = x mp y np Example : (x) =
More informationDigital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture  04 Digital Logic II May, I before starting the today s lecture
More informationFractions and Linear Equations
Fractions and Linear Equations Fraction Operations While you can perform operations on fractions using the calculator, for this worksheet you must perform the operations by hand. You must show all steps
More informationConversions between percents, decimals, and fractions
Click on the links below to jump directly to the relevant section Conversions between percents, decimals and fractions Operations with percents Percentage of a number Percent change Conversions between
More informationDecimal Notations for Fractions Number and Operations Fractions /4.NF
Decimal Notations for Fractions Number and Operations Fractions /4.NF Domain: Cluster: Standard: 4.NF Number and Operations Fractions Understand decimal notation for fractions, and compare decimal fractions.
More information