# N 1. (q k+1 q k ) 2 + α 3. k=0

Save this PDF as:

Size: px
Start display at page:

Download "N 1. (q k+1 q k ) 2 + α 3. k=0"

## Transcription

1 Teoretisk Fysik Hand-in problem B, SI1142, Spring 2010 In 1955 Fermi, Pasta and Ulam 1 numerically studied a simple model for a one dimensional chain of non-linear oscillators to see how the energy distribution is randomized in a system with many degrees of freedom. Instead of the rapid transition to a uniform energy distribution one would naively expect, they observed an extremely slow randomization. In subsequent work by Zabusky and Kruskal 2 the relation of the Fermi-Pasta-Ulam model to the Korteweg-de Vries (KdV) equation was noted, and in a numeric solution of the KdV equation the appearance of solitary wave pulses was observed which they named solitons. This work motivated the search for a analytic solution of the KdV equation which was achieved two years later. 3 This latter work started a period of very intensive research on a class of nonlinear partial differential equations which today are known as soliton equations. The Fermi-Pasta-Ulam model describes a weakly non-linear, fixed-end one-dimensional chain of (N 1) moving mass points and is given by the Hamiltonian H = k=1 1 2m p2 k + K 2 k=0 (q k+1 q k ) 2 + α 3 k=0 (q k+1 q k ) 3 (1) where q 0 q N 0 and q k and p k are the coordinate and momentum for the kth particle, and the parameter α is a small nonlinear coupling; the positive parameters m and K are the particle mass and spring constant, respectively. As was realized by Zabusky and Kruskal (Z-K), the equations of motion following from this Hamiltonian (the dots mean differentiation with respect to time t), m q k = K(q k+1 2q k + q k 1 ) + α[(q k+1 q k ) 2 (q k q k 1 ) 2 ] (2) in the lowest-order continuum limit take the following form, q tt = (c ɛq x )q xx (3) with some constants c 0 and ɛ. Eq. (3) can be viewed as ordinary wave equation whose wave speed c depends on the spatial derivative q x, c 2 = (c ɛq x). Typical solutions of this equations for positive ɛ describe pulses moving to the left or right while changing shape and steepening until their leading edge develops a vertical shock front (like water waves in the sea before they break close to the beach), at which point Eq. (3) looses validity. Nonetheless, prior to the formation of the shock, it was found that Eq. (3) provides a quite reasonable description of the Fermi- Pasta-Ulam model behavior. Z-K found that, to avoid shock wave behavior, one has to take into account dissipation, which can be done by including the next-order spatial derivative term, q tt = c 2 0q xx + ɛq x q xx + βq xxxx (4) for some constant β. For both convenience and simplicity, Z-K now insist on periodic boundary conditions, restrict their attention to waves traveling on one direction only, and elect a moving frame. After replacing x by x = x c 1 t, t by t = c 2 t, q x (x, t) by c 3 u( x, t) in Eq. (4) with particular constants c j and neglecting terms proportional to ɛ 2 they obtained the KdV equation in the following form, u t + uu x + δ 2 u x x x = 0, with δ a (small) constant. In the following we will write this equation as u t + uu x + δ 2 u xxx = 0, u = u(x, t) (5) 1 Los Alamos Scientific Report, unpublished 2 Zabusky and Kruskal, Phys. Rev. Lett. 15, 240 (1965) 3 Gardner, Greene, Kruskal and Miura, Phys. Rev. Lett. 19, 1095 (1967) 1

2 with u = u(x, t), to simplify notation. In their short paper referred to above, Z-K first recalled the well-localized traveling wave solutions of the the KdV equation, with U(x) = u(x, t) = U(x ct) (6) 3c cosh 2 ( c(x x 0 )/2δ), (7) which they describe as solitary wave pulses. The amplitude of such a pulse is proportional to its velocity c > 0, and the constant x 0 equal to the location of its center-of-mass at t = 0. Z-K then discuss the equation following from (3) without dissipative term, together with the initial condition Using the fact that u t + uu x = 0, (8) u(0, x) = cos πx. (9) u(t, x) = f(x u(t, x)t) (10) is an implicit solution of (8) for any differentiable function f, they find that the solution of Eqs. (8) and (9) tends to become discontinuous at x = 1/2 and t = T B = 1/π. They then describe their results of a numeric solution of the KdV equation with small but non-zero dissipative term, δ = (11) They find that for times smaller than the breakdown time T B, the solution is nearly the same as for δ = 0, but then the dissipative term becomes important. For non-zero δ there is no breakdown any more, but instead solitary wave pulses appear: after a while the solution looks very much like a superposition of special solutions in Eqs. (6) and (7), with different values of c and x 0, 4 and the localized pulses are very stable, preserving shape and speed always except when two of them meet, in which case there is a certain interaction period in which the pulses merge. After such interactions the individual pulses reappear which the same shapes and velocities as before the interaction. Z-K also observe that, during the interaction period, the joint amplitude of the interacting solitons decreases, in contradistinction to what would happen if the pulses overlapped linearly. In this problem you are asked to fill in the details of the derivations outlined above (part A). You are then asked to solve the KdV equation numerically and, in particular, reproduce the Z-K result (part B). More specific instructions together with further hints will be given below. 4 Note that this is very remarkable since the KdV equation is nonlinear, and the superposition principle therefore does not hold. 2

3 Part A: To do: Derive Eq. (2) from Eq. (1). Hint: Use the following variational principle (= Hamiltonian principle), ( t2 N 1 ) δ dt p k (t) q k (t) H(p 1 (t),..., p N 1 (t), q 1 (t),..., q N 1 (t)) t 1 k=1 = 0. (12) From this obtain 2(N 1) first order differential equations of the form q k =..., ṗ k =... (= Hamilton equations), which, after eliminating half of the variables, yield (2). Derive in detail the continuum limit of Eq. (2) as described above. Hint: To obtain the continuum limit in Eq. (3), introduce x = ka where a > 0 is the lattice constant (i.e. the distance of adjacent mass points when the chain is not moving), and write q(t, x) = q k (t) where x = ka. Approximate q k±1 (t) = q(t, x ± a) by a Taylor series, keeping only certain lower order derivative terms. Do not forget to give the relation between the parameters (i.e. write down the formulas for the parameters c 0 and ɛ in Eq. (3) in terms of m, K, a, α, etc.). Generalize the argument to get Eq. (4). Give then all the details leading to Eq. (5). Verify in detail the shock wave behavior of Eq. (8), as described above. Hint: Verify that Eq. (10) is an implicit solution of Eq. (8). Use (10) to sketch the solution of Eqs. (8) and (9) for a few different times between 0 and T B = 1/π, to show the steepening of the wave. Verify that the wave breaks at the time T B. (If you cannot show this analytically, you can also hand in numeric verifications of these facts produced with the help of MATLAB.) Derive the solutions in Eqs. (6) and (7) from the KdV equation (5). Hint: This is easy if you read Chapter 9 in FMM, of course. Part (B): To do: Solve Eq. (5) for δ = numerically by using the finite difference method (FDM; see Section 8.1 in FMM), for 0 x 2 and periodic boundary conditions, u(x + 2, t) = u(x, t). Test your program by comparing the numeric solution with the analytical solution given in Eqs. (6) and (7) for x 0 = 0.4 and some value of c for times 0 t 0.6/c. Hand in a plot showing your result together with a printout of your MATLAB program. Hint: We suggest you use the following discretization of the KdV equation, with u i,j+1 = u i,j k 6h (u i+1,j + u i,j + u i 1,j ) (u i+1,j u i 1,j ) δ 2 k 2h 3 (u i+2,j 2u i+1,j + 2u i 1,j u i 2,j ) (13) x i = ih, h = 2, i = 0, 1, 2... N 1 N t j = jk, k = t max, j = 0, 1, 2... M (14) M 3

4 and u i+n,j = u i,j (periodic boundary conditions). The initial condition is u i,0 = u(x i, 0), of course. Show that Eq. (13) indeed is a discretization of Eq. (5). To solve these equations on a computer, we suggest you use MATLAB (you can also use other program tools if you prefer). A similar MATLAB program which you can use as a starting point can be found on the course homepage. You will find that not all values of c, h and k are numerically stable, and you need to experiment to find good values. Values that are numerically stable are e.g. c = 0.1, h = 0.06, k = 0.005, (15) but you can get better results with smaller values for h and k. 5 program by either decreasing the ratio k/h 3 or/and decreasing c. We could stabilize our Find a simpler FDM discretization of the KdV equation. Implement your discretization in MATLAB (e.g.) and test your program. Hand in your program and one representative plot showing your test results. 6 Hand in plots showing your numerical solution of the KdV equation with the following initial conditions, (i) u(x, 0) = A cos(πx) 0 t 2/(Aπ) (ii) u(x, 0) = 3U(x) for x 0 = 0.4, 0 t 0.6/c (iii) u(x, 0) = U(x) for x 0 = 0.4, 0 t 0.6/c (16) with U(x) in Eq. (7), and some value of c > 0 and A > 0 which you choose, showing the solution in a six equidistant times (including initial and final time) in the given time interval. Discuss your results. Hint: Z-K give the result for (i) with A = 1 which therefore would be the preferred choice, but to get reasonable results for that you need much smaller h and k values than the ones given above. If you computer cannot handle that choose a smaller values for A like A = 0.1. The initial condition u(x, 0) = 1 2n(n + 1)U(x) for n = 1, 2,... is known to be a n-soliton solution at the moment when all solitons are at the same spot (n-soliton collision). For t > 0 the solitons move to the right and separate. For negative initial condition one does not have any solitons but only dispersive waves moving to the left. Try our different initial conditions and different values for k and h in your program. Hand in one plot (iv) with an initial condition of your own choice which you find interesting. Hint: It is fine if you choose u(x, 0) = AU(x) for some other parameters of c, x 0 and A > 0, but perhaps you find something more interesting. Results from an unstable program are not interesting, of course. 5 If your computer is slow and cannot handle such small values of h and k it is OK to have larger values. 6 A negative result (program based on your discretization cannot be made stable) is OK if described properly. 4

5 GENERAL INSTRUCTIONS: A MAIN GOAL IN THIS PROJECT IS TO WRITE A GOOD SCIENTIFIC REPORT. Your solution should be self-contained and preferably hand written (except for the program code, of course). Give a clear description of your reasoning. Your plots should have a figure caption explaining what they display, and the axes should be labeled. (The plot produced by the MATLAB program provided by us is not OK as it comes out of the program! It is OK to write the labels and figure captions by hand.) Please put your papers together (no loose pages)! Collaborations are allowed but only up to two students in one team, and each of the students should hand in his/her own report. If you collaborate and/or hand in a report in LaTex or the like you should be prepared to be asked to explain your solution in an oral presentation. Do not forget to write name, -ADDRESS and personal number on your papers. 5

### Finite Difference Approach to Option Pricing

Finite Difference Approach to Option Pricing February 998 CS5 Lab Note. Ordinary differential equation An ordinary differential equation, or ODE, is an equation of the form du = fut ( (), t) (.) dt where

More information

### Introduction to Engineering System Dynamics

CHAPTER 0 Introduction to Engineering System Dynamics 0.1 INTRODUCTION The objective of an engineering analysis of a dynamic system is prediction of its behaviour or performance. Real dynamic systems are

More information

### Dynamics. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30

Dynamics Basilio Bona DAUIN-Politecnico di Torino 2009 Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30 Dynamics - Introduction In order to determine the dynamics of a manipulator, it is

More information

### Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10

Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 10 Boundary Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction

More information

### Plate waves in phononic crystals slabs

Acoustics 8 Paris Plate waves in phononic crystals slabs J.-J. Chen and B. Bonello CNRS and Paris VI University, INSP - 14 rue de Lourmel, 7515 Paris, France chen99nju@gmail.com 41 Acoustics 8 Paris We

More information

### The integrating factor method (Sect. 2.1).

The integrating factor method (Sect. 2.1). Overview of differential equations. Linear Ordinary Differential Equations. The integrating factor method. Constant coefficients. The Initial Value Problem. Variable

More information

### PSTricks. pst-ode. A PSTricks package for solving initial value problems for sets of Ordinary Differential Equations (ODE), v0.7.

PSTricks pst-ode A PSTricks package for solving initial value problems for sets of Ordinary Differential Equations (ODE), v0.7 27th March 2014 Package author(s): Alexander Grahn Contents 2 Contents 1 Introduction

More information

### Homotopy Perturbation Method for Solving Partial Differential Equations with Variable Coefficients

Int. J. Contemp. Math. Sciences, Vol. 3, 2008, no. 28, 1395-1407 Homotopy Perturbation Method for Solving Partial Differential Equations with Variable Coefficients Lin Jin Modern Educational Technology

More information

### Applications to Data Smoothing and Image Processing I

Applications to Data Smoothing and Image Processing I MA 348 Kurt Bryan Signals and Images Let t denote time and consider a signal a(t) on some time interval, say t. We ll assume that the signal a(t) is

More information

### 2.5 Physically-based Animation

2.5 Physically-based Animation 320491: Advanced Graphics - Chapter 2 74 Physically-based animation Morphing allowed us to animate between two known states. Typically, only one state of an object is known.

More information

### 1.3.1 Position, Distance and Displacement

In the previous section, you have come across many examples of motion. You have learnt that to describe the motion of an object we must know its position at different points of time. The position of an

More information

### The dynamic equation for the angular motion of the wheel is R w F t R w F w ]/ J w

Chapter 4 Vehicle Dynamics 4.. Introduction In order to design a controller, a good representative model of the system is needed. A vehicle mathematical model, which is appropriate for both acceleration

More information

### Introduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A.

June 2012 Introduction to SME and Scattering Theory Don Colladay New College of Florida Sarasota, FL, 34243, U.S.A. This lecture was given at the IUCSS summer school during June of 2012. It contains a

More information

### TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS 1. Bandwidth: The bandwidth of a communication link, or in general any system, was loosely defined as the width of

More information

### Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE

1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object

More information

### Lecture 11. 3.3.2 Cost functional

Lecture 11 3.3.2 Cost functional Consider functions L(t, x, u) and K(t, x). Here L : R R n R m R, K : R R n R sufficiently regular. (To be consistent with calculus of variations we would have to take L(t,

More information

### A First Course in Elementary Differential Equations. Marcel B. Finan Arkansas Tech University c All Rights Reserved

A First Course in Elementary Differential Equations Marcel B. Finan Arkansas Tech University c All Rights Reserved 1 Contents 1 Basic Terminology 4 2 Qualitative Analysis: Direction Field of y = f(t, y)

More information

### Section 1.1. Introduction to R n

The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

### PHYS 1624 University Physics I. PHYS 2644 University Physics II

PHYS 1624 Physics I An introduction to mechanics, heat, and wave motion. This is a calculus- based course for Scientists and Engineers. 4 hours (3 lecture/3 lab) Prerequisites: Credit for MATH 2413 (Calculus

More information

### Examples of Tasks from CCSS Edition Course 3, Unit 5

Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can

More information

### Pricing Barrier Options under Local Volatility

Abstract Pricing Barrier Options under Local Volatility Artur Sepp Mail: artursepp@hotmail.com, Web: www.hot.ee/seppar 16 November 2002 We study pricing under the local volatility. Our research is mainly

More information

### ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS GABRIEL NAGY Mathematics Department, Michigan State University, East Lansing, MI, 48824. SEPTEMBER 4, 25 Summary. This is an introduction to ordinary differential equations.

More information

### Optimization of Supply Chain Networks

Optimization of Supply Chain Networks M. Herty TU Kaiserslautern September 2006 (2006) 1 / 41 Contents 1 Supply Chain Modeling 2 Networks 3 Optimization Continuous optimal control problem Discrete optimal

More information

### The Black-Scholes-Merton Approach to Pricing Options

he Black-Scholes-Merton Approach to Pricing Options Paul J Atzberger Comments should be sent to: atzberg@mathucsbedu Introduction In this article we shall discuss the Black-Scholes-Merton approach to determining

More information

### CFD modelling of floating body response to regular waves

CFD modelling of floating body response to regular waves Dr Yann Delauré School of Mechanical and Manufacturing Engineering Dublin City University Ocean Energy Workshop NUI Maynooth, October 21, 2010 Table

More information

### Incorporating Internal Gradient and Restricted Diffusion Effects in Nuclear Magnetic Resonance Log Interpretation

The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application Incorporating Internal Gradient and Restricted Diffusion Effects in Nuclear Magnetic Resonance Log Interpretation

More information

### Robert Collins CSE598G. More on Mean-shift. R.Collins, CSE, PSU CSE598G Spring 2006

More on Mean-shift R.Collins, CSE, PSU Spring 2006 Recall: Kernel Density Estimation Given a set of data samples x i ; i=1...n Convolve with a kernel function H to generate a smooth function f(x) Equivalent

More information

### High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur

High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 06 One-dimensional Gas Dynamics (Contd.) We

More information

### correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

More information

### AP Physics 1 and 2 Lab Investigations

AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks

More information

### Kinetic effects in the turbulent solar wind: capturing ion physics with a Vlasov code

Kinetic effects in the turbulent solar wind: capturing ion physics with a Vlasov code Francesco Valentini francesco.valentini@fis.unical.it S. Servidio, D. Perrone, O. Pezzi, B. Maruca, F. Califano, W.

More information

### Network Traffic Modelling

University of York Dissertation submitted for the MSc in Mathematics with Modern Applications, Department of Mathematics, University of York, UK. August 009 Network Traffic Modelling Author: David Slade

More information

### 9. Sampling Distributions

9. Sampling Distributions Prerequisites none A. Introduction B. Sampling Distribution of the Mean C. Sampling Distribution of Difference Between Means D. Sampling Distribution of Pearson's r E. Sampling

More information

### Maximum likelihood estimation of mean reverting processes

Maximum likelihood estimation of mean reverting processes José Carlos García Franco Onward, Inc. jcpollo@onwardinc.com Abstract Mean reverting processes are frequently used models in real options. For

More information

### Monte Carlo Methods in Finance

Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook October 2, 2012 Outline Introduction 1 Introduction

More information

### Numerical Wave Generation In OpenFOAM R

Numerical Wave Generation In OpenFOAM R Master of Science Thesis MOSTAFA AMINI AFSHAR Department of Shipping and Marine Technology CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden, 2010 Report No. X-10/252

More information

### Vehicle-Bridge Interaction Dynamics

Vehicle-Bridge Interaction Dynamics With Applications to High-Speed Railways Y. B. Yang National Taiwan University, Taiwan J. D. Yau Tamkang University, Taiwan Y. S. Wu Sinotech Engineering Consultants,

More information

### τ θ What is the proper price at time t =0of this option?

Now by Itô s formula But Mu f and u g in Ū. Hence τ θ u(x) =E( Mu(X) ds + u(x(τ θ))) 0 τ θ u(x) E( f(x) ds + g(x(τ θ))) = J x (θ). 0 But since u(x) =J x (θ ), we consequently have u(x) =J x (θ ) = min

More information

### Lecture 8 ELE 301: Signals and Systems

Lecture 8 ELE 3: Signals and Systems Prof. Paul Cuff Princeton University Fall 2-2 Cuff (Lecture 7) ELE 3: Signals and Systems Fall 2-2 / 37 Properties of the Fourier Transform Properties of the Fourier

More information

### CS 294-73 Software Engineering for Scientific Computing. http://www.cs.berkeley.edu/~colella/cs294fall2013. Lecture 16: Particle Methods; Homework #4

CS 294-73 Software Engineering for Scientific Computing http://www.cs.berkeley.edu/~colella/cs294fall2013 Lecture 16: Particle Methods; Homework #4 Discretizing Time-Dependent Problems From here on in,

More information

### VARIANCE REDUCTION TECHNIQUES FOR IMPLICIT MONTE CARLO SIMULATIONS

VARIANCE REDUCTION TECHNIQUES FOR IMPLICIT MONTE CARLO SIMULATIONS An Undergraduate Research Scholars Thesis by JACOB TAYLOR LANDMAN Submitted to Honors and Undergraduate Research Texas A&M University

More information

### A) F = k x B) F = k C) F = x k D) F = x + k E) None of these.

CT16-1 Which of the following is necessary to make an object oscillate? i. a stable equilibrium ii. little or no friction iii. a disturbance A: i only B: ii only C: iii only D: i and iii E: All three Answer:

More information

### Notes for AA214, Chapter 7. T. H. Pulliam Stanford University

Notes for AA214, Chapter 7 T. H. Pulliam Stanford University 1 Stability of Linear Systems Stability will be defined in terms of ODE s and O E s ODE: Couples System O E : Matrix form from applying Eq.

More information

### Presentation of problem T1 (9 points): The Maribo Meteorite

Presentation of problem T1 (9 points): The Maribo Meteorite Definitions Meteoroid. A small particle (typically smaller than 1 m) from a comet or an asteroid. Meteorite: A meteoroid that impacts the ground

More information

### (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7)

Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the following

More information

### Figure 2.1: Center of mass of four points.

Chapter 2 Bézier curves are named after their inventor, Dr. Pierre Bézier. Bézier was an engineer with the Renault car company and set out in the early 196 s to develop a curve formulation which would

More information

### NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

More information

### BINOMIAL OPTIONS PRICING MODEL. Mark Ioffe. Abstract

BINOMIAL OPTIONS PRICING MODEL Mark Ioffe Abstract Binomial option pricing model is a widespread numerical method of calculating price of American options. In terms of applied mathematics this is simple

More information

### 2DI36 Statistics. 2DI36 Part II (Chapter 7 of MR)

2DI36 Statistics 2DI36 Part II (Chapter 7 of MR) What Have we Done so Far? Last time we introduced the concept of a dataset and seen how we can represent it in various ways But, how did this dataset came

More information

### 2After completing this chapter you should be able to

After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time

More information

### Orbital Mechanics. Angular Momentum

Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely

More information

### Bayesian Adaptive Trading with a Daily Cycle

Bayesian Adaptive Trading with a Daily Cycle Robert Almgren and Julian Lorenz July 28, 26 Abstract Standard models of algorithmic trading neglect the presence of a daily cycle. We construct a model in

More information

### Nonlinear Modal Analysis of Mechanical Systems with Frictionless Contact Interfaces

Nonlinear Modal Analysis of Mechanical Systems with Frictionless Contact Interfaces Denis Laxalde, Mathias Legrand and Christophe Pierre Structural Dynamics and Vibration Laboratory Department of Mechanical

More information

### Stocks paying discrete dividends: modelling and option pricing

Stocks paying discrete dividends: modelling and option pricing Ralf Korn 1 and L. C. G. Rogers 2 Abstract In the Black-Scholes model, any dividends on stocks are paid continuously, but in reality dividends

More information

### Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Practice Test, 1/28/2008 (with solutions)

Math 370, Actuarial Problemsolving Spring 008 A.J. Hildebrand Practice Test, 1/8/008 (with solutions) About this test. This is a practice test made up of a random collection of 0 problems from past Course

More information

### December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

### Valuation of American Options

Valuation of American Options Among the seminal contributions to the mathematics of finance is the paper F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political

More information

### Mathematical Finance

Mathematical Finance Option Pricing under the Risk-Neutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European

More information

### Nonlinear physics (solitons, chaos, discrete breathers)

Nonlinear physics (solitons, chaos, discrete breathers) N. Theodorakopoulos Konstanz, June 2006 Contents Foreword vi 1 Background: Hamiltonian mechanics 1 1.1 Lagrangian formulation of dynamics.......................

More information

### Assignment 2: Option Pricing and the Black-Scholes formula The University of British Columbia Science One CS 2015-2016 Instructor: Michael Gelbart

Assignment 2: Option Pricing and the Black-Scholes formula The University of British Columbia Science One CS 2015-2016 Instructor: Michael Gelbart Overview Due Thursday, November 12th at 11:59pm Last updated

More information

### Computational Statistics and Data Analysis

Computational Statistics and Data Analysis 53 (2008) 17 26 Contents lists available at ScienceDirect Computational Statistics and Data Analysis journal homepage: www.elsevier.com/locate/csda Coverage probability

More information

### i=1 In practice, the natural logarithm of the likelihood function, called the log-likelihood function and denoted by

Statistics 580 Maximum Likelihood Estimation Introduction Let y (y 1, y 2,..., y n be a vector of iid, random variables from one of a family of distributions on R n and indexed by a p-dimensional parameter

More information

### The Backpropagation Algorithm

7 The Backpropagation Algorithm 7. Learning as gradient descent We saw in the last chapter that multilayered networks are capable of computing a wider range of Boolean functions than networks with a single

More information

### 3. INNER PRODUCT SPACES

. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

### DYNAMIC RESPONSE OF VEHICLE-TRACK COUPLING SYSTEM WITH AN INSULATED RAIL JOINT

11 th International Conference on Vibration Problems Z. Dimitrovová et al. (eds.) Lisbon, Portugal, 9-12 September 2013 DYNAMIC RESPONSE OF VEHICLE-TRACK COUPLING SYSTEM WITH AN INSULATED RAIL JOINT Ilaria

More information

### Rock Bolt Condition Monitoring Using Ultrasonic Guided Waves

Rock Bolt Condition Monitoring Using Ultrasonic Guided Waves Bennie Buys Department of Mechanical and Aeronautical Engineering University of Pretoria Introduction Rock Bolts and their associated problems

More information

### State Newton's second law of motion for a particle, defining carefully each term used.

5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

### Optimal Control of Switched Networks for Nonlinear Hyperbolic Conservation Laws

Optimal Control of Switched Networks for Nonlinear Hyperbolic Conservation Laws Stefan Ulbrich TU Darmstadt Günter Leugering Universität Erlangen-Nürnberg SPP 1253 Optimization with Partial Differential

More information

### The Basics of Interest Theory

Contents Preface 3 The Basics of Interest Theory 9 1 The Meaning of Interest................................... 10 2 Accumulation and Amount Functions............................ 14 3 Effective Interest

More information

### FLOODING AND DRYING IN DISCONTINUOUS GALERKIN DISCRETIZATIONS OF SHALLOW WATER EQUATIONS

European Conference on Computational Fluid Dynamics ECCOMAS CFD 26 P. Wesseling, E. Oñate and J. Périaux (Eds) c TU Delft, The Netherlands, 26 FLOODING AND DRING IN DISCONTINUOUS GALERKIN DISCRETIZATIONS

More information

### ECE 533 Project Report Ashish Dhawan Aditi R. Ganesan

Handwritten Signature Verification ECE 533 Project Report by Ashish Dhawan Aditi R. Ganesan Contents 1. Abstract 3. 2. Introduction 4. 3. Approach 6. 4. Pre-processing 8. 5. Feature Extraction 9. 6. Verification

More information

### Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

More information

### Introduction to CFD Basics

Introduction to CFD Basics Rajesh Bhaskaran Lance Collins This is a quick-and-dirty introduction to the basic concepts underlying CFD. The concepts are illustrated by applying them to simple 1D model problems.

More information

### Is there chaos in Copenhagen problem?

Monografías de la Real Academia de Ciencias de Zaragoza 30, 43 50, (2006). Is there chaos in Copenhagen problem? Roberto Barrio, Fernando Blesa and Sergio Serrano GME, Universidad de Zaragoza Abstract

More information

### Notes on Elastic and Inelastic Collisions

Notes on Elastic and Inelastic Collisions In any collision of 2 bodies, their net momentus conserved. That is, the net momentum vector of the bodies just after the collision is the same as it was just

More information

### MODELING, SIMULATION AND DESIGN OF CONTROL CIRCUIT FOR FLEXIBLE ENERGY SYSTEM IN MATLAB&SIMULINK

MODELING, SIMULATION AND DESIGN OF CONTROL CIRCUIT FOR FLEXIBLE ENERGY SYSTEM IN MATLAB&SIMULINK M. Pies, S. Ozana VSB-Technical University of Ostrava Faculty of Electrotechnical Engineering and Computer

More information

### USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION

USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION Ian Cooper School of Physics The University of Sydney i.cooper@physics.usyd.edu.au Introduction The numerical calculations performed by scientists and engineers

More information

### Quasi-static evolution and congested transport

Quasi-static evolution and congested transport Inwon Kim Joint with Damon Alexander, Katy Craig and Yao Yao UCLA, UW Madison Hard congestion in crowd motion The following crowd motion model is proposed

More information

### 3. Experimental Results

Experimental study of the wind effect on the focusing of transient wave groups J.P. Giovanangeli 1), C. Kharif 1) and E. Pelinovsky 1,) 1) Institut de Recherche sur les Phénomènes Hors Equilibre, Laboratoire

More information

### Mathematical Modeling and Engineering Problem Solving

Mathematical Modeling and Engineering Problem Solving Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University Reference: 1. Applied Numerical Methods with

More information

### CHAPTER 1 Splines and B-splines an Introduction

CHAPTER 1 Splines and B-splines an Introduction In this first chapter, we consider the following fundamental problem: Given a set of points in the plane, determine a smooth curve that approximates the

More information

### Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example.

An Example 2 3 4 Outline Objective: Develop methods and algorithms to mathematically model shape of real world objects Categories: Wire-Frame Representation Object is represented as as a set of points

More information

### The mhr model is described by 30 ordinary differential equations (ODEs): one. ion concentrations and 23 equations describing channel gating.

On-line Supplement: Computer Modeling Chris Clausen, PhD and Ira S. Cohen, MD, PhD Computer models of canine ventricular action potentials The mhr model is described by 30 ordinary differential equations

More information

### Dynamic Process Modeling. Process Dynamics and Control

Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits

More information

### The finite element immersed boundary method: model, stability, and numerical results

Te finite element immersed boundary metod: model, stability, and numerical results Lucia Gastaldi Università di Brescia ttp://dm.ing.unibs.it/gastaldi/ INdAM Worksop, Cortona, September 18, 2006 Joint

More information

### Hello, my name is Olga Michasova and I present the work The generalized model of economic growth with human capital accumulation.

Hello, my name is Olga Michasova and I present the work The generalized model of economic growth with human capital accumulation. 1 Without any doubts human capital is a key factor of economic growth because

More information

### Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

### OPTIMAL CONTROL IN DISCRETE PEST CONTROL MODELS

OPTIMAL CONTROL IN DISCRETE PEST CONTROL MODELS Author: Kathryn Dabbs University of Tennessee (865)46-97 katdabbs@gmail.com Supervisor: Dr. Suzanne Lenhart University of Tennessee (865)974-427 lenhart@math.utk.edu.

More information

### Parameter Estimation for Bingham Models

Dr. Volker Schulz, Dmitriy Logashenko Parameter Estimation for Bingham Models supported by BMBF Parameter Estimation for Bingham Models Industrial application of ceramic pastes Material laws for Bingham

More information

### Cross section, Flux, Luminosity, Scattering Rates

Cross section, Flux, Luminosity, Scattering Rates Table of Contents Paul Avery (Andrey Korytov) Sep. 9, 013 1 Introduction... 1 Cross section, flux and scattering... 1 3 Scattering length λ and λ ρ...

More information

### Tutorial Creating a regular grid for point sampling

This tutorial describes how to use the fishnet, clip, and optionally the buffer tools in ArcGIS 10 to generate a regularly-spaced grid of sampling points inside a polygon layer. The steps below should

More information

### Numerical modeling of dam-reservoir interaction seismic response using the Hybrid Frequency Time Domain (HFTD) method

Numerical modeling of dam-reservoir interaction seismic response using the Hybrid Frequency Time Domain (HFTD) method Graduation Committee: Prof. Dr. A.V. Metrikine Dr. Ir. M.A.N. Hriks Dr. Ir. E.M. Lourens

More information

### An On-Line Algorithm for Checkpoint Placement

An On-Line Algorithm for Checkpoint Placement Avi Ziv IBM Israel, Science and Technology Center MATAM - Advanced Technology Center Haifa 3905, Israel avi@haifa.vnat.ibm.com Jehoshua Bruck California Institute

More information

### Dynamic Analysis. Mass Matrices and External Forces

4 Dynamic Analysis. Mass Matrices and External Forces The formulation of the inertia and external forces appearing at any of the elements of a multibody system, in terms of the dependent coordinates that

More information

### Advanced CFD Methods 1

Advanced CFD Methods 1 Prof. Patrick Jenny, FS 2014 Date: 15.08.14, Time: 13:00, Student: Federico Danieli Summary The exam took place in Prof. Jenny s office, with his assistant taking notes on the answers.

More information

### System of First Order Differential Equations

CHAPTER System of First Order Differential Equations In this chapter, we will discuss system of first order differential equations. There are many applications that involving find several unknown functions

More information

### The Dispersal of an Initial Concentration of Motile Bacteria

Journal of General Microbiology (I976), 9,253 I Printed in Great Britain The Dispersal of an Initial Concentration of Motile Bacteria By P. C. THONEMANN AND C. J. EVANS Department of Physics, University

More information

### Statistical Study of Magnetic Reconnection in the Solar Wind

WDS'13 Proceedings of Contributed Papers, Part II, 7 12, 2013. ISBN 978-80-7378-251-1 MATFYZPRESS Statistical Study of Magnetic Reconnection in the Solar Wind J. Enžl, L. Přech, J. Šafránková, and Z. Němeček

More information

### x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.

Cross product 1 Chapter 7 Cross product We are getting ready to study integration in several variables. Until now we have been doing only differential calculus. One outcome of this study will be our ability

More information

### 14.11. Geodesic Lines, Local Gauss-Bonnet Theorem

14.11. Geodesic Lines, Local Gauss-Bonnet Theorem Geodesics play a very important role in surface theory and in dynamics. One of the main reasons why geodesics are so important is that they generalize

More information