Water Rockets: Exploring Aerodynamics & Energy

Size: px
Start display at page:

Download "Water Rockets: Exploring Aerodynamics & Energy"

Transcription

1 Water Rockets: Exploring Aerodynamics & Energy Teacher s Guide Body of Knowledge: Big Idea (Benchmark): Summary: Objective(s): Ecosystem(s) STEM (Engineering Design); Earth/Space Science SC.6.P.11.1 ; SC.6.P.12 ; MA.5.G.5.3; MA.5.A.6.3; MA.6.A.1.3; LA ;LA Students will launch water rockets using a bicycle pump to pressurize the water rocket. Students will experiment with a variety of materials to design and build a viable rocket with fins and a nose cone. Students will test, launch, and refine their rockets. After completing the field lab, students will be able to: 1. Differentiate between potential and kinetic energy during flight 2. Define the forces acting on the water rocket (gravity, thrust and drag). 3. Effectively apply data collection, observation and inference 4. Design and build a solution to a real-world problem Any outdoor space/open field (without tree coverage); note level of safety in regards to public and infrastructure before launching water rockets. Equipment 2 x clear 2-liter soda bottles potable water source 1 x bike pump w/gauge fin/nosecone templates Anemometer (wind speed) 1 x launch stand 2 x stop watches Cardstock or manila folders (for fin/nosecone) roll of flagging tape 2 x 150 meter measuring tapes 1 x 1000ml graduated cylinder 2 x scissors 2 x roll clear packing tape Protractor Modeling clay Background (Pre-field Classroom Activity): Equipment Training: Anemometer (if used); rocket launcher Vocabulary: Law of Conversation of Energy, Potential Energy, Kinetic Energy, Qualitative, Quantitative, Gravity, Drag, Thrust, Deviation, Wind Speed, Wind Direction, Observation, Inference Reference Material: Preparation: Bring students to an area of open space where the rocket is unlikely to hit anything on its way up or down. Procedures (Engage; Explore; Explain): Engage: Engage students with the following demonstrations: 1. Use clear tubing to show how gravity acts to move water in a confined area. Relate this to springs. 2. Use a balloon to show how air pressure creates thrust. 3. Launch a rocket to show how air pressure, water, and an aerodynamic design can thrust a water rocket in a specific direction. Explore: Challenge students to design and build their own rocket to fly the farthest and as close to the center flight path as possible. This will involve the following steps: 4. Design and draw the rocket that will fly the farthest and straightest (5 minutes) 5. Build rocket using the materials provided (10 minutes) 6. Launch the rocket following the procedures outlined in Reference Sheet 2 (10 minutes) 7. Refine rocket design (5 minutes) 8. Launch 2 (10 minutes) Explain: After completing the lab, allow the students to answer the discussion questions as a group and explain their answers relating them to the concepts, processes and skills associated with the activity. Students should record their answers individually. At this time, facilitators can introduce/explain the specific concepts and explanations in a formal manner. Florida Department of Environmental Protection Office of Environmental Education Page 1

2 Water Rockets: Exploring Aerodynamics & Energy Student Data Sheet General Information: Full Name: Science Teacher: Date: Time: Student Expectations: Friction and air resistance (drag) are two major factors that affect a rocket s flight path. Based on the materials available to you and taking into consideration today s wind speed and direction, what design elements will make the water rocket more aerodynamic and increase the accuracy of the rocket s flight path? In the space below, draw your water rocket design. Label all of the materials and quantities you used (e.g., # of fins), type(s) of elements (fins, nosecone, nozzle, etc.), design shape(s) and size(s), as well as the spacing/placement of each element. Water Volume (400 ml*) Air Pressure (40 psi*) Launch 1 Launch 2 Launch Angle (45 *) Wind Speed (m/s) Wind Direction (degrees) Flight time (seconds) Distance Travelled (meters) Deviation from center line (meters) Score = distance (0.25 x deviation) General observations of flight Florida Department of Environmental Protection Office of Environmental Education Page 2

3 Water Rockets: Exploring Aerodynamics & Energy Assessment Questions 1. Which rocket had the most accurate flight pattern (i.e., was closest to the target flight path)? How far from the flight path did it deviate (in meters)? 2. Look at your team s hypothesis (refer to Student Expectations ). Was your team s hypothesis supported by the data? Whether your team s hypothesis was supported or not, what inferences can you make based on the observations, measurements, and results? 3. Water rockets are very different from fuel powered rockets for many reasons. Explain some of the differences between them and why rockets that are launched into space require more power and thrust than water rockets? 4. Although the water volume to which you filled the rocket remained at a constant during the experiment, how do you think the distance and the speed that the water rocket traveled was influenced by the water volume? If you could have chosen to put any amount of water inside the water rocket, how many millimeters would you have put in your team s water rocket and why? 5. Based on what you have learned in this lab, write a new question about something you would like to learn more about? Florida Department of Environmental Protection Office of Environmental Education Page 3

4 Water Rockets: Exploring Aerodynamics & Energy Writing Prompt In this lab, you provided a solution to a real-world problem. 1. What are some ways that you can improve your design to increase accuracy of the flight pattern and overall aerodynamics of the water rocket? 2. What materials (either provided or not in this lab) would you use next time and why? This is a two part question requiring a two part answer Florida Department of Environmental Protection Office of Environmental Education Page 4

5 Water Rockets: Exploring Aerodynamics & Energy Reference Sheet 1 Forces Affect Rocket Launch & Flight Drag Thrust Gravity Kinetic & Potential Energy Florida Department of Environmental Protection Office of Environmental Education Page 5

6 Water Rockets: Exploring Aerodynamics & Energy Reference Sheet 2 Rocket Launch Procedures 1. Fill rocket with specified amount of water 2. Load rocket on to launcher. Ensure bottle is snug against the bulge of the launcher, the zip ties overlap the bottle opening ridge and the coupling is securely over both the zip ties and the ridge of the bottle opening. 3. Position the launcher and at a 45 degree angle in the direction of your flight path. 4. Connect the pump to the tire stem at the base of the launcher 5. Pump the desired amount of air pressure into the launcher 6. Disconnect the tire pump 7. Measure and record wind speed and direction 8. Ensure the launch area and flight path are clear of all people and any overhead objects. 9. With one or two people supporting the launcher and one person holding the trigger release string. Remind supporters to hold on to launcher after take-off. 10. Initiate launch sequence: Is the launch team ready to count down?, Ready to count down!, 3, 2, 1, launch! 11. Pull the trigger release string (if rocket does not launch, keep rocket point up and call a teacher) 12. After launch, gently lower the launcher 13. Measure the distance from the tip of the launcher to where the rocket landed 14. Measure the shortest distance from the rocket to the center flight path line 15. [OPTION] To score the overall flight, give one point for every meter of flight and subtract 0.25 points for every meter away from the center flight path line Florida Department of Environmental Protection Office of Environmental Education Page 6

Making Paper Rockets

Making Paper Rockets Making Paper Rockets Description: Students will construct paper rockets and launch them with a commercially available foot-pump rocket launcher or an industrial strength rocket launcher built by the teacher

More information

Forces of Motion: Rockets

Forces of Motion: Rockets Forces of Motion: Rockets (Adapted from the NASA Aerospace Education Services Program s lesson Industrial Strength Paper Rockets by Gregory Voght/ NASA JSC) Preparation Grade Level: 5-9 Group Size: 24-30

More information

Bottle Rockets. Vanderbilt Student Volunteers for Science. Fall 2008

Bottle Rockets. Vanderbilt Student Volunteers for Science. Fall 2008 Bottle Rockets Vanderbilt Student Volunteers for Science Fall 2008 I. Introduction: History of Rockets Explain to the students that rockets are more than two thousand years old. Give the students a BRIEF

More information

Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket.

Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket. Acceleration= Force OVER Mass Design Considerations for Water-Bottle Rockets The next few pages are provided to help in the design of your water-bottle rocket. Newton s First Law: Objects at rest will

More information

Two sheets of paper are sufficient for making a rocket. If colored paper is used, students can trade scraps with each other to have different colored

Two sheets of paper are sufficient for making a rocket. If colored paper is used, students can trade scraps with each other to have different colored Rocket Activity High-Power Paper Rockets Objective Construct and launch high-power paper rockets, evaluate their flights, and modify their design to improve flight performance. National Science Content

More information

BICYCLE PUMP AIR PRESSURE ROCKETS Credit: Jeff Elmer, Physics Teacher, Oshkosh North High School

BICYCLE PUMP AIR PRESSURE ROCKETS Credit: Jeff Elmer, Physics Teacher, Oshkosh North High School BICYCLE PUMP AIR PRESSURE ROCKETS Credit: Jeff Elmer, Physics Teacher, Oshkosh North High School Concepts Illustrated: (1) Forced air flight and Newton s 3 rd Law (2) Stability and aerodynamics of rocket

More information

Out of this World Rocketry

Out of this World Rocketry Out of this World Rocketry Lesson 7 Launch Day Introduction This lesson will help prepare for your launch. Each group can gather the information they need to calculate final statistics for rockets. Four

More information

Industrial Strength Rocket Launcher

Industrial Strength Rocket Launcher Industrial Strength Rocket Launcher Description: Instructions for the construction of an industrial strength rocket launcher for use with paper rockets. Materials: Schedule 40 PVC piping and bushings from

More information

Teaching Time: One 25-minute period. Lesson Summary Students use iron filings to observe the 2 and 3- D field lines around a magnet.

Teaching Time: One 25-minute period. Lesson Summary Students use iron filings to observe the 2 and 3- D field lines around a magnet. Lesson Summary Students use iron filings to observe the 2 and 3- D field lines around a magnet. Prior Knowledge & Skills Completed the lesson: The Earth as a Magnet: Exploring Interactions in Geospace

More information

Warning! 17000 BOTTLE ROCKET LAUNCHER

Warning! 17000 BOTTLE ROCKET LAUNCHER 17000 BOTTLE ROCKET LAUNCHER Purpose: To launch rockets using commonly available materials such as plastic soda bottles and cardboard tubes. It also provides an exciting introduction to aerodynamics and

More information

Science Project. Ideal Trajectory of Air Pump Rockets

Science Project. Ideal Trajectory of Air Pump Rockets Science Project Ideal Trajectory of Air Pump Rockets Physics Lopez Island High School March 3, 2014 Fletcher Moore Abstract This experiment uses model air rockets to test the ideal trajectory a rocket

More information

LESSON 17: Balloon Rockets ESTIMATED TIME Setup: 5 10 minutes Procedure: 5 10 minutes

LESSON 17: Balloon Rockets ESTIMATED TIME Setup: 5 10 minutes Procedure: 5 10 minutes LESSON 17: Balloon Rockets ESTIMATED TIME Setup: 5 10 minutes Procedure: 5 10 minutes DESCRIPTION Apply the concepts of pressure and Newton s laws of motion to build simple rockets. OBJECTIVE This lesson

More information

Activities with Paper How To Make and Test a Paper Airplane

Activities with Paper How To Make and Test a Paper Airplane Art/Math Grades K-4 One Lesson TM 1 Overview In this lesson, students will learn how to make a paper airplane. They will then test whose airplane flies farthest and will record the outcomes on a graph.

More information

Teacher notes/ activities. Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth.

Teacher notes/ activities. Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth. Gravity and forces unit Teacher notes/ activities Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth. Galileo, a famous Italian scientist

More information

How To Make A Rocket Launcher

How To Make A Rocket Launcher The School and University Partnership for Educational Renewal in Mathematics An NSF-funded Graduate STEM Fellows in K 12 Education Project University of Hawai i at Manoa, Department of Mathematics Rockets

More information

Air and Weather FOSS kit

Air and Weather FOSS kit Air and Weather FOSS kit 2. E. 1 Understand patterns of weather and factors that affect weather. 2.E.1.1 Summarize how energy from the sun serves as a source of light that warms the land, air and water.

More information

Planning for Learning - Record of Validation

Planning for Learning - Record of Validation Children s University Planning for Learning - Record of Validation Part A To be completed by the Learning Destination provider prior to the visit / conversation Name of Learning Destination Lead Person

More information

It s the Last Straw!

It s the Last Straw! It s the Last Straw! Topic Loop airplanes/measurement Key Question How far will your loop airplane fly? Learning Goals Students will: 1. make measurements of how far a paper loop plane flies and record

More information

POW WOW 2005 - Rocket Fun

POW WOW 2005 - Rocket Fun POW WOW 2005 - Rocket Fun Class Outline I. Introduction (5') - Distribute Handouts - Sign-in Sheet - Brief history of Rockets Date: January 22, 2005 Course Session: Sessions 1, 4 II. Rocket Principles

More information

How To Launch A Rocket From A Formica

How To Launch A Rocket From A Formica Building the Basic Bottle Rocket Launch Pad Materials: -Formica double-sink countertop cutout. This can be easily and cheaply obtained from a local company that manufactures and/or installs countertops.

More information

CLASSROOM VISIT MAGNETS

CLASSROOM VISIT MAGNETS CLASSROOM VISIT MAGNETS Page 1 1 Pre-Outreach Activity: What Do We Already Know? Teacher A simple, yet effective learning strategy, a K-W-L chart, is used to help Background: students clarify their ideas.

More information

Y Prize- Economic and Social effects of Rocket Design

Y Prize- Economic and Social effects of Rocket Design Y Prize- Economic and Social effects of Rocket Design Objectives Student will be able to use the scientific method to explore and conduct an investigation. Students will use the guiding question and one

More information

Rockets: Taking Off! Racing Balloon

Rockets: Taking Off! Racing Balloon Rockets: Taking Off! For every action there is an equal and opposite reaction. Rockets and Balloons What happens when you blow up a balloon then let it go? Does the balloon move through the air? Did you

More information

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5 Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities

More information

High Flying Balloons

High Flying Balloons Second Grade Science Design Brief High Flying Balloons Background: In our study of science we have been investigating the three stages of matter: solids, liquids and gases. You will use your knowledge

More information

T E A C H E R S N O T E S

T E A C H E R S N O T E S T E A C H E R S N O T E S Focus: Students explore air and its properties. They will also learn about the connection between air pressure and weather, forces that can be used for flight, how these forces

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

More information

Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

More information

Diet Coke and Mentos- Geyser Optimization

Diet Coke and Mentos- Geyser Optimization Diet Coke and Mentos- Geyser Optimization Matt Nabity and Elizabeth Untiedt Interdisciplinary Lesson Middle School, Grade 8 Duration: One 90-minute block and one 45-minute block Implementation: May 19-21,

More information

The Science of Flight

The Science of Flight The Science of Flight This resource pack is a collaborative effort between the Royal Air Force Museum, Cosford and St. Patrick s Catholic Primary School, Wellington. Supported by MLA West Midlands. CATHOLIC

More information

Wright Brothers Flying Machine

Wright Brothers Flying Machine Original broadcast: November, 00 Wright Brothers Flying Machine Program Overview NOVA presents the story of Orville and Wilbur Wright, who invented the first powered airplane to achieve sustained, controlled

More information

Scientific Experiments Using the Inquiry Activity Pendulums

Scientific Experiments Using the Inquiry Activity Pendulums Scientific Experiments Using the Inquiry Activity Pendulums Prep Time: 30 minutes Class Time: 1 class period Word Wall Words: experiment, independent variable, controlled variable, dependent variables,

More information

To construct and launch a simple bottle rocket.

To construct and launch a simple bottle rocket. Teacher Information Bottle Rocket Objective To construct and launch a simple bottle rocket. Description: Working in teams, learners will construct a simple bottle rocket from 2-liter soft drink bottles

More information

Energy Transfer in a Flash-Light. (Teacher Copy)

Energy Transfer in a Flash-Light. (Teacher Copy) Energy Transfer in a Flash-Light (Teacher Copy) Florida Sunshine State Standards Benchmark: SC.B. 1.3.1 AA The student identifies forms of energy and explains that they can be measured and compared. (Also

More information

Date R. Mirshahi. Forces are all around us. Without forces, nothing can move and no work can be done.

Date R. Mirshahi. Forces are all around us. Without forces, nothing can move and no work can be done. Name Date R. Mirshahi Forces and Movement: Balanced and Unbalanced Forces Forces are all around us. Without forces, nothing can move and no work can be done. There are different types of forces. Some forces

More information

ROYAL CANADIAN AIR CADETS PROFICIENCY LEVEL TWO INSTRUCTIONAL GUIDE SECTION 6 EO C240.03 IDENTIFY PARTS OF A ROCKET PREPARATION

ROYAL CANADIAN AIR CADETS PROFICIENCY LEVEL TWO INSTRUCTIONAL GUIDE SECTION 6 EO C240.03 IDENTIFY PARTS OF A ROCKET PREPARATION ROYAL CANADIAN AIR CADETS PROFICIENCY LEVEL TWO INSTRUCTIONAL GUIDE SECTION 6 EO C240.03 IDENTIFY PARTS OF A ROCKET Total Time: 30 min PREPARATION PRE-LESSON INSTRUCTIONS Resources needed for the delivery

More information

Minnesota Comprehensive Assessments-Series III

Minnesota Comprehensive Assessments-Series III Not for student use. Minnesota Comprehensive Assessments-Series III Science Item Sampler Script Grade 8 S ARE NOT SECURE TEST MATERIALS. THIS ITEM SAMPLER SCRIPT MAY BE COPIED OR DUPLICATED. MINNESOTA

More information

Oscillations: Mass on a Spring and Pendulums

Oscillations: Mass on a Spring and Pendulums Chapter 3 Oscillations: Mass on a Spring and Pendulums 3.1 Purpose 3.2 Introduction Galileo is said to have been sitting in church watching the large chandelier swinging to and fro when he decided that

More information

AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s

AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s Answer the multiple choice questions (2 Points Each) on this sheet with capital

More information

Science Grade 05 Unit 04 Exemplar Lesson 01: Types of Energy

Science Grade 05 Unit 04 Exemplar Lesson 01: Types of Energy Grade 05 Unit 04 Exemplar Lesson 01: Types of Energy This lesson is one approach to teaching the State Standards associated with this unit. Districts are encouraged to customize this lesson by supplementing

More information

NJ ASK PREP. Investigation: Mathematics. Paper Airplanes & Measurement. Grade 3 Benchmark 3 Geometry & Measurement

NJ ASK PREP. Investigation: Mathematics. Paper Airplanes & Measurement. Grade 3 Benchmark 3 Geometry & Measurement S E C T I O N 4 NJ ASK PREP Mathematics Investigation: Paper Airplanes & Measurement Grade 3 Benchmark 3 Geometry & Measurement This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs

More information

AIR ROCKET INSTRUCTION MANUAL

AIR ROCKET INSTRUCTION MANUAL AIR ROCKET INSTRUCTION MANUAL THE CPO SCIENCE AIR ROCKET Introduction The Air Rocket will allow you and your students to explore many fascinating areas of science and technology. The rocket uses compressed

More information

WindWise Education. 2 nd. T ransforming the Energy of Wind into Powerful Minds. editi. A Curriculum for Grades 6 12

WindWise Education. 2 nd. T ransforming the Energy of Wind into Powerful Minds. editi. A Curriculum for Grades 6 12 WindWise Education T ransforming the Energy of Wind into Powerful Minds A Curriculum for Grades 6 12 Notice Except for educational use by an individual teacher in a classroom setting this work may not

More information

Force and Motion Grade 2

Force and Motion Grade 2 Suggested Time Frame: 2-3 days Materials: Tennis balls, 10 Golf balls, 10 Marbles, 10 Ping pong balls, 10 Measuring tapes, 10 Rulers, 10 Stopwatch Masking tape Towel Sandpaper Wax paper Paper cups Matching

More information

How Do Paper Airplanes Fly?

How Do Paper Airplanes Fly? West Ashley Intermediate School Charleston, South Carolina Summer 2004 Research Host: Charles Hossler Dr. Carolyn Jenkins Medical University of South Carolina Lesson # 10 Appropriate citation: Herron,

More information

TEST CODE: 012014 Answer Section

TEST CODE: 012014 Answer Section ID: A TEST CODE: 012014 Answer Section OTHER 1. ANS: A Meters are the unit for distance or length. 2. ANS: D In science Celsius is used instead of Fahrenheit. 3. ANS: B The gram is used for mass. 4. ANS:

More information

Plumbing and Pipe-Fitting Challenges

Plumbing and Pipe-Fitting Challenges Plumbing and Pipe-Fitting Challenges Students often wonder when they will use the math they learn in school. These activities answer that question as it relates to measuring, working with fractions and

More information

Technical Note T -5 Elementary Mathematics of Model Rocket Flight

Technical Note T -5 Elementary Mathematics of Model Rocket Flight Technical Note T -5 Elementary Mathematics of Model Rocket Flight By Robert L. Cannon Updated and edited by Ann Grimm EstesEducator.com educator@estesrockets.com 800.80.00 01 Estes-Cox Corp. This publication

More information

Chapter 10: Linear Kinematics of Human Movement

Chapter 10: Linear Kinematics of Human Movement Chapter 10: Linear Kinematics of Human Movement Basic Biomechanics, 4 th edition Susan J. Hall Presentation Created by TK Koesterer, Ph.D., ATC Humboldt State University Objectives Discuss the interrelationship

More information

XVII. Science and Technology/Engineering, Grade 8

XVII. Science and Technology/Engineering, Grade 8 VII. Science and Technology/Engineering, Grade 8 Grade 8 Science and Technology/Engineering Test The spring 2014 grade 8 Science and Technology/Engineering test was based on learning standards in the four

More information

Investigating Solar Energy through Solar Cars and Sun Path Diagrams

Investigating Solar Energy through Solar Cars and Sun Path Diagrams Investigating Solar Energy through Solar Cars and Sun Path Diagrams Subject/s and Grade Level/s: Technology, Physics Middle School High School Overview: This lesson will introduce students to solar energy

More information

Conservation of Energy Physics Lab VI

Conservation of Energy Physics Lab VI Conservation of Energy Physics Lab VI Objective This lab experiment explores the principle of energy conservation. You will analyze the final speed of an air track glider pulled along an air track by a

More information

Contents. Stage 7. Stage 8. Stage 9. Contents. Key: Enquiry / Extension / Review BOLD PAGE NO. = in this booklet

Contents. Stage 7. Stage 8. Stage 9. Contents. Key: Enquiry / Extension / Review BOLD PAGE NO. = in this booklet Contents Contents Stage 7 1 1.1 Introduction to forces 8 1.2 Balanced forces 10 1.3 Friction 12 1.4 Gravity 14 1.5 Enquiry: Questions, evidence and explanations 16 1.6 Air resistance 18 1.7 Enquiry: Planning

More information

Measuring with a Ruler

Measuring with a Ruler Measuring with a Ruler Objective To guide children as they measure line segments to the nearest inch, _ inch, _ inch, centimeter, _ centimeter, and millimeter. www.everydaymathonline.com epresentations

More information

Mathematics and Model Rockets

Mathematics and Model Rockets Mathematics and Model Rockets A Teacher s Guide and Curriculum for Grades 5-12 Developed by Sylvia Nolte, Ed. D. Based on coursework by Harold McConnell, Ph. D. Edited by James H. Kranich Jr., P.E. and

More information

Modeling in Geometry

Modeling in Geometry Modeling in Geometry Overview Number of instruction days: 8-10 (1 day = 53 minutes) Content to Be Learned Mathematical Practices to Be Integrated Use geometric shapes and their components to represent

More information

High flyers: thinking like an engineer

High flyers: thinking like an engineer Engineering, Physics I TEACH High flyers: thinking like an engineer The glider built by the Wright brothers in 1902 was the first flying machine able to change direction in a controlled way. Designing

More information

Experiment 2 Free Fall and Projectile Motion

Experiment 2 Free Fall and Projectile Motion Name Partner(s): Experiment 2 Free Fall and Projectile Motion Objectives Preparation Pre-Lab Learn how to solve projectile motion problems. Understand that the acceleration due to gravity is constant (9.8

More information

Science Grade 1 Forces and Motion

Science Grade 1 Forces and Motion Science Grade 1 Forces and Motion Description: The students in this unit will use their inquiry skills to explore pushing, pulling, and gravity. They will also explore the different variables which affect

More information

Roanoke Pinball Museum Key Concepts

Roanoke Pinball Museum Key Concepts Roanoke Pinball Museum Key Concepts What are Pinball Machines Made of? SOL 3.3 Many different materials are used to make a pinball machine: 1. Steel: The pinball is made of steel, so it has a lot of mass.

More information

Discovering Math: Exploring Geometry Teacher s Guide

Discovering Math: Exploring Geometry Teacher s Guide Teacher s Guide Grade Level: 6 8 Curriculum Focus: Mathematics Lesson Duration: Three class periods Program Description Discovering Math: Exploring Geometry From methods of geometric construction and threedimensional

More information

Research question: How does the velocity of the balloon depend on how much air is pumped into the balloon?

Research question: How does the velocity of the balloon depend on how much air is pumped into the balloon? Katie Chang 3A For this balloon rocket experiment, we learned how to plan a controlled experiment that also deepened our understanding of the concepts of acceleration and force on an object. My partner

More information

Explore 3: Crash Test Dummies

Explore 3: Crash Test Dummies Explore : Crash Test Dummies Type of Lesson: Learning Goal & Instructiona l Objectives Content with Process: Focus on constructing knowledge through active learning. Students investigate Newton s first

More information

Provided by TryEngineering - www.tryengineering.org

Provided by TryEngineering - www.tryengineering.org Provided by TryEngineering - Lesson Focus Lesson focuses on wind tunnel tests that engineers in many industries use to when developing products such as airplanes, cars, and even buildings. Teams of students

More information

Kinetic and Potential Energy

Kinetic and Potential Energy Kinetic and Potential Energy Vocabulary: kinetic energy energy of movement potential energy stored energy potential chemical energy stored energy released by chemical changes Comprehension Questions 1.

More information

III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument

III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument III. Applications of Force and Motion Concepts Concept Review Conflicting Contentions 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument Qualitative Reasoning 1. Dropping Balls 2. Spinning Bug

More information

Elements of Physics Motion, Force, and Gravity Teacher s Guide

Elements of Physics Motion, Force, and Gravity Teacher s Guide Teacher s Guide Grade Level: 9 12 Curriculum Focus: Physical Science Lesson Duration: Three class periods Program Description Examine Isaac Newton's laws of motion, the four fundamental forces of the universe,

More information

Rabbit Rockets. USER MANUAL

Rabbit Rockets.  USER MANUAL Rabbit Rockets www.rabbitrockets.com USER MANUAL 2 Disclaimer Rabbit Rockets are dangerous devices and should always be handled with care and used with common sense. By purchasing or by using this product

More information

Physics and Model Rockets

Physics and Model Rockets Physics and Model Rockets A Teacher s Guide and Curriculum for Grades 8-11 Developed by Sylvia Nolte, Ed. D. Edited by Thomas E. Beach, Ph. D., Tim Van Milligan, A.E. and Ann Grimm EstesEducator.com educator@estesrockets.com

More information

Lesson 3 - Understanding Energy (with a Pendulum)

Lesson 3 - Understanding Energy (with a Pendulum) Lesson 3 - Understanding Energy (with a Pendulum) Introduction This lesson is meant to introduce energy and conservation of energy and is a continuation of the fundamentals of roller coaster engineering.

More information

Section 1 Tools and Measurement

Section 1 Tools and Measurement Section 1 Tools and Measurement Key Concept Scientists must select the appropriate tools to make measurements and collect data, to perform tests, and to analyze data. What You Will Learn Scientists use

More information

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5-kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases

More information

Levers for Lifting BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN ACTIVITY ASSESSMENT OPPORTUNITIES. Grade 3 Quarter 3 Activity 23

Levers for Lifting BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN ACTIVITY ASSESSMENT OPPORTUNITIES. Grade 3 Quarter 3 Activity 23 activity Levers for Lifting BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN Grade Quarter Activity SC.C... The student understands that the motion of an object can be described and measured. SC.H... The

More information

Science Experiments The low-down 4 th Grade Bret Underwood, Jeff Gathergood, Brandon Shetuni

Science Experiments The low-down 4 th Grade Bret Underwood, Jeff Gathergood, Brandon Shetuni Science Experiments The low-down 4 th Grade Bret Underwood, Jeff Gathergood, Brandon Shetuni Benchmarks: SLC 2: A. Students will select appropriate instruments and provide written justification of the

More information

Science Notebooks in the Classroom. Notebook Criteria

Science Notebooks in the Classroom. Notebook Criteria presentapresents Presents Science Notebooks in the Classroom kdkrifr Notebook Criteria This document was developed by Bay Area Schools for Excellence in Education (BASEE) a local systemic change project

More information

Paper Airplanes. Linsey Fordyce. Fall 2014. TEFB 413 Section # 504

Paper Airplanes. Linsey Fordyce. Fall 2014. TEFB 413 Section # 504 Model- Based Inquiry Learning Lesson Plan Paper Airplanes Linsey Fordyce Fall 2014 TEFB 413 Section # 504 1. BACKGROUND INFORMATION OF LESSON LESSON OBJECTIVES Students will investigate through model-

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

POW WOW 2007 - Fun with Rockets!

POW WOW 2007 - Fun with Rockets! POW WOW 2007 - Fun with Rockets! Date: January 20, 2007 Instructors: Objective: Wesley s Website: On-line Resources: Wesley Wong, Pioneer District, Cub Scout Roundtable wesley.wong@sbcglobal.net Bob Wedig

More information

Maximum Range Explained range Figure 1 Figure 1: Trajectory Plot for Angled-Launched Projectiles Table 1

Maximum Range Explained range Figure 1 Figure 1: Trajectory Plot for Angled-Launched Projectiles Table 1 Maximum Range Explained A projectile is an airborne object that is under the sole influence of gravity. As it rises and falls, air resistance has a negligible effect. The distance traveled horizontally

More information

OA4-13 Rounding on a Number Line Pages 80 81

OA4-13 Rounding on a Number Line Pages 80 81 OA4-13 Rounding on a Number Line Pages 80 81 STANDARDS 3.NBT.A.1, 4.NBT.A.3 Goals Students will round to the closest ten, except when the number is exactly halfway between a multiple of ten. PRIOR KNOWLEDGE

More information

Basic Rocket Stability

Basic Rocket Stability Basic Rocket Stability Adapted from Ed Bertchy s web site : http://www.azstarnet.com/%7eelb/rockets/ Model Rocket Stability: The Basics If you want to start scratch building your own rockets, it helps

More information

Probing for Information

Probing for Information Name Class Date Inquiry Lab Probing for Information Using Scientific Methods Information about planets in our solar system has been collected by observation from Earth and from probes, or scientific instruments,

More information

Vocabulary: Familiarity with these terms and concepts will enhance students experience in the activity

Vocabulary: Familiarity with these terms and concepts will enhance students experience in the activity Energize your students with this exploration of the way energy transforms and transfers. Using household items and their knowledge, students will build fun contraptions that will make a ball move and hit

More information

Gravity SEN. Answers (in the wrong order) Force Isaac Newton Energy Gravity Apple Powerful engines less Newtons Gravity

Gravity SEN. Answers (in the wrong order) Force Isaac Newton Energy Gravity Apple Powerful engines less Newtons Gravity Gravity Gravity is a force, which we don t think a lot about. It is gravity that holds things to the Earth s surface and prevents things from floating off into the atmosphere. Isaac Newton was one of the

More information

Maximum value. resistance. 1. Connect the Current Probe to Channel 1 and the Differential Voltage Probe to Channel 2 of the interface.

Maximum value. resistance. 1. Connect the Current Probe to Channel 1 and the Differential Voltage Probe to Channel 2 of the interface. Series and Parallel Circuits Computer 23 Components in an electrical circuit are in series when they are connected one after the other, so that the same current flows through both of them. Components are

More information

Explore architectural design and act as architects to create a floor plan of a redesigned classroom.

Explore architectural design and act as architects to create a floor plan of a redesigned classroom. ARCHITECTURAL DESIGN AT A GLANCE Explore architectural design and act as architects to create a floor plan of a redesigned classroom. OBJECTIVES: Students will: Use prior knowledge to discuss functions

More information

Tectonic plates have different boundaries.

Tectonic plates have different boundaries. KEY CONCEPT Plates move apart. BEFORE, you learned The continents join and break apart The sea floor provides evidence that tectonic plates move The theory of plate tectonics helps explain how the plates

More information

This is the first in the series for Integrated Math 3 and can be taught alone or in conjunction with Unit 2 Lesson 2 Aviation Performance.

This is the first in the series for Integrated Math 3 and can be taught alone or in conjunction with Unit 2 Lesson 2 Aviation Performance. WEIGHT AND BALANCE OF AN AIRPLANE INTRODUCTION This series of lessons focuses on exposg high school math students to relevant applications the aviation dustry. Students will explore the concept of the

More information

Episode 207: Projectile motion

Episode 207: Projectile motion Episode 207: Projectile motion This episode looks at the independence of vertical and horizontal motion. It concerns objects accelerating vertically when projected horizontally or vertically. The crucial

More information

parts of an airplane Getting on an Airplane BOX Museum Aeronautics Research Mission Directorate in a Series

parts of an airplane Getting on an Airplane BOX Museum Aeronautics Research Mission Directorate in a Series National Aeronautics and Space Administration GRADES K-2 Aeronautics Research Mission Directorate Museum in a BOX Series www.nasa.gov parts of an airplane Getting on an Airplane MUSEUM IN A BOX Getting

More information

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 3: PROJECTILE MOTION

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 3: PROJECTILE MOTION GENERAL SCIENCE LABORATORY 1110L Lab Experiment 3: PROJECTILE MOTION Objective: To understand the motion of a projectile in the earth s gravitational field and measure the muzzle velocity of the projectile

More information

ACCELERATION DUE TO GRAVITY

ACCELERATION DUE TO GRAVITY EXPERIMENT 1 PHYSICS 107 ACCELERATION DUE TO GRAVITY Skills you will learn or practice: Calculate velocity and acceleration from experimental measurements of x vs t (spark positions) Find average velocities

More information

How To Make A Rocket Rocket From A Water Bottle

How To Make A Rocket Rocket From A Water Bottle SkyLab Instructions Page of IMPORTANT LEGAL AGREEMENT The following terms form a legal agreement between you ( Consumer ) and AntiGravity Research Corporation ("AntiGravity"). By using this product and/or

More information

Barbie Bungee Jump. High School Physics

Barbie Bungee Jump. High School Physics Barbie Bungee Jump High School Physics Kris Bertelsen Augusta Middle/High School Concept: The change in energy storage systems during a bungee jump activity demonstrates how energy can be transferred from

More information

1. Mass, Force and Gravity

1. Mass, Force and Gravity STE Physics Intro Name 1. Mass, Force and Gravity Before attempting to understand force, we need to look at mass and acceleration. a) What does mass measure? The quantity of matter(atoms) b) What is the

More information

Pushes and Pulls. TCAPS Created June 2010 by J. McCain

Pushes and Pulls. TCAPS Created June 2010 by J. McCain Pushes and Pulls K i n d e r g a r t e n S c i e n c e TCAPS Created June 2010 by J. McCain Table of Contents Science GLCEs incorporated in this Unit............... 2-3 Materials List.......................................

More information

Begin the Investigation

Begin the Investigation s c i e n c e i n v e s t i g a t i o n Blow, Wind, Blow! Curious George Flies a Kite One windy day George becomes curious about the way the wind moves things. He ends up having a very exciting kite ride.

More information

Paper Airplane Lab Assignment Sheet

Paper Airplane Lab Assignment Sheet Science Paper Airplane Activity Summary In this activity, students will: Create a name and design for three (3) paper Prior Knowledge Essential Skills Making paper airplanes Use of stopwatches airplanes

More information

Section 15.1 Energy and Its Forms (pages 446 452)

Section 15.1 Energy and Its Forms (pages 446 452) Section 15.1 and Its Forms (pages 446 452) This section describes how energy and work are related. It defines kinetic energy and potential energy, and gives examples for calculating these forms of energy.

More information

Interaction at a Distance

Interaction at a Distance Interaction at a Distance Lesson Overview: Students come in contact with and use magnets every day. They often don t consider that there are different types of magnets and that they are made for different

More information