Fourier Series Expansion

Size: px
Start display at page:

Download "Fourier Series Expansion"

Transcription

1 Fourier Series Expansion Deepesh K P There are many types of series expansions for functions. The Maclaurin series, Taylor series, Laurent series are some such expansions. But these expansions become valid under certain strong assumptions on the functions those assumptions ensure convergence of the series). Fourier series also express a function as a series and the conditions required are fairly good and suitable when we deal with signals. Suppose f is a real valued function from R to R. In this note, we deal with the following three questions: When does f has a Fourier series expansion? How we find the expansion? What are the main properties of this expansion? Existance of a Fourier series expansion: There are three conditions which guarantees the existance of a valid Fourier series expansion for a given function. These conditions are collectively called the Dirichlet conditions:. f is a periodic function on R. This means that there exists a period T such that fx) = fx + T ) for all x R.. f has only a finite number of maxima and minima in a period. 3. f has atmost a finite number of discontinuous points inside a period.. f is integrable over the period of the function. It should be noted that the second and third conditions are satisfied by many real valued functions that we deal with, inside any finite interval. But periodicity is a condition that is satisfied by very few functions, for example, constant function, sine, cos, tan and their combinations. But we can consider any function defined on a finite interval [a, b] or a, b)) as a periodic function on R by thinking that the function is extended to R by repeating the values in [a, b] to the remaining part of R. Thus Figure Most of the functions, that we commonly use, defined on finite intervals can be expanded as Fourier series

2 Derivation of Fourier series expansion of a function defined in [, π]: In Fourier series expansion, we would like to write the function as a series in sine and cosine terms in the form: fx) = a + a n cos nx + b n sin nx For finding the above unknown co-efficients a, a n and b n in the Fourier series expansion of a function, one need to recall the value of certain integrals: sin mx dx = for any integer m. cos mx dx = for any integer m. sin mxcos nx dx = for any integers m and n. sin mxsin nx dx = for integers m n. cos mxcos nx dx = for integers m n. sin mxsin nx dx = π when the integers m = n. cos mxcos nx dx = π when the integers m = n. [All the above integrals easily follow by evaluating using integration by parts] Now suppose fx) = a + a j cos jx + b j sin jx. To find a : Observe that = a j= dx + ) a j cos jx dx + b j sin jx dx j= = a π + + ) j= This implies that a = π

3 To find a n : Observe that fx)cos nx dx = a cos nx dx + = a + a n π + ) a j cos nx cos jx dx + b j cos nx sin jx dx j= b j j= This implies that a n = π fx) cos nx dx To find b n : Observe that fx)sin nx dx = a This implies that Thus sin nx dx + ) a j sin nx cos jx dx + b j sin nx sin jx dx j= = a + a j + b n π. j= b n = π fx) sin nx dx fx) = a + a n cos nx + b n sin nx, a = π a n = π b n = π π π fx) cos nx dx fx) sin nx dx [This expansion is valid at all those points x, fx) is continuous.] Note: Note that the above mentioned results hold when we take any π length intervals [This is because +π c sin mx dx =,... are true for any c]. Result: So whenever we take a function f defined from [c, c + π] any interval of length π) to R, satisfying the Dirichlet conditions, we have 3

4 fx) = a + a n cos nx + b n sin nx, a = π a n = π b n = π +π c c+π c+π c fx) cos nx dx fx) sin nx dx 3 Derivation of Fourier series expansion of a function defined in an arbitrary period [a, b]: Now suppose that fx) is defined in an arbitrary interval [a, b] and satisfy the Dirichlet conditions. Let us take b a = l, half the length of the interval. Now define the new variable z = π l x. By this simple transformation, we can convert functions on any finite interval say, [a, b]) to functions in the new variable z, whose domain is an interval of π length. This is because x = a z = π l a and x = b z = π l b = π b a b a + a) = π + π l a. Thus when the variable x in fx) moves from a to b, the new variable z in the new function F z) which is the same function f in the new variable) moves from c to c+π, c = π l a. Hence the Fourier series expansion is applicable for F z). Thus fx) = F z) = a + a n cos nz + b n sin nz, a = π a n = π b n = π +π c +π c +π c F z) dz F z) cos nz dz F z) sin nz dz and changing back to the original variable x note that dz = π l dx), we have

5 fx) = a + a n cos nπ l x + b n sin nπ l x, a = l a n = l b n = l b a b a b a fx) cos nπ l x dx fx) sin nπ l x dx, which is the general form of Fourier series expansion for functions on any finite interval. Also note that this is applicable to the first case of our discussion, we need to take a =, b = π, l = π and then everything becomes the same as in the previous section. 3. Illustration We now take a simple problem to demonstrate the evaluation of Fourier series. Consider the function f defined by if x, fx) = x if < x <,, if x. We shall find the Fourier series expansion of this function. Here, note that the length of the interval is. So l = and l =. We need to write fx) = a + a n cos nπ x + b n sin nπ x, Now a n = b n = a = a = fx) cos nπ x dx fx) sin nπ x dx, dx + x dx + = + + ) = dx) a n = cos nπ x dx + x cos nπ x dx + cos nπ x dx) 5

6 = cos nπ x dx + xcos nπ x dx + cos nπ x dx) = nπ sin nπ sin nπ) + + nπ sin nπ sin nπ )) = b n = sin nπ x dx + x sin nπ x dx + sin nπ x dx) = { nπ cosnπ ) cosnπ)) + [ nπ cosnπ ) + n π sinnπ = 8 nπ cosnπ ) nπ cosnπ) + n π sinnπ ). So when n = b = π, n = b = 9 π,... Thus the Fourier expansion of fx) is fx) = + cos π x + π sin π x + cos π x + 9 π sin π x +... = π sin π x + 9 π sin π x +..., which is valid at all points in [, ] except at and, since the function is continuous at all points except and. When x =, the sum of the series will be equal to the value + = 5.5 and at x =, it is + = Some special cases: Suppose the function is an odd/even function in a symmetric interval [ c, c]. That is f x) = fx) for all x R [ Even] or f x) = fx) for all x R [ Odd]. Then from the results, c c = = when fx) is odd we have some specialities in the expansions. 3.. Even functions: when fx) is even, Suppose fx) is even in a domain [ c, c]. Then it can be observed that b n = and so the Fourier series becomes fx) = a + a n cos nπ c x a n = c a = c fx) cos nπ c x dx ) ] nπ cosnπ) cosnπ )} 6

7 3.. Odd functions: Similarly when fx) is odd in a domain [ c, c]. Then a = a n = and the Fourier series becomes fx) = b n sin nπ c x b n = fx) sin nπ c c x dx Note: If you observe carefully, in the illustration problem, the function is actually odd and the domain is [, ]. Note that the Fourier series contains only sine terms. But the converse is not true in general. That is, even if the Fourier series contains only sine terms, the function may not be odd! [For proving the above two cases, one should recall that the product of an odd and an even function is always odd and when both functions are even or both odd then the product is always even.] 3.3 Evaluation of series Fourier series can be used for evaluating the sum of certain numerical series related with it. For each value of fx ), x is a continuous point of the function, we get a series by putting the value x on both sides of the function. Care should be given if we substitute a discontinuous point as then instead of fx ), we should use the average value of the left and right limit at x 3.3. Illustration Suppose fx) = x, < x < π. We shall find the Fourier series of this function and use it to evaluate the sum of the series Observe that the function is an even function in the symmetric interval, π). So we immediatly get b n = for all n. So we need to find only a o, &a n. a = x dx = 3 π a n = x cos nx dx = π π Thus the Fourier series becomes x cos nx dx = ) n n x = π 3 +. cos x +. cos x +. cos 3x Now to find the sum of the given series, take x =, which is a continuous point. Substituting on both sides = π ) 3..., which gives = π. 7

8 Fourier Sine Series and Cosine Series: Sometimes we may need to expand a given function as a series in only cosine terms or only sine terms. Such series are called cosine series and sine series respectively. This can be done easily when the given function is defined on an interval like [, c] that is a positive side interval) or [ c, ] negative side interval). Hence such series are also reffered as Half range series expansion. Suppose fx) is defined in the interval [, c]. Then one can think of the extended function as either even or odd depending on the need; i.e., cosine series even and sine series odd) into the interval [ c, c]. Extension as even function - Cosine series: Suppose we think of fx) as even in the interval [ c, c]. Now expand this function. Obviously the series you obtain will have only constant and cosine terms. This is the cosine series of the function fx). That is fx) = a + a n cos nπ c x a = c a n = fx) cos nπ c c x dx This type of a series is valid only in the domain [, c] as the function on the other side was just an extension not a part of the original function). Extension as odd function - Sine series: Similarly when fx) is thought as an extended odd function in a domain [ c, c]. Then the Fourier series becomes fx) = b n sin nπ c x b n = c fx) sin nπ c x dx Note: For doing problems one need not do the extension to [ c, c]. Just applying the formula is fine. Note: Thus a function defined in [, c] will have three types of expansions: a Fourier series expansion a Cosine series expansion a Sine series expansion. 8

9 . Illustration Consider the function fx) = x, < x < π. We shall find the Fourier cosine series of this function. First, considering as an even function in, π), we get the Fourier cosine series as fx) = a + a n cos nx Note that l = π here. Let us find a and a n. a = π = π π x dx = π. a n = x cos nx dx π = [ ) π n ] n Thus the Fourier cosine series is given by fx) = π [ ] cos 3x cos 5x cos x + π In a similar way, one can apply the formula to find the Fourier sine series of the function. Note that the same function also has got a Fourier series expansion, you need to apply the formula by taking l = π. 5 Practical Harmonic Analysis In many practical problems, we get the data at discrete points of time. That is, the function will not be given explicitly but the function values will be given at, say, regular intervals of the domain. For example, π π x 3 π π fx) Here the function is actually sin x, but given at discrete points,, π, π, 3 π, π. With these point values, how to calculate the Fourier series? 5. The Trapezoidal Rule of Integration This is a rule used for finding the definite integral of a function, which is given at equally spaced, discrete points. Suppose the values of a function are given as in x x x x... x n x n fx) y y y... y n y n were the points x, x,..., x n are equally spaced; i.e., x i+ x i = h, a constant, for all i. Then the Trapezoidal rule says that xn x = h [y + y + y y n ) + y n ] 9

10 5.. Example Calculate fx)dx fx) is given at x: fx): Solution: Note that h =.5 here. Now from trapezoidal rule, fx)dx =.5 + [ ] + 68) = Calculating the Fourier series from a discrete data Suppose that the values of a function are given as in x x x x... x n x n fx) y y y... y n y n Here the length of the interval is x n x and so l = xn x. The spacing between the points is h = x i+ x i. The Fourier series of the function is fx) = a + a n cos nπ l x + b n sin nπ l x, a = l a n = l b n = l xn x xn x xn x fx) cos nπ l x dx fx) sin nπ l x dx, Since fx) is not explicitly given here, we need to use the Trapezoidal rule to find a, a n & b n : a n = l = h l xn a = l x = h l [y + y + y y n ) + y n ] xn fx) cos nπ l x dx b n = l = h l x [ y cos nπ xn x l x + fx) sin nπ l x dx [ y sin nπ l x + In problems, you can not find all the a n s. substitute in the Fourier series formula. y cos nπ l x + y cos nπ l x y n cos nπ ) l x n + y n cos nπ ] l x n y sin nπ l x + y sin nπ l x y n sin nπ ) l x n + y n sin nπ ] l x n So find a, a, a, b, b and

11 5.. Illustration Find the Fourier series of the function from the data given below: π π x 3 π π fx) 3 5 Here the interval under consideration is, π), which is of length π. Hence l = π and h = π. The Fourier series of the function is fx) = a + a n cos nx + b n sin nx, a = π a n = π b n = π π π fx) cos nx dx fx) sin nx dx, Now we calculate a, a, a, b, b using the Trapezoidal rule. a = π = { π } π 8 [ ) + 5] = 6 a = π = π { π 8 fx)cos x dx [ cos. + cos. π ) ]} + 3 cos.π + cos.3π + 5 cos π = [ ) + 5.] = a = π = π { π 8 fx)cos x dx [ cos. + cos. π ) ]} + 3 cos.π + cos.3π + 5 cos π = [ ) + 5.] = b = π = π { π 8 fx)sin x dx [ sin. + sin. π ) ]} + 3 sin.π + sin.3π + 5 sin π = [ ) + 5.] = b = π = π { π 8 fx)sin x dx [ sin. + sin. π ) ]} + 3 sin.π + sin.3π + 5 sin π = [ ) + 5.] =

12 Thus the Fourier series expansion of the function is fx) = +.cos x +.cos x sin x +.sin x Problems. Obtain the Fourier series representation of fx) = π x), < x < π. [Hint: l = π, a = π 6, a n = n, b n = ]. Expand fx) = x sin x, x π as a Fourier series. [Hint: Even, l = π, b n =, a =, a n = n, if n, a = ]

Representation of functions as power series

Representation of functions as power series Representation of functions as power series Dr. Philippe B. Laval Kennesaw State University November 9, 008 Abstract This document is a summary of the theory and techniques used to represent functions

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style

14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions

More information

Practice with Proofs

Practice with Proofs Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using

More information

Series FOURIER SERIES. Graham S McDonald. A self-contained Tutorial Module for learning the technique of Fourier series analysis

Series FOURIER SERIES. Graham S McDonald. A self-contained Tutorial Module for learning the technique of Fourier series analysis Series FOURIER SERIES Graham S McDonald A self-contained Tutorial Module for learning the technique of Fourier series analysis Table of contents Begin Tutorial c 004 g.s.mcdonald@salford.ac.uk 1. Theory.

More information

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

More information

36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous?

36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous? 36 CHAPTER 1. LIMITS AND CONTINUITY 1.3 Continuity Before Calculus became clearly de ned, continuity meant that one could draw the graph of a function without having to lift the pen and pencil. While this

More information

Calculus 1: Sample Questions, Final Exam, Solutions

Calculus 1: Sample Questions, Final Exam, Solutions Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.

More information

a cos x + b sin x = R cos(x α)

a cos x + b sin x = R cos(x α) a cos x + b sin x = R cos(x α) In this unit we explore how the sum of two trigonometric functions, e.g. cos x + 4 sin x, can be expressed as a single trigonometric function. Having the ability to do this

More information

LS.6 Solution Matrices

LS.6 Solution Matrices LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions

More information

Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.

Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0. Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients We will now turn our attention to nonhomogeneous second order linear equations, equations with the standard

More information

3. Mathematical Induction

3. Mathematical Induction 3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

I. Pointwise convergence

I. Pointwise convergence MATH 40 - NOTES Sequences of functions Pointwise and Uniform Convergence Fall 2005 Previously, we have studied sequences of real numbers. Now we discuss the topic of sequences of real valued functions.

More information

Section 1.1 Linear Equations: Slope and Equations of Lines

Section 1.1 Linear Equations: Slope and Equations of Lines Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

More information

MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform

MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform MATH 433/533, Fourier Analysis Section 11, The Discrete Fourier Transform Now, instead of considering functions defined on a continuous domain, like the interval [, 1) or the whole real line R, we wish

More information

Introduction to Complex Fourier Series

Introduction to Complex Fourier Series Introduction to Complex Fourier Series Nathan Pflueger 1 December 2014 Fourier series come in two flavors. What we have studied so far are called real Fourier series: these decompose a given periodic function

More information

Integration. Topic: Trapezoidal Rule. Major: General Engineering. Author: Autar Kaw, Charlie Barker. http://numericalmethods.eng.usf.

Integration. Topic: Trapezoidal Rule. Major: General Engineering. Author: Autar Kaw, Charlie Barker. http://numericalmethods.eng.usf. Integration Topic: Trapezoidal Rule Major: General Engineering Author: Autar Kaw, Charlie Barker 1 What is Integration Integration: The process of measuring the area under a function plotted on a graph.

More information

The one dimensional heat equation: Neumann and Robin boundary conditions

The one dimensional heat equation: Neumann and Robin boundary conditions The one dimensional heat equation: Neumann and Robin boundary conditions Ryan C. Trinity University Partial Differential Equations February 28, 2012 with Neumann boundary conditions Our goal is to solve:

More information

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx y 1 u 2 du u 1 3u 3 C

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx y 1 u 2 du u 1 3u 3 C Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.

More information

SOLVING TRIGONOMETRIC EQUATIONS

SOLVING TRIGONOMETRIC EQUATIONS Mathematics Revision Guides Solving Trigonometric Equations Page 1 of 17 M.K. HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C2 Edexcel: C2 OCR: C2 OCR MEI: C2 SOLVING TRIGONOMETRIC

More information

1 Inner Products and Norms on Real Vector Spaces

1 Inner Products and Norms on Real Vector Spaces Math 373: Principles Techniques of Applied Mathematics Spring 29 The 2 Inner Product 1 Inner Products Norms on Real Vector Spaces Recall that an inner product on a real vector space V is a function from

More information

TRIGONOMETRY Compound & Double angle formulae

TRIGONOMETRY Compound & Double angle formulae TRIGONOMETRY Compound & Double angle formulae In order to master this section you must first learn the formulae, even though they will be given to you on the matric formula sheet. We call these formulae

More information

COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012

COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012 Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about

More information

Correlation and Convolution Class Notes for CMSC 426, Fall 2005 David Jacobs

Correlation and Convolution Class Notes for CMSC 426, Fall 2005 David Jacobs Correlation and Convolution Class otes for CMSC 46, Fall 5 David Jacobs Introduction Correlation and Convolution are basic operations that we will perform to extract information from images. They are in

More information

1.7 Graphs of Functions

1.7 Graphs of Functions 64 Relations and Functions 1.7 Graphs of Functions In Section 1.4 we defined a function as a special type of relation; one in which each x-coordinate was matched with only one y-coordinate. We spent most

More information

LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL

LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL Chapter 6 LINEAR INEQUALITIES 6.1 Introduction Mathematics is the art of saying many things in many different ways. MAXWELL In earlier classes, we have studied equations in one variable and two variables

More information

Sequences and Series

Sequences and Series Sequences and Series Consider the following sum: 2 + 4 + 8 + 6 + + 2 i + The dots at the end indicate that the sum goes on forever. Does this make sense? Can we assign a numerical value to an infinite

More information

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

More information

Differentiation and Integration

Differentiation and Integration This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have

More information

5 Numerical Differentiation

5 Numerical Differentiation D. Levy 5 Numerical Differentiation 5. Basic Concepts This chapter deals with numerical approximations of derivatives. The first questions that comes up to mind is: why do we need to approximate derivatives

More information

Right Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring

Right Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring Page 1 9 Trigonometry of Right Triangles Right Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring 90. The side opposite to the right angle is the longest

More information

The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation. Lectures INF2320 p. 1/88 The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

More information

Normal distribution. ) 2 /2σ. 2π σ

Normal distribution. ) 2 /2σ. 2π σ Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

Basic Proof Techniques

Basic Proof Techniques Basic Proof Techniques David Ferry dsf43@truman.edu September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document

More information

G.A. Pavliotis. Department of Mathematics. Imperial College London

G.A. Pavliotis. Department of Mathematics. Imperial College London EE1 MATHEMATICS NUMERICAL METHODS G.A. Pavliotis Department of Mathematics Imperial College London 1. Numerical solution of nonlinear equations (iterative processes). 2. Numerical evaluation of integrals.

More information

An Introduction to Partial Differential Equations in the Undergraduate Curriculum

An Introduction to Partial Differential Equations in the Undergraduate Curriculum An Introduction to Partial Differential Equations in the Undergraduate Curriculum J. Tolosa & M. Vajiac LECTURE 11 Laplace s Equation in a Disk 11.1. Outline of Lecture The Laplacian in Polar Coordinates

More information

G. GRAPHING FUNCTIONS

G. GRAPHING FUNCTIONS G. GRAPHING FUNCTIONS To get a quick insight int o how the graph of a function looks, it is very helpful to know how certain simple operations on the graph are related to the way the function epression

More information

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 4.4 Using the Fundamental Theorem As we saw in Section 4.3, using the Fundamental Theorem of Integral Calculus reduces the problem of evaluating a

More information

An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate.

An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate. Chapter 10 Series and Approximations An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate 1 0 e x2 dx, you could set

More information

5.3 Improper Integrals Involving Rational and Exponential Functions

5.3 Improper Integrals Involving Rational and Exponential Functions Section 5.3 Improper Integrals Involving Rational and Exponential Functions 99.. 3. 4. dθ +a cos θ =, < a

More information

Lies My Calculator and Computer Told Me

Lies My Calculator and Computer Told Me Lies My Calculator and Computer Told Me 2 LIES MY CALCULATOR AND COMPUTER TOLD ME Lies My Calculator and Computer Told Me See Section.4 for a discussion of graphing calculators and computers with graphing

More information

x a x 2 (1 + x 2 ) n.

x a x 2 (1 + x 2 ) n. Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number

More information

FFT Algorithms. Chapter 6. Contents 6.1

FFT Algorithms. Chapter 6. Contents 6.1 Chapter 6 FFT Algorithms Contents Efficient computation of the DFT............................................ 6.2 Applications of FFT................................................... 6.6 Computing DFT

More information

Cardinality. The set of all finite strings over the alphabet of lowercase letters is countable. The set of real numbers R is an uncountable set.

Cardinality. The set of all finite strings over the alphabet of lowercase letters is countable. The set of real numbers R is an uncountable set. Section 2.5 Cardinality (another) Definition: The cardinality of a set A is equal to the cardinality of a set B, denoted A = B, if and only if there is a bijection from A to B. If there is an injection

More information

Second Order Linear Partial Differential Equations. Part I

Second Order Linear Partial Differential Equations. Part I Second Order Linear Partial Differential Equations Part I Second linear partial differential equations; Separation of Variables; - point boundary value problems; Eigenvalues and Eigenfunctions Introduction

More information

1 Lecture: Integration of rational functions by decomposition

1 Lecture: Integration of rational functions by decomposition Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

More information

Evaluating trigonometric functions

Evaluating trigonometric functions MATH 1110 009-09-06 Evaluating trigonometric functions Remark. Throughout this document, remember the angle measurement convention, which states that if the measurement of an angle appears without units,

More information

Click here for answers. f x CD 1 2 ( BC AC AB ) 1 2 C. (b) Express da dt in terms of the quantities in part (a). can be greater than.

Click here for answers. f x CD 1 2 ( BC AC AB ) 1 2 C. (b) Express da dt in terms of the quantities in part (a). can be greater than. CHALLENGE PROBLEM CHAPTER 3 A Click here for answers. Click here for solutions.. (a) Find the domain of the function f x s s s3 x. (b) Find f x. ; (c) Check your work in parts (a) and (b) by graphing f

More information

5.1 Radical Notation and Rational Exponents

5.1 Radical Notation and Rational Exponents Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots

More information

Using a table of derivatives

Using a table of derivatives Using a table of derivatives In this unit we construct a Table of Derivatives of commonly occurring functions. This is done using the knowledge gained in previous units on differentiation from first principles.

More information

UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2009 Linear Systems Fundamentals

UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2009 Linear Systems Fundamentals UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2009 Linear Systems Fundamentals MIDTERM EXAM You are allowed one 2-sided sheet of notes. No books, no other

More information

MATHEMATICS FOR ENGINEERING INTEGRATION TUTORIAL 3 - NUMERICAL INTEGRATION METHODS

MATHEMATICS FOR ENGINEERING INTEGRATION TUTORIAL 3 - NUMERICAL INTEGRATION METHODS MATHEMATICS FOR ENGINEERING INTEGRATION TUTORIAL - NUMERICAL INTEGRATION METHODS This tutorial is essential pre-requisite material for anyone studying mechanical engineering. This tutorial uses the principle

More information

DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents

DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents DIFFERENTIABILITY OF COMPLEX FUNCTIONS Contents 1. Limit definition of a derivative 1 2. Holomorphic functions, the Cauchy-Riemann equations 3 3. Differentiability of real functions 5 4. A sufficient condition

More information

Name: ID: Discussion Section:

Name: ID: Discussion Section: Math 28 Midterm 3 Spring 2009 Name: ID: Discussion Section: This exam consists of 6 questions: 4 multiple choice questions worth 5 points each 2 hand-graded questions worth a total of 30 points. INSTRUCTIONS:

More information

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce

More information

Section 6-3 Double-Angle and Half-Angle Identities

Section 6-3 Double-Angle and Half-Angle Identities 6-3 Double-Angle and Half-Angle Identities 47 Section 6-3 Double-Angle and Half-Angle Identities Double-Angle Identities Half-Angle Identities This section develops another important set of identities

More information

Geometry Notes RIGHT TRIANGLE TRIGONOMETRY

Geometry Notes RIGHT TRIANGLE TRIGONOMETRY Right Triangle Trigonometry Page 1 of 15 RIGHT TRIANGLE TRIGONOMETRY Objectives: After completing this section, you should be able to do the following: Calculate the lengths of sides and angles of a right

More information

Course Notes for Math 162: Mathematical Statistics Approximation Methods in Statistics

Course Notes for Math 162: Mathematical Statistics Approximation Methods in Statistics Course Notes for Math 16: Mathematical Statistics Approximation Methods in Statistics Adam Merberg and Steven J. Miller August 18, 6 Abstract We introduce some of the approximation methods commonly used

More information

A power series about x = a is the series of the form

A power series about x = a is the series of the form POWER SERIES AND THE USES OF POWER SERIES Elizabeth Wood Now we are finally going to start working with a topic that uses all of the information from the previous topics. The topic that we are going to

More information

4.5 Chebyshev Polynomials

4.5 Chebyshev Polynomials 230 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION 4.5 Chebyshev Polynomials We now turn our attention to polynomial interpolation for f (x) over [ 1, 1] based on the nodes 1 x 0 < x 1 < < x N 1. Both

More information

Partial Fractions Examples

Partial Fractions Examples Partial Fractions Examples Partial fractions is the name given to a technique of integration that may be used to integrate any ratio of polynomials. A ratio of polynomials is called a rational function.

More information

How To Prove The Dirichlet Unit Theorem

How To Prove The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

TOPPER Sample Paper - I. Class : XI MATHEMATICS. Questions. Time Allowed : 3 Hrs Maximum Marks: 100

TOPPER Sample Paper - I. Class : XI MATHEMATICS. Questions. Time Allowed : 3 Hrs Maximum Marks: 100 TOPPER Sample Paper - I Class : XI MATHEMATICS Questions Time Allowed : 3 Hrs Maximum Marks: 100 1. All questions are compulsory.. The question paper consist of 9 questions divided into three sections

More information

TMA4213/4215 Matematikk 4M/N Vår 2013

TMA4213/4215 Matematikk 4M/N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA43/45 Matematikk 4M/N Vår 3 Løsningsforslag Øving a) The Fourier series of the signal is f(x) =.4 cos ( 4 L x) +cos ( 5 L

More information

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August

More information

MATH 289 PROBLEM SET 4: NUMBER THEORY

MATH 289 PROBLEM SET 4: NUMBER THEORY MATH 289 PROBLEM SET 4: NUMBER THEORY 1. The greatest common divisor If d and n are integers, then we say that d divides n if and only if there exists an integer q such that n = qd. Notice that if d divides

More information

Chapter 7 Outline Math 236 Spring 2001

Chapter 7 Outline Math 236 Spring 2001 Chapter 7 Outline Math 236 Spring 2001 Note 1: Be sure to read the Disclaimer on Chapter Outlines! I cannot be responsible for misfortunes that may happen to you if you do not. Note 2: Section 7.9 will

More information

Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

More information

Second Order Linear Differential Equations

Second Order Linear Differential Equations CHAPTER 2 Second Order Linear Differential Equations 2.. Homogeneous Equations A differential equation is a relation involving variables x y y y. A solution is a function f x such that the substitution

More information

Review Solutions MAT V1102. 1. (a) If u = 4 x, then du = dx. Hence, substitution implies 1. dx = du = 2 u + C = 2 4 x + C.

Review Solutions MAT V1102. 1. (a) If u = 4 x, then du = dx. Hence, substitution implies 1. dx = du = 2 u + C = 2 4 x + C. Review Solutions MAT V. (a) If u 4 x, then du dx. Hence, substitution implies dx du u + C 4 x + C. 4 x u (b) If u e t + e t, then du (e t e t )dt. Thus, by substitution, we have e t e t dt e t + e t u

More information

CHAPTER 5 Round-off errors

CHAPTER 5 Round-off errors CHAPTER 5 Round-off errors In the two previous chapters we have seen how numbers can be represented in the binary numeral system and how this is the basis for representing numbers in computers. Since any

More information

SIGNAL PROCESSING & SIMULATION NEWSLETTER

SIGNAL PROCESSING & SIMULATION NEWSLETTER 1 of 10 1/25/2008 3:38 AM SIGNAL PROCESSING & SIMULATION NEWSLETTER Note: This is not a particularly interesting topic for anyone other than those who ar e involved in simulation. So if you have difficulty

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123 Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from

More information

Lecture 16 : Relations and Functions DRAFT

Lecture 16 : Relations and Functions DRAFT CS/Math 240: Introduction to Discrete Mathematics 3/29/2011 Lecture 16 : Relations and Functions Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT In Lecture 3, we described a correspondence

More information

sin(x) < x sin(x) x < tan(x) sin(x) x cos(x) 1 < sin(x) sin(x) 1 < 1 cos(x) 1 cos(x) = 1 cos2 (x) 1 + cos(x) = sin2 (x) 1 < x 2

sin(x) < x sin(x) x < tan(x) sin(x) x cos(x) 1 < sin(x) sin(x) 1 < 1 cos(x) 1 cos(x) = 1 cos2 (x) 1 + cos(x) = sin2 (x) 1 < x 2 . Problem Show that using an ɛ δ proof. sin() lim = 0 Solution: One can see that the following inequalities are true for values close to zero, both positive and negative. This in turn implies that On the

More information

Solutions to Homework 10

Solutions to Homework 10 Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

More information

Student Outcomes. Lesson Notes. Classwork. Discussion (10 minutes)

Student Outcomes. Lesson Notes. Classwork. Discussion (10 minutes) NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 5 8 Student Outcomes Students know the definition of a number raised to a negative exponent. Students simplify and write equivalent expressions that contain

More information

6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w.

6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w. hapter omplex integration. omplex number quiz. Simplify 3+4i. 2. Simplify 3+4i. 3. Find the cube roots of. 4. Here are some identities for complex conjugate. Which ones need correction? z + w = z + w,

More information

Binary Number System. 16. Binary Numbers. Base 10 digits: 0 1 2 3 4 5 6 7 8 9. Base 2 digits: 0 1

Binary Number System. 16. Binary Numbers. Base 10 digits: 0 1 2 3 4 5 6 7 8 9. Base 2 digits: 0 1 Binary Number System 1 Base 10 digits: 0 1 2 3 4 5 6 7 8 9 Base 2 digits: 0 1 Recall that in base 10, the digits of a number are just coefficients of powers of the base (10): 417 = 4 * 10 2 + 1 * 10 1

More information

WRITING PROOFS. Christopher Heil Georgia Institute of Technology

WRITING PROOFS. Christopher Heil Georgia Institute of Technology WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this

More information

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information

GRAPHING IN POLAR COORDINATES SYMMETRY

GRAPHING IN POLAR COORDINATES SYMMETRY GRAPHING IN POLAR COORDINATES SYMMETRY Recall from Algebra and Calculus I that the concept of symmetry was discussed using Cartesian equations. Also remember that there are three types of symmetry - y-axis,

More information

Quotient Rings and Field Extensions

Quotient Rings and Field Extensions Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

More information

Trigonometric Functions and Triangles

Trigonometric Functions and Triangles Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between

More information

Mechanics 1: Conservation of Energy and Momentum

Mechanics 1: Conservation of Energy and Momentum Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

More information

Application of Fourier Transform to PDE (I) Fourier Sine Transform (application to PDEs defined on a semi-infinite domain)

Application of Fourier Transform to PDE (I) Fourier Sine Transform (application to PDEs defined on a semi-infinite domain) Application of Fourier Transform to PDE (I) Fourier Sine Transform (application to PDEs defined on a semi-infinite domain) The Fourier Sine Transform pair are F. T. : U = 2/ u x sin x dx, denoted as U

More information

LIMITS AND CONTINUITY

LIMITS AND CONTINUITY LIMITS AND CONTINUITY 1 The concept of it Eample 11 Let f() = 2 4 Eamine the behavior of f() as approaches 2 2 Solution Let us compute some values of f() for close to 2, as in the tables below We see from

More information

Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations

Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 3.3 Differentiation of Polynomials an Rational Functions In tis section we begin te task of iscovering rules for ifferentiating various classes of

More information

Math 55: Discrete Mathematics

Math 55: Discrete Mathematics Math 55: Discrete Mathematics UC Berkeley, Spring 2012 Homework # 9, due Wednesday, April 11 8.1.5 How many ways are there to pay a bill of 17 pesos using a currency with coins of values of 1 peso, 2 pesos,

More information

f x a 0 n 1 a 0 a 1 cos x a 2 cos 2x a 3 cos 3x b 1 sin x b 2 sin 2x b 3 sin 3x a n cos nx b n sin nx n 1 f x dx y

f x a 0 n 1 a 0 a 1 cos x a 2 cos 2x a 3 cos 3x b 1 sin x b 2 sin 2x b 3 sin 3x a n cos nx b n sin nx n 1 f x dx y Fourier Series When the French mathematician Joseph Fourier (768 83) was tring to solve a problem in heat conduction, he needed to epress a function f as an infinite series of sine and cosine functions:

More information

Math 115 Spring 2011 Written Homework 5 Solutions

Math 115 Spring 2011 Written Homework 5 Solutions . Evaluate each series. a) 4 7 0... 55 Math 5 Spring 0 Written Homework 5 Solutions Solution: We note that the associated sequence, 4, 7, 0,..., 55 appears to be an arithmetic sequence. If the sequence

More information

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs CHAPTER 3 Methods of Proofs 1. Logical Arguments and Formal Proofs 1.1. Basic Terminology. An axiom is a statement that is given to be true. A rule of inference is a logical rule that is used to deduce

More information

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a 88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small

More information