# Fourier Series for Periodic Functions. Lecture #8 5CT3,4,6,7. BME 333 Biomedical Signals and Systems - J.Schesser

Save this PDF as:

Size: px
Start display at page:

Download "Fourier Series for Periodic Functions. Lecture #8 5CT3,4,6,7. BME 333 Biomedical Signals and Systems - J.Schesser"

## Transcription

1 Fourier Series for Periodic Functions Lecture #8 5C3,4,6,7

2 Fourier Series for Periodic Functions Up to now we have solved the problem of approximating a function f(t) by f a (t) within an interval. However, if f(t) is periodic with period, i.e., f(t)=f(t+), then the approximation is true for all t. And if we represent a periodic function in terms of an infinite Fourier series, such that the frequencies are all integral multiples of the frequency /, where = corresponds to the fundamental frequency of the function and the remainder are its harmonics. a f t e dt j t () jt j t j t j t a a a a j t j a( ) cos( ), where a and a f() t a [ e * e ] e a Re[ e ] f t a C C e C 3

3 Another Form for the Fourier Series t f() t C C cos( ) t t A A cos( ) B sin( ) where A C cos and B -C sin and A C 4

4 Fourier Series heorem Any periodic function f (t) with period which is integrable ( f (t)dt ) can be represented by an infinite Fourier Series If [f (t)] is also integrable, then the series converges to the value of f (t) at every point where f(t) is continuous and to the average value at any discontinuity. 5

5 Symmetries Properties of Fourier Series If f (t) is even, f (t)=f (-t), then the Fourier Series contains only cosine terms If f (t) is odd, f (t)=-f (-t), then the Fourier Series contains only sine terms If f (t) has half-wave symmetry, f (t) = -f (t+/), then the Fourier Series will only have odd harmonics If f (t) has half-wave symmetry and is even, even quarter-wave, then the Fourier Series will only have odd harmonics and cosine terms If f (t) has half-wave symmetry and is odd, odd quarterwave,then the Fourier Series will only have odd harmonics and sine terms 6

6 Properties of FS Continued Superposition holds, if f(t) and g(t) have coefficients f and g, respectively, then Af(t)+Bg(t)=>Af +Bg j t ime Shifting: f() t ae Differentiation and Integration delayed original jt jt jt j t f( tt ) a e e a e e ( a ) ( a ) e j t j ( a) derivative ( a) ( a) integral ( a) j original original 7

7 FS Coefficients Calculation Example E jt jt jt a [ ] 4 e dt Ee dt e dt j t E 4 e 4 j 4 j j j j [ e ] [ ] E Ee e e j j sin( ) j E 4 4 e, 4 4 E E a dt 4 4 f ( t), t f ( t) f ( t) E, t f ( t), t f ( t 4) Since a C, then sin E E 4 t f() t cos( )

8 Example Continued.5 term terms

9 Frequency Spectrum of the Pulse Function In the preceding example, the coefficients for each of the cosine terms was proportional to sin( 4) ( 4) We call the function Sa( x) sin x x the Sampling Function. If we plot these coefficients along the.8.6 frequency axis we have.4. the frequency spectrum of f(t)

10 Frequency Spectrum Note that the periodic signal in the time domain exhibits a discrete spectrum (i.e., in the frequency domain) Frequency (/4)

11 Another Example V his signal is odd, H/W symmetrical, and mean=; this means no cosine terms, odd harmonics and mean=. jt jt [ ] jt jt e e j j a Ve dt Ve dt V [ V V [ cos ] for odd, j j V 9 for odd. for even. f ( t) odd V odd V sin( t ) cos( t )

12 Fourier Series of an Impulse rain or Sampling Function xt () ( tn) jt a x() t e dt n () te jt dt for all xt () e jt 3

13 4 Fourier Series for Discrete Periodic Functions ] [ ] [ n j n n j n j n j n e x a e a e a e a a n x Notice the similarities to the previous example. Since x[n] is discrete, this becomes a summation

14 Homewor Problem () Compute the Fourier Series for the periodic functions a) f(t) = for <t<π, f(t)= for π<t<π b) f(t) = t for <t<3 Problem () Compute the Fourier series of the following Periodic Functions: f(t)= t, nπ < t < (n+)π for n =, (n+)π < t < (n+)π for n f(t)= e -t/π, nπ < t < (n+)π for n Use Matlab to plot f(t) usinga for maximum number of components, N=5,,, and. Show your code. Problem (3) Problems: 4./3 Find the Fourier series of the following waveforms (choose t c = o /4): o -( o + t c ) - ( o -t c ) - o / -t c t c o / o o -t c o + t c 5

15 Homewor Problem (4) Deduce the Fourier series for the functions shown (hint: deduce the second one using superposition): -π+a -a π+a π-a -π -π/3 -π/3 4π/3 5π/3 -π a π-a π π π/3 π/3 π π 5C.7. 6

### FOURIER SERIES INSTRUCTOR: DR. GÜLDEN KÖKTÜRK

FOURIER SERIES INSTRUCTOR: DR. GÜLDEN KÖKTÜRK Contact Information Phone: 412 71 65 E-mail: gulden.kokturk@deu.edu.tr Web page: gulden.kokturk.com Office Hours for This Module April, 5-9: Wendesday 3-4,

### Fourier Series Expansion

Fourier Series Expansion Deepesh K P There are many types of series expansions for functions. The Maclaurin series, Taylor series, Laurent series are some such expansions. But these expansions become valid

### An introduction to generalized vector spaces and Fourier analysis. by M. Croft

1 An introduction to generalized vector spaces and Fourier analysis. by M. Croft FOURIER ANALYSIS : Introduction Reading: Brophy p. 58-63 This lab is u lab on Fourier analysis and consists of VI parts.

### Ans: D Ans: A Ans: C Ans: B Ans: C Ans: C Ans: A Ans: B Ans: C

UNIT-I 1. The Fourier series of an odd periodic function contains only [ ] a. Odd harmonics b. even harmonics c. cosine terms d. sine terms 2. The RMS value of a rectangular wave of period T, having a

### Continuous Time Signals (Part - I) Fourier series

Continuous Time Signals (Part - I) Fourier series (a) Basics 1. Which of the following signals is/are periodic? (a) s(t) = cos t + cos 3t + cos 5t (b) s(t) = exp(j8 πt) (c) s(t) = exp( 7t) sin 1πt (d)

### Lecture VI. Review of even and odd functions Definition 1 A function f(x) is called an even function if. f( x) = f(x)

ecture VI Abstract Before learning to solve partial differential equations, it is necessary to know how to approximate arbitrary functions by infinite series, using special families of functions This process

### ME231 Measurements Laboratory Spring Fourier Series. Edmundo Corona c

ME23 Measurements Laboratory Spring 23 Fourier Series Edmundo Corona c If you listen to music you may have noticed that you can tell what instruments are used in a given song or symphony. In some cases,

### Introduction to Fourier Series

Introduction to Fourier Series MA 16021 October 15, 2014 Even and odd functions Definition A function f(x) is said to be even if f( x) = f(x). The function f(x) is said to be odd if f( x) = f(x). Graphically,

### Maths 361 Fourier Series Notes 2

Today s topics: Even and odd functions Real trigonometric Fourier series Section 1. : Odd and even functions Consider a function f : [, ] R. Maths 361 Fourier Series Notes f is odd if f( x) = f(x) for

### Fourier Series. 1. Full-range Fourier Series. ) + b n sin L. [ a n cos L )

Fourier Series These summary notes should be used in conjunction with, and should not be a replacement for, your lecture notes. You should be familiar with the following definitions. A function f is periodic

### Fourier Transforms The Fourier Transform Properties of the Fourier Transform Some Special Fourier Transform Pairs 27

24 Contents Fourier Transforms 24.1 The Fourier Transform 2 24.2 Properties of the Fourier Transform 14 24.3 Some Special Fourier Transform Pairs 27 Learning outcomes In this Workbook you will learn about

### FOURIER SERIES, GENERALIZED FUNCTIONS, LAPLACE TRANSFORM. 1. A (generalized) function f(t) of period 2L has a Fourier series of the form

FOURIER SERIES, GENERAIZED FUNCTIONS, APACE TRANSFORM 1 Fourier Series 1.1 General facts 1. A (generalized) function f(t) of period has a Fourier series of the form or f(t) a + a 1 cos πt + a cos πt +

### M344 - ADVANCED ENGINEERING MATHEMATICS Lecture 9: Orthogonal Functions and Trigonometric Fourier Series

M344 - ADVANCED ENGINEERING MATHEMATICS ecture 9: Orthogonal Functions and Trigonometric Fourier Series Before learning to solve partial differential equations, it is necessary to know how to approximate

### Topic 4: Continuous-Time Fourier Transform (CTFT)

ELEC264: Signals And Systems Topic 4: Continuous-Time Fourier Transform (CTFT) Aishy Amer Concordia University Electrical and Computer Engineering o Introduction to Fourier Transform o Fourier transform

Measurement Lab Fourier Analysis Last Modified 9/5/06 Any time-varying signal can be constructed by adding together sine waves of appropriate frequency, amplitude, and phase. Fourier analysis is a technique

### TCOM 370 NOTES 99-2 FOURIER SERIES, BANDWIDTH, AND SIGNALING RATES ON DATA TRANSMISSION LINKS

TCOM 37 NOTES 99-2 FOURIER SERIES, BANDWIDTH, AND SIGNALING RATES ON DATA TRANSMISSION LINKS. PULSE TRANSMISSION We now consider some fundamental aspects of binary data transmission over an individual

### Lecture 3: Fourier Series: pointwise and uniform convergence.

Lecture 3: Fourier Series: pointwise and uniform convergence. 1. Introduction. At the end of the second lecture we saw that we had for each function f L ([, π]) a Fourier series f a + (a k cos kx + b k

### Section 5: Summary. Section 6. General Fourier Series

Section 5: Summary Periodic functions, (so far only with period π, can be represented ug the the Fourier series. We can use symmetry properties of the function to spot that certain Fourier coefficients

### Laboratory Assignment 4. Fourier Sound Synthesis

Laboratory Assignment 4 Fourier Sound Synthesis PURPOSE This lab investigates how to use a computer to evaluate the Fourier series for periodic signals and to synthesize audio signals from Fourier series

### Write seven terms of the Fourier series given the following coefficients. 1. a 0 4, a 1 3, a 2 2, a 3 1; b 1 4, b 2 3, b 3 2

36 Chapter 37 Infinite Series Eercise 5 Fourier Series Write seven terms of the Fourier series given the following coefficients.. a 4, a 3, a, a 3 ; b 4, b 3, b 3. a.6, a 5., a 3., a 3.4; b 7.5, b 5.3,

### CHAPTER 2 FOURIER SERIES

CHAPTER 2 FOURIER SERIES PERIODIC FUNCTIONS A function is said to have a period T if for all x,, where T is a positive constant. The least value of T>0 is called the period of. EXAMPLES We know that =

### MATH 461: Fourier Series and Boundary Value Problems

MATH 461: Fourier Series and Boundary Value Problems Chapter III: Fourier Series Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2015 fasshauer@iit.edu MATH 461 Chapter

### Periodic signals and representations

ECE 3640 Lecture 4 Fourier series: expansions of periodic functions. Objective: To build upon the ideas from the previous lecture to learn about Fourier series, which are series representations of periodic

### Fourier Analysis. A cosine wave is just a sine wave shifted in phase by 90 o (φ=90 o ). degrees

Fourier Analysis Fourier analysis follows from Fourier s theorem, which states that every function can be completely expressed as a sum of sines and cosines of various amplitudes and frequencies. This

### Some Review of Signals and Systems. Lecture # BME 333 Biomedical Signals and Systems - J.Schesser

Some Review of Signals and Systems Lecture #1 1.1 1.3 2 What Is this Course All About? To Gain an Appreciation of the Various Types of Signals and Systems To Analyze The Various Types of Systems To Learn

### FIR Filter Design. FIR Filters and the z-domain. The z-domain model of a general FIR filter is shown in Figure 1. Figure 1

FIR Filters and the -Domain FIR Filter Design The -domain model of a general FIR filter is shown in Figure. Figure Each - box indicates a further delay of one sampling period. For example, the input to

### Advanced Engineering Mathematics Prof. Jitendra Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Advanced Engineering Mathematics Prof. Jitendra Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Lecture No. # 28 Fourier Series (Contd.) Welcome back to the lecture on Fourier

### The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #1. Spirou et Fantasio

The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #1 Date: October 14, 2016 Course: EE 445S Evans Name: Spirou et Fantasio Last, First The exam is scheduled to last

### Juan Ruiz Álvarez. Calculus I

1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Outline Introduction and definitions 1 Introduction and definitions 3 4 5 Outline Introduction and definitions 1 Introduction and definitions

### Fourier Analysis and its applications

Fourier Analysis and its applications Fourier analysis originated from the study of heat conduction: Jean Baptiste Joseph Fourier (1768-1830) Fourier analysis enables a function (signal) to be decomposed

### Fourier Analysis. Nikki Truss. Abstract:

Fourier Analysis Nikki Truss 09369481 Abstract: The aim of this experiment was to investigate the Fourier transforms of periodic waveforms, and using harmonic analysis of Fourier transforms to gain information

### SGN-1158 Introduction to Signal Processing Test. Solutions

SGN-1158 Introduction to Signal Processing Test. Solutions 1. Convolve the function ( ) with itself and show that the Fourier transform of the result is the square of the Fourier transform of ( ). (Hints:

### Fourier Series and Integrals

Fourier Series and Integrals Fourier Series et f(x) be a piecewise linear function on [,] (This means that f(x) may possess a finite number of finite discontinuities on the interval). Then f(x) can be

### 1. the function must be periodic; 3. it must have only a finite number of maxima and minima within one periodic;

Fourier Series 1 Dirichlet conditions The particular conditions that a function f(x must fulfil in order that it may be expanded as a Fourier series are known as the Dirichlet conditions, and may be summarized

### Introduction of Fourier Analysis and Time-frequency Analysis

Introduction of Fourier Analysis and Time-frequency Analysis March 1, 2016 Fourier Series Fourier transform Fourier analysis Mathematics compares the most diverse phenomena and discovers the secret analogies

### Fourier Series. 1. Introduction. 2. Square Wave

531 Fourier Series Tools Used in Lab 31 Fourier Series: Square Wave Fourier Series: Triangle Wave Fourier Series: Gibbs Effect Fourier Series: Coefficients How does a Fourier series converge to a function?

### f x a 0 n 1 a 0 a 1 cos x a 2 cos 2x a 3 cos 3x b 1 sin x b 2 sin 2x b 3 sin 3x a n cos nx b n sin nx n 1 f x dx y

Fourier Series When the French mathematician Joseph Fourier (768 83) was tring to solve a problem in heat conduction, he needed to epress a function f as an infinite series of sine and cosine functions:

### Fast Fourier Transforms and Power Spectra in LabVIEW

Application Note 4 Introduction Fast Fourier Transforms and Power Spectra in LabVIEW K. Fahy, E. Pérez Ph.D. The Fourier transform is one of the most powerful signal analysis tools, applicable to a wide

### Series FOURIER SERIES. Graham S McDonald. A self-contained Tutorial Module for learning the technique of Fourier series analysis

Series FOURIER SERIES Graham S McDonald A self-contained Tutorial Module for learning the technique of Fourier series analysis Table of contents Begin Tutorial c 004 g.s.mcdonald@salford.ac.uk 1. Theory.

### Lab 2: Fourier Analysis

Lab : Fourier Analysis 1 Introduction (a) Refer to Appendix D for photos of the apparatus Joseph Fourier (1768-1830) was one of the French scientists during the time of Napoleon who raised French science

### Lecture Notes for Math 251: ODE and PDE. Lecture 33: 10.4 Even and Odd Functions

Lecture Notes for Math 51: ODE and PDE. Lecture : 1.4 Even and Odd Functions Shawn D. Ryan Spring 1 Last Time: We studied what a given Fourier Series converges to if at a. 1 Even and Odd Functions Before

### Recap on Fourier series

Civil Engineering Mathematics Autumn 11 J. Mestel, M. Ottobre, A. Walton Recap on Fourier series A function f(x is called -periodic if f(x = f(x + for all x. A continuous periodic function can be represented

### Frequency Response of FIR Filters

Frequency Response of FIR Filters Chapter 6 This chapter continues the study of FIR filters from Chapter 5, but the emphasis is frequency response, which relates to how the filter responds to an input

### Section 0.4 Inverse Trigonometric Functions

Section 0.4 Inverse Trigonometric Functions Short Recall from Trigonometry Definition: A function f is periodic of period T if f(x + T ) = f(x) for all x such that x and x+t are in the domain of f. The

### Sine and Cosine Series; Odd and Even Functions

Sine and Cosine Series; Odd and Even Functions A sine series on the interval [, ] is a trigonometric series of the form k = 1 b k sin πkx. All of the terms in a series of this type have values vanishing

### Introduction to Fourier Series

Introduction to Fourier Series A function f(x) is called periodic with period T if f(x+t)=f(x) for all numbers x. The most familiar examples of periodic functions are the trigonometric functions sin and

### Fig. 2 shows a simple step waveform in which switching time of power devices are not considered and assuming the switch is ideal.

CHAPTER 3: ANAYSIS OF THREE-EE INERTER In this chapter an analysis of three-level converter is presented by considering the output voltage waveform in order to determine the switching angle of power devices.

### Fourier Series Analysis

School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II aboratory Experiment 6 Fourier Series Analysis 1 Introduction Objectives The aim

### University of Rhode Island Department of Electrical and Computer Engineering ELE 436: Communication Systems. FFT Tutorial

University of Rhode Island Department of Electrical and Computer Engineering ELE 436: Communication Systems FFT Tutorial 1 Getting to Know the FFT What is the FFT? FFT = Fast Fourier Transform. The FFT

### R U S S E L L L. H E R M A N

R U S S E L L L. H E R M A N A N I N T R O D U C T I O N T O F O U R I E R A N D C O M P L E X A N A LY S I S W I T H A P P L I C AT I O N S T O T H E S P E C T R A L A N A LY S I S O F S I G N A L S R.

### Even, odd functions. Main properties of even, odd functions. Sine and cosine series. Even-periodic, odd-periodic extensions of functions.

Sine and Cosine Series (Sect..4. Even, odd functions. Main properties of even, odd functions. Sine and cosine series. Even-periodic, odd-periodic etensions of functions. Even, odd functions. Definition

### 2 Background: Fourier Series Analysis and Synthesis

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL and COMPUTER ENGINEERING ECE 2025 Spring 2001 Lab #11: Design with Fourier Series Date: 3 6 April 2001 This is the official Lab #11 description. The

### Frequency Domain Characterization of Signals. Yao Wang Polytechnic University, Brooklyn, NY11201 http: //eeweb.poly.edu/~yao

Frequency Domain Characterization of Signals Yao Wang Polytechnic University, Brooklyn, NY1121 http: //eeweb.poly.edu/~yao Signal Representation What is a signal Time-domain description Waveform representation

### Fourier Transform and Convolution

CHAPTER 3 Fourier Transform and Convolution 3.1 INTRODUCTION In this chapter, both the Fourier transform and Fourier series will be discussed. The properties of the Fourier transform will be presented

### Sinusoidal Pulse width modulation

Sinusoidal Pulse width modulation The switches in the voltage source inverter (See Fig can be turned on and off as required In the simplest approach, the top switch is turned on If turned on and off only

### Chapter 14: Fourier Transforms and Boundary Value Problems in an Unbounded Region

Chapter 14: Fourier Transforms and Boundary Value Problems in an Unbounded Region 王奕翔 Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 25, 213 1 / 27 王奕翔 DE Lecture

### where T o defines the period of the signal. The period is related to the signal frequency according to

SIGNAL SPECTRA AND EMC One of the critical aspects of sound EMC analysis and design is a basic understanding of signal spectra. A knowledge of the approximate spectral content of common signal types provides

### CHAPTER 3. Fourier Series

`A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 4 A COLLECTION OF HANDOUTS ON PARTIAL DIFFERENTIAL

### Fourier Series Chapter 3 of Coleman

Fourier Series Chapter 3 of Coleman Dr. Doreen De eon Math 18, Spring 14 1 Introduction Section 3.1 of Coleman The Fourier series takes its name from Joseph Fourier (1768-183), who made important contributions

Week 5 Vladimir Dobrushkin 5. Fourier Series In this section, we present a remarkable result that gives the matehmatical explanation for how cellular phones work: Fourier series. It was discovered in the

### 7. FOURIER ANALYSIS AND DATA PROCESSING

7. FOURIER ANALYSIS AND DATA PROCESSING Fourier 1 analysis plays a dominant role in the treatment of vibrations of mechanical systems responding to deterministic or stochastic excitation, and, as has already

### Fourier Series. Some Properties of Functions. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Fourier Series Today 1 / 19

Fourier Series Some Properties of Functions Philippe B. Laval KSU Today Philippe B. Laval (KSU) Fourier Series Today 1 / 19 Introduction We review some results about functions which play an important role

### Fourier Series. Chapter Some Properties of Functions Goal Preliminary Remarks

Chapter 3 Fourier Series 3.1 Some Properties of Functions 3.1.1 Goal We review some results about functions which play an important role in the development of the theory of Fourier series. These results

### Lecture5. Fourier Series

Lecture5. Fourier Series In 1807 the French mathematician Joseph Fourier (1768-1830) submitted a paper to the Academy of Sciences in Paris. In it he presented a mathematical treatment of problems involving

### Frequency-Domain Analysis: the Discrete Fourier Series and the Fourier Transform

Frequency-Domain Analysis: the Discrete Fourier Series and the Fourier Transform John Chiverton School of Information Technology Mae Fah Luang University 1st Semester 2009/ 2552 Outline Overview Lecture

### Chapter 3 Discrete-Time Fourier Series. by the French mathematician Jean Baptiste Joseph Fourier in the early 1800 s. The

Chapter 3 Discrete-Time Fourier Series 3.1 Introduction The Fourier series and Fourier transforms are mathematical correlations between the time and frequency domains. They are the result of the heat-transfer

### L6: Short-time Fourier analysis and synthesis

L6: Short-time Fourier analysis and synthesis Overview Analysis: Fourier-transform view Analysis: filtering view Synthesis: filter bank summation (FBS) method Synthesis: overlap-add (OLA) method STFT magnitude

### Fourier Series and Sturm-Liouville Eigenvalue Problems

Fourier Series and Sturm-Liouville Eigenvalue Problems 2009 Outline Functions Fourier Series Representation Half-range Expansion Convergence of Fourier Series Parseval s Theorem and Mean Square Error Complex

### Trigonometric Functions

Trigonometric Functions MATH 10, Precalculus J. Robert Buchanan Department of Mathematics Fall 011 Objectives In this lesson we will learn to: identify a unit circle and describe its relationship to real

### PYKC 3-Mar-11. Lecture 15 Slide 1. Laplace transform. Fourier transform. Discrete Fourier transform. transform. L5.8 p560.

- derived from Laplace Lecture 15 Discrete-Time System Analysis using -Transform (Lathi 5.1) Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.imperial.ac.uk/pcheung/teaching/ee2_signals

### Review of Fourier series formulas. Representation of nonperiodic functions. ECE 3640 Lecture 5 Fourier Transforms and their properties

ECE 3640 Lecture 5 Fourier Transforms and their properties Objective: To learn about Fourier transforms, which are a representation of nonperiodic functions in terms of trigonometric functions. Also, to

### Understand the principles of operation and characterization of digital filters

Digital Filters 1.0 Aim Understand the principles of operation and characterization of digital filters 2.0 Learning Outcomes You will be able to: Implement a digital filter in MATLAB. Investigate how commercial

### Pulsed Fourier Transform NMR The rotating frame of reference. The NMR Experiment. The Rotating Frame of Reference.

Pulsed Fourier Transform NR The rotating frame of reference The NR Eperiment. The Rotating Frame of Reference. When we perform a NR eperiment we disturb the equilibrium state of the sstem and then monitor

### FOURIER SERIES. 1. Periodic Functions. Recall that f has period T if f(x + T ) = f(x) for all x. If f and g are periodic

FOURIER SERIES. Periodic Functions Reca that f has period T if f(x + T ) f(x) for a x. If f and g are periodic with period T, then if h(x) af(x) + bg(x), a and b are constants, and thus h aso has period

### Graphs of Polar Equations

Graphs of Polar Equations In the last section, we learned how to graph a point with polar coordinates (r, θ). We will now look at graphing polar equations. Just as a quick review, the polar coordinate

### Analysis for Simple Fourier Series in Sine and Co-sine Form

Analysis for Simple Fourier Series in Sine and Co-sine Form Chol Yoon August 19, 13 Abstract From the history of Fourier series to the application of Fourier series will be introduced and analyzed to understand

### chapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective

Introduction to Digital Signal Processing and Digital Filtering chapter 1 Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction Digital signal processing (DSP) refers to anything

### Analog and Digital Signals, Time and Frequency Representation of Signals

1 Analog and Digital Signals, Time and Frequency Representation of Signals Required reading: Garcia 3.1, 3.2 CSE 3213, Fall 2010 Instructor: N. Vlajic 2 Data vs. Signal Analog vs. Digital Analog Signals

### Picture Perfect: The Mathematics of JPEG Compression

Picture Perfect: The Mathematics of JPEG Compression May 19, 2011 1 2 3 in 2D Sampling and the DCT in 2D 2D Compression Images Outline A typical color image might be 600 by 800 pixels. Images Outline A

### The Fourier Transform

The Fourier Transorm Fourier Series Fourier Transorm The Basic Theorems and Applications Sampling Bracewell, R. The Fourier Transorm and Its Applications, 3rd ed. New York: McGraw-Hill, 2. Eric W. Weisstein.

### Curve Fitting. Next: Numerical Differentiation and Integration Up: Numerical Analysis for Chemical Previous: Optimization.

Next: Numerical Differentiation and Integration Up: Numerical Analysis for Chemical Previous: Optimization Subsections Least-Squares Regression Linear Regression General Linear Least-Squares Nonlinear

### Chapter 8 - Power Density Spectrum

EE385 Class Notes 8/8/03 John Stensby Chapter 8 - Power Density Spectrum Let X(t) be a WSS random process. X(t) has an average power, given in watts, of E[X(t) ], a constant. his total average power is

### Fourier Series. 5.1 Introduction

5 Fourier Series 5. Introduction In this chapter we will look at trigonometric series. Previously, we saw that such series epansion occurred naturally in the solution of the heat equation and other boundary

### Fourier Analysis. Evan Sheridan, Chris Kervick, Tom Power Novemeber

Fourier Analysis Evan Sheridan, Chris Kervick, Tom Power 11367741 Novemeber 19 01 Abstract Various properties of the Fourier Transform are investigated using the Cassy Lab software, a microphone, electrical

### 10 Discrete-Time Fourier Series

10 Discrete-Time Fourier Series In this and the next lecture we parallel for discrete time the discussion of the last three lectures for continuous time. Specifically, we consider the representation of

### Fourier Transform and Its Medical Application 서울의대의공학교실 김희찬

Fourier Transform and Its Medical Application 서울의대의공학교실 김희찬 강의내용 Fourier Transform 의수학적이해 Fourier Transform 과신호처리 Fourier Transform 과의학영상응용 Integral transform a particular kind of mathematical operator

### EELE445 - Lab 2 Pulse Signals

EELE445 - Lab 2 Pulse Signals PURPOSE The purpose of the lab is to examine the characteristics of some common pulsed waveforms in the time and frequency domain. The repetitive pulsed waveforms used are

### Lab 4 Sampling, Aliasing, FIR Filtering

47 Lab 4 Sampling, Aliasing, FIR Filtering This is a software lab. In your report, please include all Matlab code, numerical results, plots, and your explanations of the theoretical questions. The due

### Introduction to Frequency Domain Processing 1

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.151 Advanced System Dynamics and Control Introduction to Frequency Domain Processing 1 1 Introduction - Superposition In this

### Course MA2C02, Hilary Term 2012 Section 8: Periodic Functions and Fourier Series

Course MAC, Hiary Term Section 8: Periodic Functions and Fourier Series David R. Wikins Copyright c David R. Wikins Contents 8 Periodic Functions and Fourier Series 37 8. Fourier Series of Even and Odd

### Fourier Synthesis Tutorial v.2.1

Fourier Synthesis Tutorial v.2.1 This tutorial is designed for students from many different academic levels and backgrounds. It occasionally uses terms from discipline-specific fields that you may not

### Introduction to Fourier Series

Introduction to Fourier Series We ve seen one eample so far of series of functions. The Taylor Series of a function is a series of polynomials and can be used to approimate a function at a point. Another

### CM2202: Scientific Computing and Multimedia Applications Fourier Transform 1: Digital Signal and Image Processing Fourier Theory

CM2202: Scientific Computing and Multimedia Applications Fourier Transform 1: Digital Signal and Image Processing Fourier Theory Prof. David Marshall School of Computer Science & Informatics Fourier Transform

### 9 Fourier Transform Properties

9 Fourier Transform Properties The Fourier transform is a major cornerstone in the analysis and representation of signals and linear, time-invariant systems, and its elegance and importance cannot be overemphasized.

### Frequency Domain Analysis

Exercise 4. Frequency Domain Analysis Required knowledge Fourier-series and Fourier-transform. Measurement and interpretation of transfer function of linear systems. Calculation of transfer function of

### Fourier cosine and sine series even odd

Fourier cosine and sine series Evaluation of the coefficients in the Fourier series of a function f is considerably simler is the function is even or odd. A function is even if f ( x) = f (x) Examle: x

### 3 Trigonometric Fourier Series

3 Trigonometric Fourier Series Ordinary language is totally unsuited for epressing what physics really asserts, since the words of everyday life are not sufficiently abstract. Only mathematics and mathematical

### 16 Convergence of Fourier Series

16 Convergence of Fourier Series 16.1 Pointwise convergence of Fourier series Definition: Piecewise smooth functions For f defined on interval [a, b], f is piecewise smooth on [a, b] if there is a partition