Propellers and propulsion

Size: px
Start display at page:

Download "Propellers and propulsion"

Transcription

1 Propellers and propulsion Kul Introduction of Marine Hydrodynamics Aalto University 02/11/2015 Introduction of Marine Hydrodynamics 1

2 Content of the course Resistance Propulsion Introduction, Momentum theory on propeller action Screw propeller Propeller-hull interaction Early design of a propeller Propeller main engine interaction Stopping, accelerating and backing properties Propeller cavitation Special types of propulsors Afterbody form of a ship Ship dynamics Introduction of Marine Hydrodynamics 2

3 30 Oct: Introduction of Cavitation Introduction of Marine Hydrodynamics 3

4 30 Oct: Introduction of Cavitation Introduction of Marine Hydrodynamics 4

5 30 Oct: Introduction of Cavitation Introduction of Marine Hydrodynamics 5

6 Propeller cavitation: Summary of the previous lecture What does cavitation mean? When does it develops? What is cavitation number? Introduction of Marine Hydrodynamics Aalto University 6

7 Propeller caviation Additional reading Matusiak J (2010) Laivan propulsio. M-176. Chapter 8 Matusiak J (2008) Short introduction to Ship Resistance and Propulsion. Section 5.10 Lewis E.V., editor (1988) Principles of Naval Architecture, Second revision. Volume II. SNAME. Chapter 7. Available in Knovel. Introduction of Marine Hydrodynamics Aalto University 7

8 Propeller cavitation Related exercises Exercise 5: Task 3 (deadline: 09 Nov.) Estimate maximum thrust of the propeller using Burrill s curves Exercise 8 Select a propeller for the ship that you design Introduction of Marine Hydrodynamics Aalto University 8

9 Outline: Propeller cavitation Types of propeller cavitation Effect of propeller geometry on the cavitation Blade area ratio Pitch Shape of the hydrofoil Effect of the cavitation on the performance of the propeller Secondary effects of a cavitating propeller Evaluation Introduction of Marine Hydrodynamics 9

10 Outline: Propeller cavitation Types of propeller cavitation Effect of propeller geometry on the cavitation Blade area ratio Pitch Shape of the hydrofoil Effect of the cavitation on the performance of the propeller Secondary effects of a cavitating propeller Evaluation Introduction of Marine Hydrodynamics 10

11 Types of propeller cavitation PNA Categories of hydrodynamic cavitation: Travelling Fixed Vortex Vibratory Classification according to the physical nature of the propeller cavitation Sheet* Bubble * Cloud* Tip vortex * Hub-vortex * * * Lecture notes * Introduction of Marine Hydrodynamics Aalto University 11

12 Types of propeller cavitation Sheet cavitation Glassy thin layer of vapour attached to blade. If it not changing rapidly with blade angle Ѳ, it does not cause much harm. Unsteady volume variations cause varying pressures and vibration problems. Starts normally at the leading edge, where the pressure as the minimum value. Introduction of Marine Hydrodynamics Aalto University 12

13 Types of propeller cavitation Sheet cavitation Sheet cavitation on the suction side Super-cavitation Introduction of Marine Hydrodynamics Aalto University 13

14 Types of propeller cavitation Bubble or cloud cavitation Is created as a result of unsteadiness of sheet cavitation or of a strong turbulence. Cavitation bubbles pass into a high ambient pressure region where they disintegrate This results in high valued and rapid pressure peaks that cause noise and erosion of the blade material Introduction of Marine Hydrodynamics Aalto University 14

15 Types of propeller cavitation Bubble or cloud cavitation Introduction of Marine Hydrodynamics Aalto University 15

16 Types of propeller cavitation Tip-vortex cavitation At the tip and at the root of propeller blade, tip vortices are formed If they are sufficiently strong, they start to cavitate, especially for a blade close to top position Root cavitation occurs seldom because of deep submergence (high hydrostatic pressure) If it occurs it causes much harm in a form of erosion Introduction of Marine Hydrodynamics Aalto University 16

17 Types of propeller cavitation Tip-vortex and hub cavitation Introduction of Marine Hydrodynamics Aalto University 17

18 Types of propeller cavitation Pressure side cavitation Note: Cavitation occurs normally at suction side CPP When revolutions are kept high and pitch is low. Angles of attack may get negative values, especially in a tip region As a result flow accelerates strongly Strong and narrow low pressure peak at the pressure side Unsteady cavitation and bubble cavitation occur. Introduction of Marine Hydrodynamics Aalto University 18

19 Types of propeller cavitation Types of cavitation and flow parameters Cavitation depends strongly on hydrofoil loading and on hydrostatic pressure Hydrofoil loading is well represent by angle of attack α e Propeller loading: advance number J Static pressure related to stagnation pressure: cavitation number σ. Suction side cavitation Pressure side cavitation Cavitation free region Cavitation free region Tip-vortex cavitation Suction side cavitation Pressure side cavitation Collapse of thrust Introduction of Marine Hydrodynamics Aalto University 19

20 Outline: Propeller cavitation Types of propeller cavitation Effect of propeller geometry on the cavitation Blade area ratio Pitch Shape of the hydrofoil Effect of the cavitation on the performance of the propeller Secondary effects of a cavitating propeller Evaluation Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 20

21 Effect of propeller geometry Parameters, that affect the dynamic pressure Dynamic pressure is related directly to V r2. Rule of thumb for maximum tip vortex velocity: 35 m/s Biggest effect Propeller blade area Pitch Shape of the hydrofoil Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 21

22 Effect of propeller geometry Blade area ratio Initial values can be obtained from Criteria of Burrill Keller s equation Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 22

23 Effect of propeller geometry Blade area ratio: Burrill Non-dimensional thrust compared to the stagnation pressure If the projected surface area is not known Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 23

24 Effect of propeller geometry Blade area ratio Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 24

25 Effect of propeller geometry Pitch Propeller pitch selected on the basis of model test series characteristics These were conducted in atmospheric condition with an aim of maximum efficiency As a result pitch spanwise distribution is constant These kind of propellers are used very seldom In practice In ship propellers pitch is reduced by 15% at root (P hub /P 0.7 = 0.85), that is the region of decelerated flow To secure good vibration and noise properties, pitch is reduced at the tip as well Big reduction of pitch at tip reduces propeller efficiency Final propeller design is ensured by lifting-line and/or surface computations CPP Easily noise and erosion due to cavitation if the pitch is significantly reduced and revolutions high Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 25

26 Effect of propeller geometry Shape of the hydrofoil In old times Hydrofoil was of the same shape as airofoil Typically used shape was NACA-four digit airfoil which had poor cavitation properties Strong low pressure peak at the leading edge Better option So-called NACA a = 0.8 mean line (modified) airfoil Pressure is distributed more evenly Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 26

27 Outline: Propeller cavitation Types of propeller cavitation Effect of propeller geometry on the cavitation Blade area ratio Pitch Shape of the hydrofoil Effect of the cavitation on the performance of the propeller Secondary effects of a cavitating propeller Evaluation Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 27

28 Effect on the performance of propeller Beginning of the cavitation Not much effect on the open water characteristics of the propeller When substantial part of the blades are covered by sheet cavitation First: effect on the thrust Later: effect also on the torque As thrust decreases faster, the efficiency decreases Cavitation does not affect significantly the maximum efficiency of the propeller The effect depends upon propeller loading (J) and cavitation number σ Strong cavitation an increase of revolutions results in a decrease of thrust and torque Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 28

29 Outline: Propeller cavitation Types of propeller cavitation Effect of propeller geometry on the cavitation Blade area ratio Pitch Shape of the hydrofoil Effect of the cavitation on the performance of the propeller Secondary effects of a cavitating propeller Evaluation Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 29

30 Secondary effects of cavitation Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 30

31 Secondary effects of cavitation Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 31

32 Secondary effects of cavitation Power spectrum of the pressure caused by the propeller Up to tens of khz Blade frequency f b = Z n Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 32

33 Rotation of the blades Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 33

34 Changing thickness of the hydrofoil Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 34

35 Changes in the volume of the sheet cavitation Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 35

36 Collapse of the cavitation bubbles Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 36

37 Secondary effects of cavitation Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 37

38 Secondary effects of cavitation Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 38

39 Secondary effects of cavitation Effect of propeller skew on vibration excitation The propeller blade with no skew (on the left) meets wake peak simultaneously at each radius Skew (right figure) smoothens the blade entrance in the decelerated flow region This decreases the time derivate of cavitation volume and decreases induced pressures Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 39

40 Secondary effects of cavitation Effect of propeller skew on vibration excitation Cavitation model tests: how the introduction of blade skew reduce the propeller excitation Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 40

41 Secondary effects of cavitation Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 41

42 Secondary effects of cavitation Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 42

43 Outline: Propeller cavitation Types of propeller cavitation Effect of propeller geometry on the cavitation Blade area ratio Pitch Shape of the hydrofoil Effect of the cavitation on the performance of the propeller Secondary effects of a cavitating propeller Evaluation Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 43

44 Evaluation Relevant for the evaluation of the propeller-induced pressure Apart pressures, structural properties of a ship matter when judging vibration level Pressure is at maximum in the very vicinity of a propeller Different pressure expected and required for different ship types The presented values should be treated cautiously based on literature and Matusiak s experience (his own words: old and somewhat obsolete) Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 44

45 Evaluation Three categories of methods Model tests Theoretical methods Approximate methods Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 45

46 Evaluation Model tests The most reliable Conducted in a cavitation tunnel or in a underpressurized towing tank. Inaccuracy of the blade freq. component approx % Noise predicted with a 5 db accuracy Expensive and slow to conduct Pressures measured in abt 20 points. Not always sufficient for vibration analysis Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 46

47 Evaluation Theoretical models of propeller induced pressures Difficult to predict by the theoretical means Difficult model of an unsteady cavitation Despite of it inaccuracy is usually satisfactory The best of the methods predict pressures with 30% % inaccuracy. Noise evaluation within 10 db Theoretical computations are cheap and fast to conduct Pressures can be evaluated on a large area Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 47

48 Evaluation Approximate methods to evaluate induced pressures Based on regression analysis Same type as Holtrop s method for resistance/propulsion evaluation Quite inaccurate Inaccuracy of 500% is not an exception Easy to use Combined with a reference technique may be a powerful tool Ducted propellers difficult to judge Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 48

49 Evaluation Approximate methods to evaluate induced pressures Holden s method The most popular one. Based on the measured data of 72 ships. Enables approximating the magnitude and the distribution of the pressure caused by the propeller. Frequencies: Blade frequency and 2 * blade frequency Vibratory level of the ship. Given: Parameters that the method needs and the limits on the allowed values of these parameters. Do not use it the case does not fulfil the limits! Does not take into account the skew. If skew is significant, apply another method for its effect (see earlier). Final pressure: the result of Holden multiplied by FS. Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 49

50 Evaluation When is the wake smooth enough? (BSRA criteria) Criterion 1 Maximum value of the wave when and Criterion 2 Maximum value of the whole wake Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 50

51 Evaluation When is the wake smooth enough? (BSRA criteria) Criterion 3 The width of the top of the wake: Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 51

52 Evaluation When is the wake smooth enough? (BSRA criteria) Criterion 4 Criterion 5 Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 52

53 Summary List and describe types of cavitation How do you take into account the cavitation in the design of the propeller? How does the cavitation affect the performance of the propeller? What are the secondary effects of the cavitation? How can you evaluate the cavitation? Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 53

54 References Matusiak J (2010) Laivan kulkuvastus. M-289. Available in Noppa Matusiak J (2013) Slides Propulsion ENG 3. Available in Noppa Principles of Naval Architecture, Volume II, Chapter 7. Available in Knovel Aalto University 5/11/2014 Introduction of Marine Hydrodynamics 54

Application of CFD in connection with ship design

Application of CFD in connection with ship design DANSIS meeting Lyngby, 13 May 2009 Application of CFD in connection with ship design www.force.dk Background Method Examples Summary Claus Daniel Simonsen FORCE Technology Background When a ship, which

More information

Technology guidelines for efficient design and operation of ship propulsors by Teus van Beek, Propulsor Technology, Wärtsilä Propulsion Netherlands BV

Technology guidelines for efficient design and operation of ship propulsors by Teus van Beek, Propulsor Technology, Wärtsilä Propulsion Netherlands BV The Ship Power Supplier Technology guidelines for efficient design and operation of ship propulsors by Teus van Beek, Propulsor Technology, Wärtsilä Propulsion Netherlands BV Introduction The number of

More information

Aspects of Propeller Developments for a Submarine

Aspects of Propeller Developments for a Submarine First International Symposium on Marine Propulsors smp 09, Trondheim, Norway, June 2009 Aspects of Developments for a Submarine Poul Andersen 1, Jens J. Kappel 2, Eugen Spangenberg 3 1 Dept. of Mechanical

More information

Propellers. Inboard propellers and speed calculation Marine Engines 2.1L 16L

Propellers. Inboard propellers and speed calculation Marine Engines 2.1L 16L Propellers Inboard propellers and speed calculation Marine Engines 2.1L 16L Foreword The purpose of this information is to provide installers, designers or users with a simple and effective help in choosing

More information

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22 BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

More information

Numerical Study on the Influence of Boss Cap Fins on Efficiency of Controllable-pitch Propeller

Numerical Study on the Influence of Boss Cap Fins on Efficiency of Controllable-pitch Propeller J. Marine Sci. Appl. (2013) 12: 13-20 DOI: 10.1007/s11804-013-1166-9 Numerical Study on the Influence of Boss Cap Fins on Efficiency of Controllable-pitch Propeller Ying Xiong 1, Zhanzhi Wang 1* and Wanjiang

More information

PERFORMANCE OF A FAMILY OF SURFACE PIERCING PROPELLERS

PERFORMANCE OF A FAMILY OF SURFACE PIERCING PROPELLERS PERFORMANCE OF A FAMILY OF SURFACE PIERCING PROPELLERS Marco Ferrando, Università degli Studi di Genova - DINAV, Genova, aly Stefano Crotti, Università degli Studi di Genova - DINAV, Genova, aly Michele

More information

How Noise is Generated by Wind Turbines The mechanisms of noise generation. Malcolm Hayes Hayes McKenzie Partnership Ltd Machynlleth & Salisbury

How Noise is Generated by Wind Turbines The mechanisms of noise generation. Malcolm Hayes Hayes McKenzie Partnership Ltd Machynlleth & Salisbury How Noise is Generated by Wind Turbines The mechanisms of noise generation Malcolm Hayes Hayes McKenzie Partnership Ltd Machynlleth & Salisbury Overview Main sources of noise from wind turbines Causes

More information

CFD ANALYSIS OF CONTROLLABLE PITCH PROPELLER USED IN MARINE VEHICLE

CFD ANALYSIS OF CONTROLLABLE PITCH PROPELLER USED IN MARINE VEHICLE CFD ANALYSIS OF CONROLLABLE PICH PROPELLER USED IN MARINE VEHICLE Aditya Kolakoti 1,.V.K.Bhanuprakash 2 & H.N.Das 3 1 M.E in Marine Engineering And Mechanical Handling, Dept of Marine Engineering, Andhra

More information

PASSIVE CONTROL OF SHOCK WAVE APPLIED TO HELICOPTER ROTOR HIGH-SPEED IMPULSIVE NOISE REDUCTION

PASSIVE CONTROL OF SHOCK WAVE APPLIED TO HELICOPTER ROTOR HIGH-SPEED IMPULSIVE NOISE REDUCTION TASK QUARTERLY 14 No 3, 297 305 PASSIVE CONTROL OF SHOCK WAVE APPLIED TO HELICOPTER ROTOR HIGH-SPEED IMPULSIVE NOISE REDUCTION PIOTR DOERFFER AND OSKAR SZULC Institute of Fluid-Flow Machinery, Polish Academy

More information

Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids

Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction In this lab the characteristics of airfoil lift, drag,

More information

Bird-Johnson fixed pitch propellers

Bird-Johnson fixed pitch propellers Bird-Johnson fixed pitch propellers...leading the field of marine propeller technology for more than forty years Rolls-Royce Naval Marine, Inc. 3719 Industrial Road Pascagoula, Mississippi 39568 USA Telephone:

More information

Aeroelastic models for wind turbines

Aeroelastic models for wind turbines Aeroelastic models for wind turbines how accurate does the flow model have to be? Helge Aagaard Madsen Georg Pirrung Torben J. Larsen Section Aeroelastic Design Department of Wind Energy hama@dtu.dk How

More information

Resistance & Propulsion (1) MAR 2010. Presentation of ships wake

Resistance & Propulsion (1) MAR 2010. Presentation of ships wake Resistance & Propulsion (1) MAR 2010 Presentation of ships wake Wake - Overview Flow around a propeller is affected by the presence of a hull Potential and viscous nature of the boundary layer contribute

More information

The INSEAN E779a Propeller Test Case: a Database For CFD Validation

The INSEAN E779a Propeller Test Case: a Database For CFD Validation The INSEAN E779a Propeller Test Case: a Database For CFD Validation G.Calcagno,F. Di Felice, M. Felli,S. Franchi, F.Pereira, F.Salvatore INSEAN (Italian Ship Model Basin), via di Vallerano 139, 00128 Rome,

More information

FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER

FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER? What type of fluid flow is observed? The above pictures show how the effect

More information

Propeller Selection For Boats and Small Ships

Propeller Selection For Boats and Small Ships E Marine Training - Prop Matching - February, 2005 1 Propeller Selection For Boats and Small Ships Chris Barry This course is intended to cover the basic elements of marine propulsion, especially propellers

More information

Performance prediction of a centrifugal pump working in direct and reverse mode using Computational Fluid Dynamics

Performance prediction of a centrifugal pump working in direct and reverse mode using Computational Fluid Dynamics European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 10) Granada (Spain), 23rd

More information

Computational Modeling of Wind Turbines in OpenFOAM

Computational Modeling of Wind Turbines in OpenFOAM Computational Modeling of Wind Turbines in OpenFOAM Hamid Rahimi hamid.rahimi@uni-oldenburg.de ForWind - Center for Wind Energy Research Institute of Physics, University of Oldenburg, Germany Outline Computational

More information

Renilson Marine Consulting Pty Ltd

Renilson Marine Consulting Pty Ltd REDUCING UNDERWATER NOISE POLLUTION FROM LARGE COMMERCIAL VESSELS March 2009 Commissioned by The International Fund for Animal Welfare Summary There is increasing concern about the effects of underwater

More information

High-Lift Systems. High Lift Systems -- Introduction. Flap Geometry. Outline of this Chapter

High-Lift Systems. High Lift Systems -- Introduction. Flap Geometry. Outline of this Chapter High-Lift Systems Outline of this Chapter The chapter is divided into four sections. The introduction describes the motivation for high lift systems, and the basic concepts underlying flap and slat systems.

More information

Unsteady CFD of a Marine Current Turbine using OpenFOAM with Generalised Grid Interface

Unsteady CFD of a Marine Current Turbine using OpenFOAM with Generalised Grid Interface Unsteady CFD of a Marine Current Turbine using OpenFOAM with Generalised Grid Interface Thomas P. Lloyd, Stephen R. Turnock and Victor F. Humphrey Fluid-Structure Interactions Research Group; Institute

More information

CFD Analysis of a Propeller Flow and Cavitation

CFD Analysis of a Propeller Flow and Cavitation CFD Analysis of a Propeller Flow and Cavitation S. Subhas PG student NITW V F Saji Scientist C N S T L Visakhapatnam S. Ramakrishna GVP College of Engineering (A) Visakhapatnam H. N Das Scientist F N S

More information

Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics

Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics Lecture 11 Boundary Layers and Separation Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Overview Drag. The boundary-layer

More information

Modelling and Computation of Compressible Liquid Flows with Phase Transition

Modelling and Computation of Compressible Liquid Flows with Phase Transition JASS 2009 - Joint Advanced Student School, Saint Petersburg, 29. 03. - 07. 04. 2009 Modelling and Simulation in Multidisciplinary Engineering Modelling and Computation of Compressible Liquid Flows with

More information

Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412

Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412 , July 2-4, 2014, London, U.K. Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412 Arvind Prabhakar, Ayush Ohri Abstract Winglets are angled extensions or vertical projections

More information

FINE TM /Marine. CFD Suite for Marine Applications. Advanced Development for Better Products. www.numeca.com

FINE TM /Marine. CFD Suite for Marine Applications. Advanced Development for Better Products. www.numeca.com FINE TM /Marine CFD Suite for Marine Applications Advanced Development for Better Products www.numeca.com FINE TM /Marine FINE /Marine is a unique integrated CFD software environment for the simulation

More information

Platform Technology for Computational Fluid Dynamics Supporting Design of System Products

Platform Technology for Computational Fluid Dynamics Supporting Design of System Products Hitachi Review Vol. 61 (2012), No. 6 244 Platform Technology for Computational Fluid Dynamics Supporting Design of System Products from Power Plants and Industrial Machinery to Home Appliances Shigehisa

More information

Some scientific challenges in aerodynamics for wind turbines

Some scientific challenges in aerodynamics for wind turbines Some scientific challenges in aerodynamics for wind turbines Christian Bak Senior Scientist Team Leader: Aerodynamics, aeroacoustics, airfoil and blade design Technical University of Denmark DTU Wind Energy

More information

AERODYNAMIC ANALYSIS OF BLADE 1.5 KW OF DUAL ROTOR HORIZONTAL AXIS WIND TURBINE

AERODYNAMIC ANALYSIS OF BLADE 1.5 KW OF DUAL ROTOR HORIZONTAL AXIS WIND TURBINE AERODYNAMIC ANALYSIS OF BLADE 1.5 KW OF DUAL ROTOR HORIZONTAL AXIS WIND TURBINE HITENDRA KURMI Research scholar, School of Energy and Environmental Managment,UTD, RGPV Bhopal,MP,INDIA htr.ptl@gmail.com

More information

Submarine Hull Design

Submarine Hull Design VOLKER BERTRAM Submarine Hull Design 1 SAFER, SMARTER, GREENER Navigator Hull Design Aspects Overview of problems and approaches General guidelines for submarine hull design Quiz Hydrodynamic Assessment

More information

FAN PROTECTION AGAINST STALLING PHENOMENON

FAN PROTECTION AGAINST STALLING PHENOMENON FAN PROTECTION AGAINST STALLING PHENOMENON Roberto Arias Álvarez 1 Javier Fernández López 2 2 1 ZITRON Technical Director roberto@zitron.com ZITRON Technical Pre Sales Management jfernandez@zitron.com

More information

Basics of vehicle aerodynamics

Basics of vehicle aerodynamics Basics of vehicle aerodynamics Prof. Tamás Lajos Budapest University of Technology and Economics Department of Fluid Mechanics University of Rome La Sapienza 2002 Influence of flow characteristics on the

More information

INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

More information

Engineering & Expertise Designing Pump Sumps

Engineering & Expertise Designing Pump Sumps Engineering & Expertise Designing Pump Sumps Formed Suction Intake Engineering & Expertise Total solution engineering increases operational efficiency Introduction The primary function of a propeller pump

More information

WIND TURBINE TECHNOLOGY

WIND TURBINE TECHNOLOGY Module 2.2-2 WIND TURBINE TECHNOLOGY Electrical System Gerhard J. Gerdes Workshop on Renewable Energies November 14-25, 2005 Nadi, Republic of the Fiji Islands Contents Module 2.2 Types of generator systems

More information

Using CFD to improve the design of a circulating water channel

Using CFD to improve the design of a circulating water channel 2-7 December 27 Using CFD to improve the design of a circulating water channel M.G. Pullinger and J.E. Sargison School of Engineering University of Tasmania, Hobart, TAS, 71 AUSTRALIA Abstract Computational

More information

NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION

NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION Engineering Review Vol. 32, Issue 3, 141-146, 2012. 141 NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION Z. 1* L. 1 V. 2 M. 1 1 Department of Fluid Mechanics and Computational Engineering,

More information

Computational Fluid Dynamics Investigation of Two Surfboard Fin Configurations.

Computational Fluid Dynamics Investigation of Two Surfboard Fin Configurations. Computational Fluid Dynamics Investigation of Two Surfboard Fin Configurations. By: Anthony Livanos (10408690) Supervisor: Dr Philippa O Neil Faculty of Engineering University of Western Australia For

More information

Propeller Design and Propulsion Concepts for Ship Operation in Off- Design Conditions

Propeller Design and Propulsion Concepts for Ship Operation in Off- Design Conditions Second International Symposium on Marine Propulsors smp 11, Hamburg, Germany, June 2011 Propeller Design and Propulsion Concepts for Ship Operation in Off- Design Conditions Thomas Stoye Flensburger Schiffbau-Gesellschaft

More information

Comparison of Hexa-Structured and Hybrid-Unstructured Meshing Approaches for Numerical Prediction of the Flow Around Marine Propellers

Comparison of Hexa-Structured and Hybrid-Unstructured Meshing Approaches for Numerical Prediction of the Flow Around Marine Propellers First International Symposium on Marine Propulsors smp 09, Trondheim, Norway, June 2009 Comparison of Hexa-Structured and Hybrid-Unstructured Meshing Approaches for Numerical Prediction of the Flow Around

More information

Comparison between OpenFOAM CFD & BEM theory for variable speed variable pitch HAWT

Comparison between OpenFOAM CFD & BEM theory for variable speed variable pitch HAWT ITM Web of Conferences 2, 05001 (2014) DOI: 10.1051/itmconf/20140205001 C Owned by the authors, published by EDP Sciences, 2014 Comparison between OpenFOAM CFD & BEM theory for variable speed variable

More information

NACA airfoil geometrical construction

NACA airfoil geometrical construction The NACA airfoil series The early NACA airfoil series, the 4-digit, 5-digit, and modified 4-/5-digit, were generated using analytical equations that describe the camber (curvature) of the mean-line (geometric

More information

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all

More information

CFD Lab Department of Engineering The University of Liverpool

CFD Lab Department of Engineering The University of Liverpool Development of a CFD Method for Aerodynamic Analysis of Large Diameter Horizontal Axis wind turbines S. Gomez-Iradi, G.N. Barakos and X. Munduate 2007 joint meeting of IEA Annex 11 and Annex 20 Risø National

More information

Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite

Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite 4. FRICTION 4.1 Laws of friction. We know from experience that when two bodies tend to slide on each other a resisting force appears at their surface of contact which opposes their relative motion. The

More information

THE EVOLUTION OF TURBOMACHINERY DESIGN (METHODS) Parsons 1895

THE EVOLUTION OF TURBOMACHINERY DESIGN (METHODS) Parsons 1895 THE EVOLUTION OF TURBOMACHINERY DESIGN (METHODS) Parsons 1895 Rolls-Royce 2008 Parsons 1895 100KW Steam turbine Pitch/chord a bit too low. Tip thinning on suction side. Trailing edge FAR too thick. Surface

More information

Once you know the volume of air and the static pressure of the system to be cooled, you can determine the fan specifications for your product.

Once you know the volume of air and the static pressure of the system to be cooled, you can determine the fan specifications for your product. COOLING FAN REQUIREMENTS CALCULATIONS Determining System Impedance Determining the actual airflow produced by a fan mounted in an enclosure is much more difficult than calculating the airflow required.

More information

The Kobold marine turbine: from the testing model to the full scale prototype

The Kobold marine turbine: from the testing model to the full scale prototype The Kobold marine turbine: from the testing model to the full scale prototype Guido Calcagno INSEAN Italian National Institute for Naval Architecture Studies and Testing (Rome Italy) Alberto Moroso Ponte

More information

Electric Motors and Drives

Electric Motors and Drives EML 2322L MAE Design and Manufacturing Laboratory Electric Motors and Drives To calculate the peak power and torque produced by an electric motor, you will need to know the following: Motor supply voltage,

More information

MAN Diesel & Turbo. Frederik Carstens Head of Offshore Sales Marine Medium Speed. Frederik Carstens & Karsten Borneman

MAN Diesel & Turbo. Frederik Carstens Head of Offshore Sales Marine Medium Speed. Frederik Carstens & Karsten Borneman Frederik Carstens Head of Offshore Sales Marine Medium Speed < 1 > Disclaimer All data provided on the following slides is for information purposes only, explicitly non-binding and subject to changes without

More information

Digital Systems Ribbon Cables I CMPE 650. Ribbon Cables A ribbon cable is any cable having multiple conductors bound together in a flat, wide strip.

Digital Systems Ribbon Cables I CMPE 650. Ribbon Cables A ribbon cable is any cable having multiple conductors bound together in a flat, wide strip. Ribbon Cables A ribbon cable is any cable having multiple conductors bound together in a flat, wide strip. Each dielectric configuration has different high-frequency characteristics. All configurations

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2014

Candidate Number. General Certificate of Education Advanced Level Examination June 2014 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday

More information

UCCS PES/ENSC 2500: Renewable Energy Spring 2014 Test 3 name:

UCCS PES/ENSC 2500: Renewable Energy Spring 2014 Test 3 name: UCCS PES/ENSC 2500: Renewable Energy Spring 2014 Test 3 name: 1. When a wind turbine is positioned between radio, television or microwave transmitter and receiver it can sometime reflect some of the in

More information

BASIC ELECTRONICS AC CIRCUIT ANALYSIS. December 2011

BASIC ELECTRONICS AC CIRCUIT ANALYSIS. December 2011 AM 5-202 BASIC ELECTRONICS AC CIRCUIT ANALYSIS December 2011 DISTRIBUTION RESTRICTION: Approved for Pubic Release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT

More information

CHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER

CHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER 93 CHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER 5.1 INTRODUCTION The development of an active trap based feeder for handling brakeliners was discussed

More information

Chapter 3.5: Fans and Blowers

Chapter 3.5: Fans and Blowers Part I: Objective type questions and answers Chapter 3.5: Fans and Blowers 1. The parameter used by ASME to define fans, blowers and compressors is a) Fan ration b) Specific ratio c) Blade ratio d) Twist

More information

Chapter 21. Magnetic Forces and Magnetic Fields

Chapter 21. Magnetic Forces and Magnetic Fields Chapter 21 Magnetic Forces and Magnetic Fields 21.1 Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at one end and a south magnetic pole (S) at the other.

More information

Distinguished Professor George Washington University. Graw Hill

Distinguished Professor George Washington University. Graw Hill Mechanics of Fluids Fourth Edition Irving H. Shames Distinguished Professor George Washington University Graw Hill Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok

More information

DC Motor / Propeller Matching 3 Mar 05 Lab 5 Lecture Notes

DC Motor / Propeller Matching 3 Mar 05 Lab 5 Lecture Notes DC Motor / Propeller Matching 3 Mar 05 Lab 5 Lecture Notes Nomenclature prop thrust prop torque m motor torque P shaft shaft power P elec electrical power C thrust coefficient based on tip speed C P power

More information

Simulation at Aeronautics Test Facilities A University Perspective Helen L. Reed, Ph.D., P.E. ASEB meeting, Irvine CA 15 October 2014 1500-1640

Simulation at Aeronautics Test Facilities A University Perspective Helen L. Reed, Ph.D., P.E. ASEB meeting, Irvine CA 15 October 2014 1500-1640 Simulation at Aeronautics Test A University Perspective Helen L. Reed, Ph.D., P.E. ASEB meeting, Irvine CA 15 October 2014 1500-1640 Questions How has the ability to do increasingly accurate modeling and

More information

Waterjet System Performance and Cavitation Test Procedures

Waterjet System Performance and Cavitation Test Procedures Third International Symposium on Marine Propulsors smp 13, Tasmania, Australia, May 2013 Waterjet System Performance and Cavitation Test Procedures Jie Dang 1, Runwen Liu 2 and Christiaan Pouw 1 1 The

More information

Prof. Dr. Zahid A. Siddiqi, UET, Lahore WIND LOAD

Prof. Dr. Zahid A. Siddiqi, UET, Lahore WIND LOAD WIND LOAD Wind load is produced due to change in momentum of an air current striking the surface of a building. A building is less likely to experience the other design loads in its life but it is almost

More information

CROR Noise Generation Mechanism #3: Installation Effects (& Quadrupole Noise)

CROR Noise Generation Mechanism #3: Installation Effects (& Quadrupole Noise) CROR Noise Generation Mechanism #3: Installation Effects (& Quadrupole Noise) Arne Stuermer & Jianping Yin Institute of Aerodynamics & Flow Technology DLR Braunschweig Germany 14th CEAS-ASC Workshop October

More information

13.021 Marine Hydrodynamics Lecture 24B Lifting Surfaces. Introduction What are the characteristics of a lifting surface?

13.021 Marine Hydrodynamics Lecture 24B Lifting Surfaces. Introduction What are the characteristics of a lifting surface? 13.021 Marine Hydrodynamics Lecture 24B Lifting Surfaces Introduction What are the characteristics of a lifting surface? Lifting surfaces in marine hydrodynamics typically have many applications such as

More information

Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment

Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment Fluid Structure Interaction VI 3 Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment J. Hengstler & J. Dual Department of Mechanical and Process

More information

LEVEL I SKATING TECHNICAL. September 2007 Page 1

LEVEL I SKATING TECHNICAL. September 2007 Page 1 SKATING September 2007 Page 1 SKATING SKILLS The game of Ice Hockey is a fast-paced, complex, team sport, which demands quick thinking, fast reactions and special athletic skills. Skating is the most important

More information

PART VIII: ABSORPTIVE SILENCER DESIGN

PART VIII: ABSORPTIVE SILENCER DESIGN PART VIII: ABSORPTIVE SILENCER DESIGN Elden F. Ray June 10, 2013 TABLE OF CONTENTS Introduction 2 Silencer Performance 4 Flow Resistance and Resistivity 7 Flow Velocity 7 Baffle Attenuation Example 7 Silencer

More information

Proof of the conservation of momentum and kinetic energy

Proof of the conservation of momentum and kinetic energy Experiment 04 Proof of the conservation of momentum and kinetic energy By Christian Redeker 27.10.2007 Contents 1.) Hypothesis...3 2.) Diagram...7 3.) Method...7 3.1) Apparatus...7 3.2) Procedure...7 4.)

More information

CFD Simulation of the NREL Phase VI Rotor

CFD Simulation of the NREL Phase VI Rotor CFD Simulation of the NREL Phase VI Rotor Y. Song* and J. B. Perot # *Theoretical & Computational Fluid Dynamics Laboratory, Department of Mechanical & Industrial Engineering, University of Massachusetts

More information

informing technology decisions

informing technology decisions Technical Capabilities and Business Profile informing technology decisions Cardinal Engineering LLC Rev April 2015 213 Duke of Gloucester Street Annapolis, MD 21401 Phone: (202) 506-3962 E-mail: info@cardinalengineeringllc.com

More information

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012 O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749

More information

GEAROLOGY 4-1 WORMS AND WORM GEARS WORMS AND WORM GEARS

GEAROLOGY 4-1 WORMS AND WORM GEARS WORMS AND WORM GEARS GEAROLOGY 4-1 4 4-2 GEAROLOGY COMMON APPLICATIONS: Worm and worm gear sets are used in many, everyday products including: electrical mixers, hubometers, right Now that you have an understanding of two

More information

Aerodynamic Department Institute of Aviation. Adam Dziubiński CFD group FLUENT

Aerodynamic Department Institute of Aviation. Adam Dziubiński CFD group FLUENT Adam Dziubiński CFD group IoA FLUENT Content Fluent CFD software 1. Short description of main features of Fluent 2. Examples of usage in CESAR Analysis of flow around an airfoil with a flap: VZLU + ILL4xx

More information

Research question: How does the velocity of the balloon depend on how much air is pumped into the balloon?

Research question: How does the velocity of the balloon depend on how much air is pumped into the balloon? Katie Chang 3A For this balloon rocket experiment, we learned how to plan a controlled experiment that also deepened our understanding of the concepts of acceleration and force on an object. My partner

More information

Pump Selection and Sizing (ENGINEERING DESIGN GUIDELINE)

Pump Selection and Sizing (ENGINEERING DESIGN GUIDELINE) Guidelines for Processing Plant Page : 1 of 51 Rev 01 Feb 2007 Rev 02 Feb 2009 Rev 03 KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru. (ENGINEERING DESIGN GUIDELINE)

More information

Rotary vane steering gear for smaller vessels

Rotary vane steering gear for smaller vessels Steering gear Rotary vane steering gear for smaller vessels The SR series is designed with integrated frequency controlled pumps. General description Rolls-Royce supplies a complete range of steering gear,

More information

Propeller Efficiency. Rule of Thumb. David F. Rogers, PhD, ATP

Propeller Efficiency. Rule of Thumb. David F. Rogers, PhD, ATP Propeller Efficiency Rule of Thumb David F. Rogers, PhD, ATP Theoretically the most efficient propeller is a large diameter, slowly turning single blade propeller. Here, think the Osprey or helicopters.

More information

Minor losses include head losses through/past hydrants, couplers, valves,

Minor losses include head losses through/past hydrants, couplers, valves, Lecture 10 Minor Losses & Pressure Requirements I. Minor Losses Minor (or fitting, or local ) hydraulic losses along pipes can often be estimated as a function of the velocity head of the water within

More information

NEW IMPELLER DESIGN: ANTI-RAGGING IMPELLER, ARI2

NEW IMPELLER DESIGN: ANTI-RAGGING IMPELLER, ARI2 14 th European Conference on Mixing Warszawa, 10-13 September 2012 NEW IMPELLER DESIGN: ANTI-RAGGING IMPELLER, ARI2 Robert Higbee a, Jason Giacomelli a, Wojciech Wyczalkowski a a Philadelphia Mixing Solutions,

More information

Scour and Scour Protection

Scour and Scour Protection Design of Maritime Structures Scour and Scour Protection Steven A. Hughes, PhD, PE Coastal and Hydraulics Laboratory US Army Engineer Research and Development Center Waterways Experiment Station 3909 Halls

More information

What is a Mouse-Trap

What is a Mouse-Trap What is a Mouse-Trap Car and How does it Work? A mouse-trap car is a vehicle that is powered by the energy that can be stored in a wound up mouse-trap spring. The most basic design is as follows: a string

More information

Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.

Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad. Centripetal Force 1 Introduction In classical mechanics, the dynamics of a point particle are described by Newton s 2nd law, F = m a, where F is the net force, m is the mass, and a is the acceleration.

More information

CFD Case Studies in Marine and Offshore Engineering

CFD Case Studies in Marine and Offshore Engineering CFD Case Studies in Marine and Offshore Engineering Milovan Perić CD-adapco, Nürnberg Office www.cd-adapco.com Milovan.Peric@de.cd-adapco.com Introduction CD-adapco software: a brief overview Case studies

More information

PHYS 211 FINAL FALL 2004 Form A

PHYS 211 FINAL FALL 2004 Form A 1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

More information

Doppler. Doppler. Doppler shift. Doppler Frequency. Doppler shift. Doppler shift. Chapter 19

Doppler. Doppler. Doppler shift. Doppler Frequency. Doppler shift. Doppler shift. Chapter 19 Doppler Doppler Chapter 19 A moving train with a trumpet player holding the same tone for a very long time travels from your left to your right. The tone changes relative the motion of you (receiver) and

More information

Azimuth thrusters. propulsors

Azimuth thrusters. propulsors Azimuth s Rolls-Royce is a global leader in the supply of azimuth s. In an azimuth the propeller rotates 360 around the vertical axis so the unit provides propulsion, steering and positioning thrust for

More information

Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Static s Kinematics Dynamics Fluid Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

More information

THE MODIFICATION OF WIND-TUNNEL RESULTS BY THE WIND-TUNNEL DIMENSIONS

THE MODIFICATION OF WIND-TUNNEL RESULTS BY THE WIND-TUNNEL DIMENSIONS THE MODIFICATION OF WIND-TUNNEL RESULTS BY THE WIND-TUNNEL DIMENSIONS 13\' MAX M. MONK, Ph.D., Dr.Eng. Technical Assistant, National Advisory Committee for Aeronautics RIlPRINTED FROM THII JOURNAL OF THE

More information

International journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online http://www.ijoer.

International journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online http://www.ijoer. REVIEW ARTICLE ISSN: 2321-7758 REVIEW OF HEAT TRANSFER AUGMENTATION TECHNIQUES MANOJ HAJARE, CHETAN DEORE, KAVITA KHARDE, PUSHKAR RAWALE, VIVEK DALVI Department of Mechanical Engineering, SITRC, NASHIK

More information

OFFSHORE WIND ENERGY

OFFSHORE WIND ENERGY OFFSHORE WIND ENERGY University of Stavanger 2010-2011 OFFSHORE WIND ENERGY Offshore wind energy is a 30sp course package for part-time students. It is special designed for professionals in the offshore

More information

3. Resistance of a Ship 3.2 Estimates based on statistical methods

3. Resistance of a Ship 3.2 Estimates based on statistical methods In the preliminary stages of ship design, the resistance coefficient is estimated with approximate methods based on systematic series or statistical regressions to experimental data. A systematic series

More information

DESIGN PHILOSOPHY. Barge carrier Smit Pioneer is equipped with three LIPS CT250 transverse thrusters.

DESIGN PHILOSOPHY. Barge carrier Smit Pioneer is equipped with three LIPS CT250 transverse thrusters. Wärtsilä specializes in complete ship propulsion systems. Besides our marine engines, we are also well known worldwide as a designer and manufacturer of WÄRTSILÄ fixed pitch and controllable pitch propellers,

More information

Contents. Microfluidics - Jens Ducrée Physics: Fluid Dynamics 1

Contents. Microfluidics - Jens Ducrée Physics: Fluid Dynamics 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Vehicle Design Summit Electric Hub Motor (V2) Eric Conner Harvey Tang Matthew Peddie

Vehicle Design Summit Electric Hub Motor (V2) Eric Conner Harvey Tang Matthew Peddie Vehicle Design Summit Electric Hub Motor (V2) Eric Conner Harvey Tang Matthew Peddie Motivation The AHPV from VDS 1.0 used an expensive, NGM electric hub motor, costing roughly $8000. (picture on right)

More information

Flashing and Cavitation

Flashing and Cavitation As seen in the Summer 2015 issue of MAGAZINE BACK TO BASICS A high-power boiler burner in a co-generation plant Flashing and Cavitation Some of the following questions may seem unrelated, but they all

More information

EFFECTS OF SURFACE CHARACTERISTICS ON HYDROFOIL CAVITATION Megan Williams UC Berkeley Berkeley, CA

EFFECTS OF SURFACE CHARACTERISTICS ON HYDROFOIL CAVITATION Megan Williams UC Berkeley Berkeley, CA Proceedings of the 7 th International Symposium on Cavitation CAV009 August 17-, 009, Ann Arbor, Michigan, USA CAV009 Paper No. 11 EFFECTS OF SURFACE CHARACTERISTICS ON HYDROFOIL CAVITATION Megan Williams

More information

INTEGRATED SYSTEM FOR DATA ACQUISITION AND NUMERICAL ANALYSIS OF THE SHIP RESISTANCE PERFORMANCE IN THE TOWING TANK OF GALAÞI UNIVERSITY

INTEGRATED SYSTEM FOR DATA ACQUISITION AND NUMERICAL ANALYSIS OF THE SHIP RESISTANCE PERFORMANCE IN THE TOWING TANK OF GALAÞI UNIVERSITY INTEGRATED SYSTEM FOR DATA ACQUISITION AND NUMERICAL ANALYSIS OF THE SHIP RESISTANCE PERFORMANCE IN THE TOWING TANK OF GALAÞI UNIVERSITY DAN OBREJA, LEONARD DOMNIªORU, FLORIN PÃCURARU University Dunãrea

More information

Aeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics

Aeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics Aeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics David Corson Altair Engineering, Inc. Todd Griffith Sandia National Laboratories Tom Ashwill (Retired) Sandia National

More information