Describing Communities. Species Diversity Concepts. Species Richness. Species Richness. SpeciesArea Curve. SpeciesArea Curve


 Elisabeth Garrett
 1 years ago
 Views:
Transcription
1 peces versty Concepts peces Rchness pecesarea Curves versty Indces  mpson's Index  hannonwener Index  rlloun Index peces Abundance Models escrbng Communtes There are two mportant descrptors of a communty: ) ts physognomy (physcal structure), as descrbed n the prevous lecture, and ) the number of speces present and ther relatve abundances (speces rchness and dversty). peces Rchness The smplest way to descrbe a communty s to lst the speces n t. peces rchness () s the number of speces on that lst, and s most often used as the frst pass estmate of dversty for a communty. How would one generate such a lst? A smple and wdely used method s to defne the boundares of the communty and then walk through t seasonally, notng all the speces you encounter. Ths s what we call a flora. peces Rchness Whle smply fndng and lstng the speces s useful, ths method has many lmtatons. If we wsh to compare two or more communtes, we need comparable samples, otherwse we mght just fnd a dfference because one was sampled more ntensvely than the other. Ths begs the queston, how much samplng should we do n order to be confdent that we have found most of the speces n each communty? pecesarea Curve pecesarea Curve One way to make ths nterpretaton s through the use of a specesarea curve. A graph of the total number of speces found as the number of quadrats ncreases explans the relatonshp. We know that we have sampled suffcently when the curve begns to "plateau". No. of peces () 7 No. of m quadrats Concluson:  quadrats would be suffcent to descrbe the vegetaton n ths communty. After many years of study, we now realze that the classcal percepton of the shape of a "typcal" specesarea curve s an artfact of the type of communtes n whch the relatonshp was frst descrbed. Moreover, t s now apparent, that habtat gran, patch sze, and equtablty wll have a substantal nfluence on the shape of the curve and must be evaluated n that context.
2 pecesarea Curve Fnegraned; hgh equtablty (classcal condton) pecesarea Curve Fnegraned; low equtablty pecesarea Curve Coarsegraned; equal patch sze pecesarea Curve Coarsegraned; unequal patch sze Gran, Patch ze, Equtablty peces Rchness Whle many studes nclude as a descrptve factor assocated wth the communty, t s largely unnformatve n as much as t does not reflect relatve abundance. Example: suppose two communtes ( & ) each contan ndvduals dstrbuted among fve speces (AE): A C E Comm Comm 6 Are these two communtes equvalent?
3 peces Rchness There are two ways to overcome ths problem: ) ncorporate both speces rchness and abundance nformaton n to one dversty ndex. ) rely on speces rchness but control for the effects of sample sze by a procedure called rarefacton. We wll examne both alternatves as they are wdely used n ecology. One of the fundamental tenants of dversty s that the number of speces found n a gven sample s strongly dependent upon the sze of that sample. Ths makes good ntutve sense n that the more quadrats one samples n a plant communty, the more lkely you are to pck up more and more rare speces. One method of avodng ncompatblty of measurements resultng from samples of dfferent szes s called rarefacton. N  N N n E()  / n Where E() s the expected number of speces n the rarefed sample, n s the standardzed sample, N s the total number of n the sample to be rarefed, and N s the number of ndvduals n the th speces n the sample to be rarefed, summed over all speces counted. The term N n s a "combnaton" that s calculated as: N N! n n! N n! where N! s a "factoral", e.g.,! Ths combnaton s mportant, because t allows us to calculate all the possble numbers of unque speces combnatons... For example, f we have four speces, A,, C,, then we have sx speces pars: A, AC, A, C,, C. Usng the combnatoral equaton:! 6!! Thus N s the number of unque combnatons of N n taken n at a tme;.e., the number of dfferent ways of pckng speces pars from four dfferent speces. Let's look at a fully worked realworld example (taken from Magurran 88). Imagne two moth traps that have been set out n a forest to montor moth dversty. Trap was nadvertently left out for only about half the tme as TrapA. We know ths wll be a problem because TrapA "sampled" the envronment more (longer perod of tme) and s lkely to pck up more speces. To compare between traps would be msleadng and napproprate.
4 Moth lght traps are typcally suspended above the vegetaton and contan a battery powered lght. The trap s set to operate only durng the evenng hours. Moths are drawn to the lght and become entrapped n the canster below. As expected, TrapA has more speces. The best way to correct for the dfference n samplng tme s to ask, How many speces would we expect to fnd n TrapA f t too contaned ndvduals? peces N No. of Indvduals TrapA Trap 6 Frst, take the number of ndvduals of each speces from TrapA and nsert them nto the formula. For speces n TrapA: N, n, N, NN N! n! (  )! NN! n! ! ( ) therefore:!!  / /66..!!!! { [ ] } Contnue ths same set of calculatons for each speces (to determne the expected number) and then sum the values (as per the Σ n the equaton). Zero values need not be ncluded as they have no nfluence on the estmate. E() Expected Concluson: If TrapA contaned ndvduals, we would expect t to contan 6.8 specesabout the same as Trap. N versty Indces As already alluded to, the dversty of a communty needs (n most nstances) to account for both speces rchness and the evenness wth whch ndvduals are dstrbuted among speces. One way to do ths s through the use of a proportonal abundance ndex. There are two major forms of these ndces: domnance ndces and nformaton ndces. Whle more than 6 ndces have been descrbed, we wll look at the three most wdely used n the ecologcal lterature: mpson's, hannonwener, and rlloun. mpson's Index mpson's Index s consdered a domnance ndex because t weghts towards the abundance of the most common speces. mpson's Index gves the probablty of any two ndvduals drawn at random from an nfntely large communty belongng to dfferent speces. For example, the probablty of two trees, pcked at random from a tropcal ranforest beng of the same speces would be relatvely low, whereas n boreal forest n Canada t would be relatvely hgh.
5 mpson's Index mpson's Index The bas corrected form of mpson's Index s: ( n ( n ) ) ( N( N ) ) where n s the number of ndvduals n the th speces. A worked example for trees of speces assessed n several quadrats: Tree spp. A C E Total No. Indvduals nce s and dversty are negatvely related, mpson's ndex s usually expressed as the recprocal () so that as the ndex goes up, so does dversty Then / /.88.6 hannonwener Index The hannonwener Index belongs to a subset of ndces that mantan that dversty can be measured much lke the nformaton contaned n a code or message (hence the name nformaton ndex). The ratonale s that f we know a letter n a message, we can know the uncertanty of the next letter n a coded message (.e., the next speces to be found n a communty). hannonwener Index The hannon Index assumes that all speces are represented n a sample and that the sample was obtaned randomly: H'  p ln p where p s the proporton of ndvduals found n the th speces and ln s the natural logarthm. The uncertanty s measured as H', the hannon Index. A message coded bbbbbb has low uncertanty (H' ). hannonwener Index A worked example from a communty contanng trees dstrbuted among speces: Total peces A C E Abund p p ln p hannonwener Index The most mportant source of error n ths ndex s falng to nclude all speces from the communty n the sample. Ths makes a specesarea curve assessment very mportant at the begnnng of a study. Values of the hannon dversty ndex for real communtes typcally fall between. and.. H'.
6 hannonwener Index The hannon ndex s affected by both the number of speces and ther equtablty, or evenness. A greater number of speces and a more even dstrbuton OTH ncrease dversty as measured by H'. The maxmum dversty (H max ) of a sample s found when all speces are equally abundant. H max ln, where s the total number of speces. Evenness We can compare the actual dversty value to the maxmum possble dversty by usng a measure called evenness. The evenness of the sample s obtaned from the formula: Evenness H'/H max H'/ln y defnton, E s constraned between and.. As wth H', evenness assumes that all speces are represented wthn the sample. rlloun Index When the randomness of a sample cannot be guaranteed, the rlloun Index H s preferable to the H': ln N!  ln n! H N where N s the total number of ndvduals and n s the number of ndvduals n the th speces. A worked example follows... rlloun Index peces No. Indvduals ln n! N Σ. ln N!  ln n! ln! . H.6 N Evenness Evenness for the rlloun Index s estmated as: H E H where H max represents the maxmum possble rlloun dversty, that s, a completely equtable dstrbuton of ndvduals between speces. In our example, we had complete equtablty, therefore, H max H.. versty Indces As you have probably fgured out, the choce of a partcular ndex s chosen wth respect to the goals of the study (emphass on abundant vs rare speces) and to what extent samplng can be assured to be random. There are other factors that come n to play, but these are the most wdely used measures of dversty that ncorporate both rchness and evenness nto the determnaton. Note: There s generally NO relatonshp between one ndex and another. 6
7 peces Abundance Models One of the earlest observatons made by plant ecologsts was that speces are not equally common n a gven communty. ome were very abundant, other were uncommon. A graphcal way was sought to descrbe ths pattern, and so arose speces abundance models. These models are strongly advocated among some ecologsts because they emphasze abundance whle utlzng speces rchness nformaton and therefore provde the most complete mathematcal descrpton of the data. peces Abundance Models A speces abundance model s generated by graphng the abundance of each speces aganst ts rank order abundance from hghest to N lowest. One of four dstrbutons usually arse: Log normal dstrbuton Geometrc seres Logarthmc seres McArthur's broken stck model peces Abundance Models peces Abundance Models (Changes through successon  azzaz 7) 7
benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).
REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or
More information9.1 The Cumulative Sum Control Chart
Learnng Objectves 9.1 The Cumulatve Sum Control Chart 9.1.1 Basc Prncples: Cusum Control Chart for Montorng the Process Mean If s the target for the process mean, then the cumulatve sum control chart s
More informationTHE TITANIC SHIPWRECK: WHO WAS
THE TITANIC SHIPWRECK: WHO WAS MOST LIKELY TO SURVIVE? A STATISTICAL ANALYSIS Ths paper examnes the probablty of survvng the Ttanc shpwreck usng lmted dependent varable regresson analyss. Ths appled analyss
More information1. Measuring association using correlation and regression
How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a
More informationAn Alternative Way to Measure Private Equity Performance
An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate
More informationGraph Theory and Cayley s Formula
Graph Theory and Cayley s Formula Chad Casarotto August 10, 2006 Contents 1 Introducton 1 2 Bascs and Defntons 1 Cayley s Formula 4 4 Prüfer Encodng A Forest of Trees 7 1 Introducton In ths paper, I wll
More informationSCIENCE IN THE PARK: ROCK POOLS SPECIES BIODIVERSITY LAB
SPECIES BIOIVERSITY LAB Purpoe: To undertand the mportance of bodverty, calculate the ndce of the Smpon Index, and quantfy the bodverty of a ample. eveloped by E. A. Bett Tme: 40 mnute BACKGROUN: Smpon'
More informationLecture 10: Linear Regression Approach, Assumptions and Diagnostics
Approach to Modelng I Lecture 1: Lnear Regresson Approach, Assumptons and Dagnostcs Sandy Eckel seckel@jhsph.edu 8 May 8 General approach for most statstcal modelng: Defne the populaton of nterest State
More informationCHAPTER 14 MORE ABOUT REGRESSION
CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp
More informationWhat is Candidate Sampling
What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble
More informationCHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES
CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES In ths chapter, we wll learn how to descrbe the relatonshp between two quanttatve varables. Remember (from Chapter 2) that the terms quanttatve varable
More informationNasdaq Iceland Bond Indices 01 April 2015
Nasdaq Iceland Bond Indces 01 Aprl 2015 Fxed duraton Indces Introducton Nasdaq Iceland (the Exchange) began calculatng ts current bond ndces n the begnnng of 2005. They were a response to recent changes
More information14.74 Lecture 5: Health (2)
14.74 Lecture 5: Health (2) Esther Duflo February 17, 2004 1 Possble Interventons Last tme we dscussed possble nterventons. Let s take one: provdng ron supplements to people, for example. From the data,
More informationQuestions that we may have about the variables
Antono Olmos, 01 Multple Regresson Problem: we want to determne the effect of Desre for control, Famly support, Number of frends, and Score on the BDI test on Perceved Support of Latno women. Dependent
More informationSimon Acomb NAG Financial Mathematics Day
1 Why People Who Prce Dervatves Are Interested In Correlaton mon Acomb NAG Fnancal Mathematcs Day Correlaton Rsk What Is Correlaton No lnear relatonshp between ponts Comovement between the ponts Postve
More informationModule 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur
Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..
More informationComparing Class Level Chain Drift for Different Elementary Aggregate Formulae Using Locally Collected CPI Data
Comparng Class Level Chan Drft for Dfferent Elementary Aggregate Formulae Usng Gareth Clews 1, Anselma DobsonMcKttrck 2 and Joseph Wnton Summary The Consumer Prces Index (CPI) s a measure of consumer
More informationRecurrence. 1 Definitions and main statements
Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.
More information8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by
6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng
More informationMultivariate EWMA Control Chart
Multvarate EWMA Control Chart Summary The Multvarate EWMA Control Chart procedure creates control charts for two or more numerc varables. Examnng the varables n a multvarate sense s extremely mportant
More informationII. PROBABILITY OF AN EVENT
II. PROBABILITY OF AN EVENT As ndcated above, probablty s a quantfcaton, or a mathematcal model, of a random experment. Ths quantfcaton s a measure of the lkelhood that a gven event wll occur when the
More informationSIX WAYS TO SOLVE A SIMPLE PROBLEM: FITTING A STRAIGHT LINE TO MEASUREMENT DATA
SIX WAYS TO SOLVE A SIMPLE PROBLEM: FITTING A STRAIGHT LINE TO MEASUREMENT DATA E. LAGENDIJK Department of Appled Physcs, Delft Unversty of Technology Lorentzweg 1, 68 CJ, The Netherlands Emal: e.lagendjk@tnw.tudelft.nl
More informationCommunication Networks II Contents
8 / 1  Communcaton Networs II (Görg)  www.comnets.unbremen.de Communcaton Networs II Contents 1 Fundamentals of probablty theory 2 Traffc n communcaton networs 3 Stochastc & Marovan Processes (SP
More informationMoment of a force about a point and about an axis
3. STATICS O RIGID BODIES In the precedng chapter t was assumed that each of the bodes consdered could be treated as a sngle partcle. Such a vew, however, s not always possble, and a body, n general, should
More informationErrorPropagation.nb 1. Error Propagation
ErrorPropagaton.nb Error Propagaton Suppose that we make observatons of a quantty x that s subject to random fluctuatons or measurement errors. Our best estmate of the true value for ths quantty s then
More informationBrigid Mullany, Ph.D University of North Carolina, Charlotte
Evaluaton And Comparson Of The Dfferent Standards Used To Defne The Postonal Accuracy And Repeatablty Of Numercally Controlled Machnng Center Axes Brgd Mullany, Ph.D Unversty of North Carolna, Charlotte
More informationInequality and The Accounting Period. Quentin Wodon and Shlomo Yitzhaki. World Bank and Hebrew University. September 2001.
Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.
More informationThe covariance is the two variable analog to the variance. The formula for the covariance between two variables is
Regresson Lectures So far we have talked only about statstcs that descrbe one varable. What we are gong to be dscussng for much of the remander of the course s relatonshps between two or more varables.
More informationI. SCOPE, APPLICABILITY AND PARAMETERS Scope
D Executve Board Annex 9 Page A/R ethodologcal Tool alculaton of the number of sample plots for measurements wthn A/R D project actvtes (Verson 0) I. SOPE, PIABIITY AD PARAETERS Scope. Ths tool s applcable
More informationSolution of Algebraic and Transcendental Equations
CHAPTER Soluton of Algerac and Transcendental Equatons. INTRODUCTION One of the most common prolem encountered n engneerng analyss s that gven a functon f (, fnd the values of for whch f ( = 0. The soluton
More informationTime Series Analysis in Studies of AGN Variability. Bradley M. Peterson The Ohio State University
Tme Seres Analyss n Studes of AGN Varablty Bradley M. Peterson The Oho State Unversty 1 Lnear Correlaton Degree to whch two parameters are lnearly correlated can be expressed n terms of the lnear correlaton
More informationCHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol
CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK Sample Stablty Protocol Background The Cholesterol Reference Method Laboratory Network (CRMLN) developed certfcaton protocols for total cholesterol, HDL
More informationDescriptive Statistics (60 points)
Economcs 30330: Statstcs for Economcs Problem Set 2 Unversty of otre Dame Instructor: Julo Garín Sprng 2012 Descrptve Statstcs (60 ponts) 1. Followng a recent government shutdown, Mnnesota Governor Mark
More informationPassive Filters. References: Barbow (pp 265275), Hayes & Horowitz (pp 3260), Rizzoni (Chap. 6)
Passve Flters eferences: Barbow (pp 6575), Hayes & Horowtz (pp 360), zzon (Chap. 6) Frequencyselectve or flter crcuts pass to the output only those nput sgnals that are n a desred range of frequences (called
More informationCausal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting
Causal, Explanatory Forecastng Assumes causeandeffect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of
More informationThe Greedy Method. Introduction. 0/1 Knapsack Problem
The Greedy Method Introducton We have completed data structures. We now are gong to look at algorthm desgn methods. Often we are lookng at optmzaton problems whose performance s exponental. For an optmzaton
More informationSolution : (a) FALSE. Let C be a binary oneerror correcting code of length 9. Then it follows from the Sphere packing bound that.
MATH 29T Exam : Part I Solutons. TRUE/FALSE? Prove your answer! (a) (5 pts) There exsts a bnary oneerror correctng code of length 9 wth 52 codewords. (b) (5 pts) There exsts a ternary oneerror correctng
More informationPortfolio Risk Decomposition (and Risk Budgeting)
ortfolo Rsk Decomposton (and Rsk Budgetng) Jason MacQueen RSquared Rsk Management Introducton to Rsk Decomposton Actve managers take rsk n the expectaton of achevng outperformance of ther benchmark Mandates
More informationNotes on Calculating Computer Performance
otes on Calculatng Computer Performance Bruce Jacob and Trevor Mudge Advanced Computer Archtecture Lab EECS Department, Unversty of Mchgan {blj,tnm}@umch.edu Abstract Ths report explans what t means to
More information9 Arithmetic and Geometric Sequence
AAU  Busness Mathematcs I Lecture #5, Aprl 4, 010 9 Arthmetc and Geometrc Sequence Fnte sequence: 1, 5, 9, 13, 17 Fnte seres: 1 + 5 + 9 + 13 +17 Infnte sequence: 1,, 4, 8, 16,... Infnte seres: 1 + + 4
More informationStaff Paper. Farm Savings Accounts: Examining Income Variability, Eligibility, and Benefits. Brent Gloy, Eddy LaDue, and Charles Cuykendall
SP 200502 August 2005 Staff Paper Department of Appled Economcs and Management Cornell Unversty, Ithaca, New York 148537801 USA Farm Savngs Accounts: Examnng Income Varablty, Elgblty, and Benefts Brent
More information+ + +   This circuit than can be reduced to a planar circuit
MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to
More informationQuality Adjustment of Secondhand Motor Vehicle Application of Hedonic Approach in Hong Kong s Consumer Price Index
Qualty Adustment of Secondhand Motor Vehcle Applcaton of Hedonc Approach n Hong Kong s Consumer Prce Index Prepared for the 14 th Meetng of the Ottawa Group on Prce Indces 20 22 May 2015, Tokyo, Japan
More informationU.C. Berkeley CS270: Algorithms Lecture 4 Professor Vazirani and Professor Rao Jan 27,2011 Lecturer: Umesh Vazirani Last revised February 10, 2012
U.C. Berkeley CS270: Algorthms Lecture 4 Professor Vazran and Professor Rao Jan 27,2011 Lecturer: Umesh Vazran Last revsed February 10, 2012 Lecture 4 1 The multplcatve weghts update method The multplcatve
More informationBinary Dependent Variables. In some cases the outcome of interest rather than one of the right hand side variables is discrete rather than continuous
Bnary Dependent Varables In some cases the outcome of nterest rather than one of the rght hand sde varables s dscrete rather than contnuous The smplest example of ths s when the Y varable s bnary so that
More informationSPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background:
SPEE Recommended Evaluaton Practce #6 efnton of eclne Curve Parameters Background: The producton hstores of ol and gas wells can be analyzed to estmate reserves and future ol and gas producton rates and
More informationLuby s Alg. for Maximal Independent Sets using Pairwise Independence
Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent
More informationb) The mean of the fitted (predicted) values of Y is equal to the mean of the Y values: c) The residuals of the regression line sum up to zero: = ei
Mathematcal Propertes of the Least Squares Regresson The least squares regresson lne obeys certan mathematcal propertes whch are useful to know n practce. The followng propertes can be establshed algebracally:
More informationCan Auto Liability Insurance Purchases Signal Risk Attitude?
Internatonal Journal of Busness and Economcs, 2011, Vol. 10, No. 2, 159164 Can Auto Lablty Insurance Purchases Sgnal Rsk Atttude? ChuShu L Department of Internatonal Busness, Asa Unversty, Tawan ShengChang
More informationChapter 7. RandomVariate Generation 7.1. Prof. Dr. Mesut Güneş Ch. 7 RandomVariate Generation
Chapter 7 RandomVarate Generaton 7. Contents Inversetransform Technque AcceptanceRejecton Technque Specal Propertes 7. Purpose & Overvew Develop understandng of generatng samples from a specfed dstrbuton
More informationThe OC Curve of Attribute Acceptance Plans
The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4
More informationCalculation of Sampling Weights
Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a twostage stratfed cluster desgn. 1 The frst stage conssted of a sample
More informationForecasting the Direction and Strength of Stock Market Movement
Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye cjngwe@stanford.edu mchen5@stanford.edu nanye@stanford.edu Abstract  Stock market s one of the most complcated systems
More informationThe Analysis of Outliers in Statistical Data
THALES Project No. xxxx The Analyss of Outlers n Statstcal Data Research Team Chrysses Caron, Assocate Professor (P.I.) Vaslk Karot, Doctoral canddate Polychrons Economou, Chrstna Perrakou, Postgraduate
More informationIntroduction: Analysis of Electronic Circuits
/30/008 ntroducton / ntroducton: Analyss of Electronc Crcuts Readng Assgnment: KVL and KCL text from EECS Just lke EECS, the majorty of problems (hw and exam) n EECS 3 wll be crcut analyss problems. Thus,
More information1 Approximation Algorithms
CME 305: Dscrete Mathematcs and Algorthms 1 Approxmaton Algorthms In lght of the apparent ntractablty of the problems we beleve not to le n P, t makes sense to pursue deas other than complete solutons
More informationStudy on CET4 Marks in China s Graded English Teaching
Study on CET4 Marks n Chna s Graded Englsh Teachng CHE We College of Foregn Studes, Shandong Insttute of Busness and Technology, P.R.Chna, 264005 Abstract: Ths paper deploys Logt model, and decomposes
More information1 Example 1: Axisaligned rectangles
COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton
More informationSIMPLE LINEAR CORRELATION
SIMPLE LINEAR CORRELATION Smple lnear correlaton s a measure of the degree to whch two varables vary together, or a measure of the ntensty of the assocaton between two varables. Correlaton often s abused.
More informationInterIng 2007. INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, 1516 November 2007.
InterIng 2007 INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, 1516 November 2007. UNCERTAINTY REGION SIMULATION FOR A SERIAL ROBOT STRUCTURE MARIUS SEBASTIAN
More informationAnalysis of Covariance
Chapter 551 Analyss of Covarance Introducton A common tas n research s to compare the averages of two or more populatons (groups). We mght want to compare the ncome level of two regons, the ntrogen content
More informationNPAR TESTS. OneSample ChiSquare Test. Cell Specification. Observed Frequencies 1O i 6. Expected Frequencies 1EXP i 6
PAR TESTS If a WEIGHT varable s specfed, t s used to replcate a case as many tmes as ndcated by the weght value rounded to the nearest nteger. If the workspace requrements are exceeded and samplng has
More informationCapital asset pricing model, arbitrage pricing theory and portfolio management
Captal asset prcng model, arbtrage prcng theory and portfolo management Vnod Kothar The captal asset prcng model (CAPM) s great n terms of ts understandng of rsk decomposton of rsk nto securtyspecfc rsk
More information9. PPI Calculation in Practice
9. PPI Calculaton n Practce A. Introducton 9.1 Ths chapter provdes a general descrpton of the ways PPIs are calculated n practce. The methods used n dfferent countres are not exactly the same, but they
More information1. Fundamentals of probability theory 2. Emergence of communication traffic 3. Stochastic & Markovian Processes (SP & MP)
6.3 /  Communcaton Networks II (Görg) SS20  www.comnets.unbremen.de Communcaton Networks II Contents. Fundamentals of probablty theory 2. Emergence of communcaton traffc 3. Stochastc & Markovan Processes
More informationx f(x) 1 0.25 1 0.75 x 1 0 1 1 0.04 0.01 0.20 1 0.12 0.03 0.60
BIVARIATE DISTRIBUTIONS Let be a varable that assumes the values { 1,,..., n }. Then, a functon that epresses the relatve frequenc of these values s called a unvarate frequenc functon. It must be true
More informationSection 5.4 Annuities, Present Value, and Amortization
Secton 5.4 Annutes, Present Value, and Amortzaton Present Value In Secton 5.2, we saw that the present value of A dollars at nterest rate per perod for n perods s the amount that must be deposted today
More informationLossless Data Compression
Lossless Data Compresson Lecture : Unquely Decodable and Instantaneous Codes Sam Rowes September 5, 005 Let s focus on the lossless data compresson problem for now, and not worry about nosy channel codng
More informationEfficient Project Portfolio as a tool for Enterprise Risk Management
Effcent Proect Portfolo as a tool for Enterprse Rsk Management Valentn O. Nkonov Ural State Techncal Unversty Growth Traectory Consultng Company January 5, 27 Effcent Proect Portfolo as a tool for Enterprse
More informationDEFINING %COMPLETE IN MICROSOFT PROJECT
CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMISP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,
More informationGenerator WarmUp Characteristics
NO. REV. NO. : ; ~ Generator WarmUp Characterstcs PAGE OF Ths document descrbes the warmup process of the SNAP27 Generator Assembly after the sotope capsule s nserted. Several nqures have recently been
More informationExtending Probabilistic Dynamic Epistemic Logic
Extendng Probablstc Dynamc Epstemc Logc Joshua Sack May 29, 2008 Probablty Space Defnton A probablty space s a tuple (S, A, µ), where 1 S s a set called the sample space. 2 A P(S) s a σalgebra: a set
More informationUsing Series to Analyze Financial Situations: Present Value
2.8 Usng Seres to Analyze Fnancal Stuatons: Present Value In the prevous secton, you learned how to calculate the amount, or future value, of an ordnary smple annuty. The amount s the sum of the accumulated
More informationHeterogeneous Paths Through College: Detailed Patterns and Relationships with Graduation and Earnings
Heterogeneous Paths Through College: Detaled Patterns and Relatonshps wth Graduaton and Earnngs Rodney J. Andrews The Unversty of Texas at Dallas and the Texas Schools Project Jng L The Unversty of Tulsa
More informationPSYCHOLOGICAL RESEARCH (PYC 304C) Lecture 12
14 The Chsquared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed
More informationTHE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES
The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered
More informationBERNSTEIN POLYNOMIALS
OnLne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful
More informationColocalization of Fluorescent Probes
Colocalzaton of Fluorescent Probes APPLICATION NOTE #1 1. Introducton Fluorescence labelng technques are qute useful to mcroscopsts. Not only can fluorescent probes label subcellular structures wth a
More informationOnline Learning from Experts: Minimax Regret
E0 370 tatstcal Learnng Theory Lecture 2 Nov 24, 20) Onlne Learnng from Experts: Mn Regret Lecturer: hvan garwal crbe: Nkhl Vdhan Introducton In the last three lectures we have been dscussng the onlne
More informationarxiv:1109.1256v1 [qfin.pm] 6 Sep 2011
WORKING PAPER December 2010 Fnancal Analysts Journal Volume 67, No. 4 July/August 2011, p. 4249 arxv:1109.1256v1 [qfn.pm] 6 Sep 2011 Dversfcaton Return, Portfolo Rebalancng, and the Commodty Return Puzzle
More informationOverview. Naive Bayes Classifiers. A Sample Data Set. Frequencies and Probabilities. Connectionist and Statistical Language Processing
Overvew Nave Bayes Classfers Connectonst and Statstcal Language Processng Frank Keller keller@col.unsb.de Computerlngustk Unverstät des Saarlandes Sample data set wth frequences and probabltes Classfcaton
More informationHÜCKEL MOLECULAR ORBITAL THEORY
1 HÜCKEL MOLECULAR ORBITAL THEORY In general, the vast maorty polyatomc molecules can be thought of as consstng of a collecton of two electron bonds between pars of atoms. So the qualtatve pcture of σ
More informationExhaustive Regression. An Exploration of RegressionBased Data Mining Techniques Using Super Computation
Exhaustve Regresson An Exploraton of RegressonBased Data Mnng Technques Usng Super Computaton Antony Daves, Ph.D. Assocate Professor of Economcs Duquesne Unversty Pttsburgh, PA 58 Research Fellow The
More informationEvaluating credit risk models: A critique and a new proposal
Evaluatng credt rsk models: A crtque and a new proposal Hergen Frerchs* Gunter Löffler Unversty of Frankfurt (Man) February 14, 2001 Abstract Evaluatng the qualty of credt portfolo rsk models s an mportant
More informationFormula of Total Probability, Bayes Rule, and Applications
1 Formula of Total Probablty, Bayes Rule, and Applcatons Recall that for any event A, the par of events A and A has an ntersecton that s empty, whereas the unon A A represents the total populaton of nterest.
More informationSolutions to the exam in SF2862, June 2009
Solutons to the exam n SF86, June 009 Exercse 1. Ths s a determnstc perodcrevew nventory model. Let n = the number of consdered wees,.e. n = 4 n ths exercse, and r = the demand at wee,.e. r 1 = r = r
More informationNuno Vasconcelos UCSD
Bayesan parameter estmaton Nuno Vasconcelos UCSD 1 Maxmum lkelhood parameter estmaton n three steps: 1 choose a parametrc model for probabltes to make ths clear we denote the vector of parameters by Θ
More informationThe Magnetic Field. Concepts and Principles. Moving Charges. Permanent Magnets
. The Magnetc Feld Concepts and Prncples Movng Charges All charged partcles create electrc felds, and these felds can be detected by other charged partcles resultng n electrc force. However, a completely
More informationInstitute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic
Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange
More informationEE 4343 Lab#1 Identification of Static Motor Module Parameters
EE 4343 Lab# Identfcaton of Statc Motor Module Parameters Prepared by: Stacy Cason Updated: Wednesday, May 26, 999 The block dagram for the DC motor module to be used n today s lab s shown below. (Fgure
More informationQUANTUM MECHANICS, BRAS AND KETS
PH575 SPRING QUANTUM MECHANICS, BRAS AND KETS The followng summares the man relatons and defntons from quantum mechancs that we wll be usng. State of a phscal sstem: The state of a phscal sstem s represented
More informationHOUSEHOLDS DEBT BURDEN: AN ANALYSIS BASED ON MICROECONOMIC DATA*
HOUSEHOLDS DEBT BURDEN: AN ANALYSIS BASED ON MICROECONOMIC DATA* Luísa Farnha** 1. INTRODUCTION The rapd growth n Portuguese households ndebtedness n the past few years ncreased the concerns that debt
More informationToday s class. Chapter 13. Sources of uncertainty. Decision making with uncertainty
Today s class Probablty theory Bayesan nference From the ont dstrbuton Usng ndependence/factorng From sources of evdence Chapter 13 1 2 Sources of uncertanty Uncertan nputs Mssng data Nosy data Uncertan
More informationMacro Factors and Volatility of Treasury Bond Returns
Macro Factors and Volatlty of Treasury Bond Returns Jngzh Huang Department of Fnance Smeal Colleage of Busness Pennsylvana State Unversty Unversty Park, PA 16802, U.S.A. Le Lu School of Fnance Shangha
More informationAnalysis of Smallsignal Transistor Amplifiers
Analyss of Smallsgnal Transstor Amplfers On completon of ths chapter you should be able to predct the behaour of gen transstor amplfer crcuts by usng equatons and/or equalent crcuts that represent the
More information7.5. Present Value of an Annuity. Investigate
7.5 Present Value of an Annuty Owen and Anna are approachng retrement and are puttng ther fnances n order. They have worked hard and nvested ther earnngs so that they now have a large amount of money on
More informationState function: eigenfunctions of hermitian operators> normalization, orthogonality completeness
Schroednger equaton Basc postulates of quantum mechancs. Operators: Hermtan operators, commutators State functon: egenfunctons of hermtan operators> normalzaton, orthogonalty completeness egenvalues and
More informationHYPOTHESIS TESTING OF PARAMETERS FOR ORDINARY LINEAR CIRCULAR REGRESSION
HYPOTHESIS TESTING OF PARAMETERS FOR ORDINARY LINEAR CIRCULAR REGRESSION Abdul Ghapor Hussn Centre for Foundaton Studes n Scence Unversty of Malaya 563 KUALA LUMPUR Emal: ghapor@umedumy Abstract Ths paper
More informationCLUSTER SAMPLING DR. SHALABH DEPARTMENT OF MATHEMATICS AND STATISTICS INDIAN INSTITUTE OF TECHNOLOGY KANPUR 1
amplng Theory MODULE IX LECTURE  30 CLUTER AMPLIG DR HALABH DEPARTMET OF MATHEMATIC AD TATITIC IDIA ITITUTE OF TECHOLOGY KAPUR It s one of the asc assumptons n any samplng procedure that the populaton
More informationHALL EFFECT SENSORS AND COMMUTATION
OEM770 5 Hall Effect ensors H P T E R 5 Hall Effect ensors The OEM770 works wth threephase brushless motors equpped wth Hall effect sensors or equvalent feedback sgnals. In ths chapter we wll explan how
More information