CHAPTER 5 FUZZY LOGIC CONTROLLER FOR THE CONICAL TANK PROCESS


 Joshua Gilbert
 10 months ago
 Views:
Transcription
1 99 CHAPTER 5 FUZZY LOGIC CONTROLLER FOR THE CONICAL TANK PROCESS 5.1 INTRODUCTION Fuzzy Logic Controllers are normally preferred for control applications, due to their fault tolerance, knowledge representation, expert knowledge, nonlinearity, uncertainty, real time operation, etc. The Fuzzy Logic Controller basically consists of three elements, viz, fuzzification, fuzzy inference engine, and defuzzification. To control the nonlinear conical tank process, the Mamdani type of Fuzzy Logic Controller is designed. In this work, the Fuzzy Logic Controller is selected as a controller for the nonlinear conical tank process, and its performance is compared with that of the Neuro tuned PI Controller. The simulation results are obtained by the servo, regulatory and servoregulatory operations, for the above mentioned controllers, for the conical tank level process. 5.2 BLOCK DIAGRAM REPRESENTATION OF THE FUZZY LOGIC CONTROLLER The fuzzy set theory concept was proposed by Lotfi A.Zadeh of the University of California in his paper published in The fuzzy logic representations found in the Fuzzy set theory, try to capture the way humans represent and reason with real world knowledge in the context of uncertainty. The word fuzziness means, vagueness, cloudiness, unclearness and
2 100 indistinctness ; it was used in Washing machines, Refrigerators, Nuclear reactors, Automobiles, and Traffic Light Control, and many such uses were developed by the Japanese. The input variables in the fuzzy control system can be mapped into the set of membership functions which is termed as a Fuzzy set. The set of variables obeys the Boolean logic expression, and has the same characteristics of individual elements called Crisp set. The block diagram representation of a Fuzzy Logic Controller is shown in Figure 5.1. The Fuzzy Logic Controller consists of three basic elements: Fuzzification, Fuzzy Inference Engine, Defuzzification. Knowledge Base Rule Base Reference Input + _ Fuzzification Fuzzy Inference Engine Defuzzification Process Controlled Output Sensor Figure 5.1 Block diagram representation of Fuzzy Logic Controller 1. Fuzzification The Fuzzy Logic Controller requires that each input or output variable, which defines the control surface, can be expressed in fuzzy set notations using Linguistic levels. The linguistic values of each input and output variable divide its universe of discourse into adjacent intervals, to form the membership functions. The membership value denotes the extent to which
3 101 a variable belongs to a particular level. Fuzzification is the process of converting the crisp value into a fuzzy one. The different methods used for fuzzification may be : Ranking order method, Intuition, Inference, Neural networks, Genetic Algorithm, Inductive reasoning method, etc. For this work, the rank ordering method is preferred and used. 2. Knowledge based system The Knowledge based system consists of a data base and a rule base. Data based knowledge is used to form the linguistic variables to match the process with a controlled variable. The physical normalization and scaling factor can be done by this part. 3. Fuzzy Rules The fuzzy rule based system, which is used to represent the human knowledge, is in the form of natural language expression. The behaviour of the control surface relates the input and output variables of the system, and is governed by a set of rules. Normally, the IFTHEN rule form is preferred. A typical rule would be : where If x is A and y is B, then Z = f(x,y) (5.1) A,B = Fuzzy sets in the antecedent Z= f(x,y) = Crisp function consequence to the input variables x and y 4. Fuzzy Inference Engine When a set of input variables are read, a rule that has any degree of truth in its premise, fires and contributes to the forming of the control surface by approximately modifying it. When all the rules are fired, then the resulting
4 102 control surface is expressed as a fuzzy set, to represent the constraint output. The above operation is termed as Fuzzy Inference Engine. Two types of popular methods used for designing the inference engine of the Fuzzy Logic Controller are: Composition based Interface (Through MaxMin Composition operation) and Rule base matrix. For this work, the Mamdani Fuzzy model is used for the conical tank process. The inference used in this work is the maxmin method where the min operation is used for the and conjunction, and max is used for the or conjunction. Thus, the membership function of the input is obtained for each rule. The value is the firing value for each rule. 5. Defuzzification Defuzzification is the block which converts the fuzzy quantity into crisp quantity. The different methods available for defuzzification may be : Maximum membership function method, Weighted average method, First in or Last out of the maximum, Centre of the Largest area, etc. (Thimorthy J. Ross). The most prevalent method is the centroid method, which utilizes the following formula: µ ( ) = µ( ) µ( ) (5.2) where µ=membership degree of the output of x 5.3 DEVELOPMENT OF THE FUZZY LOGIC CONTROLLER To design the Fuzzy Logic Controller (FLC), the variable which can represent the dynamic performance of the plant to be controlled, should
5 103 be chosen as the input to the controller. The Fuzzy Logic Controller has two input variables, namely, the error (e) and the rate of change of error (de), which produces the control signal (cs). The input and output variables are converted into Linguistic variables. This case consists of five fuzzy subsets, labeled as: Negatively Big (NB), Negatively Small (NS), Absolutely Zero (AZ), Positively Small (PS) and Positively Big (PB). Each membership function has two parameters, that may be the centre and the width of the triangular functions Selection of the Triangular Membership function of the Fuzzy Logic Controller For the design of the membership function, normally the triangle is selected. The Justification for selecting the triangular membership function in the Fuzzy Logic Controller is as follows: i. The triangular membership function has a left point, centre point and right point, by which we can calculate the slope of the triangle and obtain the best performance. ii. By changing the overlap (Point of crossover between successive triangles) and sensitivity (Modify the shape of the membership function), the effect on the performance of the controller is modified. iii. The triangular membership function response produces : satisfactory transient response without any oscillations and also produces minimum settling time. minimum steady state error. speed of response is fast, and similarly, the speed of the overshoot is to be exactly equal to zero.
6 104 The minimum error in the set point changes, and a negligible overshoot at sudden load also changes Membership function of the Fuzzy Logic Controller follows: The membership functions of the Fuzzy Logic Controller are as 1. Membership function of the input variable error For the Fuzzy Logic Controller, the membership function of the input variable error, and the degree of membership function are shown in Figure 5.2. Figure 5.2 Membership function for the input variable error representation in FLC 2. Membership function for the input variable of the rate of change of error For the Fuzzy Logic Controller, the membership function of the input variable of the rate of change of error, and the degree of membership function are shown in Figure 5.3.
7 105 Figure 5.3 Membership functions for the input variable of the rate of change of error representation in FLC 3. Membership function for the Output or Controller variable For the Fuzzy Logic Controller, the membership function of the output variable or control signal, and the degree of membership function are shown in Figure 5.4. Figure 5.4 Membership functions for the output variable representation in FLC
8 Rule base tabulation of the Fuzzy Logic Controller The input error (e) and the rate of change of error (de) combination which produces the change in the control signal (cs) for the fuzzy rule base, is shown in Tabulation 5.1. The tabulation can be obtained, based on five fuzzy Linguistic variables as: Negatively Big (NB), Negatively Small (NS), Absolutely Zero (AZ), Positively Small (PS) and Positively Big (PB). Table 5.1 Rule base tabulation for the Fuzzy Logic Controller de e PB PS AZ NS NB PB PB PB PB PS AZ PS PB PS PS AZ NS AZ PB PS AZ NS NB NS PS AZ NS NS NB NB AZ NS NB NB NB 5.4 SIMULATION RESULTS Servo operation with the Fuzzy Logic Controller In the servo operation, the process with load variable needs to be a constant, and the set point value is a variable. The closed loop servo response for the nonlinear conical tank process is obtained, for the variation of the set point value, using the Fuzzy Logic Controller. For the servo operation, the simulation diagram for the Fuzzy Logic Controller with the height of 20 cm from 0 to 500 Seconds and further the height is increased 10 cm from 500 to 1000 Seconds is shown in Figure 5.5.
9 107 e ISE ITSE ITAE IAE Performance Indices 1 Display 1 de Memory1 Fin Lev el e Fuzzy Logic Controller1 Conical Tank 1 Scope 1 Setpoint Level 1 Setpoint Level 2 Figure 5.5 Simulation diagram of the Fuzzy Logic Controller for the conical tank process in the Servo operation The simulated diagram of the Fuzzy Inference System (FIS), Rule viewer representation and Surface viewer representation of the designed Fuzzy Logic Controller are shown in Figures 5.6, 5.7 and Fuzzy Inference System Editor The Fuzzy Inference System (FIS) editor displays the information about a fuzzy inference system. In the fuzzy inference system, the two inputs represented are: the left side of the inputs are error (e) and rate of change of error (de), and the right side of the output is the control signal (cs). The
10 108 simulated diagram of the Fuzzy Inference System (FIS) for the design of the Fuzzy Logic Controller is shown in Figure 5.6. Figure 5.6 Simulated diagram of the Fuzzy Inference System 2. Rule viewer The rule viewer shows how the shape of certain membership functions influences the overall result. The two inputs variables are : error (e) and the rate of change of error (de), which produce the control signal (cs). The simulated diagram of the rule viewer for the design of the Fuzzy Logic Controller is shown in Figure 5.7.
11 109 Figure 5.7 Simulated rule viewer of the Fuzzy Logic Controller 3. Surface Viewer The surface viewer is a three dimensional curve that represents the mapping. The surface viewer represents the 2inputs for our application X (error), Y (rate of change of error) and the single output Z (control signal). The simulated diagram of the surface viewer for the design of the Fuzzy Logic Controller is shown in Figure 5.8.
12 110 Figure 5.8 Simulated surface viewer of the Fuzzy Logic Controller The simulated output graphs for Level versus Time, Error signal versus Time and Control signal versus Time are shown in Figures 5.9, 5.10 and 5.11.The control signal magnitude is made consistent through gain adjustment. For the servo operation, the performance index values such as ISE, ITSE, IAE, ITAE, and the Time domain specifications are obtained and tabulated in Table 5.2.
13 111 Figure 5.9 Process variables versus Time graph for the Servo operation of the Fuzzy Logic Controller for the conical tank process with the height of 20 cm and further the height is increased 10 cm Figure 5.10 Error signal versus Time graph for the Servo operation of the Fuzzy Logic Controller for the conical tank process
14 112 Figure 5.11 Control signal versus Time graph for the Servo Operation of the Fuzzy Logic Controller for the Conical tank process Regulatory operation with the Fuzzy Logic Controller In the regulatory operation, the set point value needs to be a constant and the process with the load variable is a variable. The closed loop regulatory response for the nonlinear conical tank process, using the Fuzzy Logic Controller is obtained for the variation of the load. For the regulatory operation, the simulation diagram of the Fuzzy Logic Controller for the height of 30 cm from 0 to 1000 Seconds with +10% Load changes after 800 Seconds, is shown in Figure The simulated output graphs for Level versus Time, Error signal versus Time and Control signal versus Time, are shown in Figures 5.13, 5.14 and For the regulatory operation, the performance index values such as ISE, ITSE, IAE, ITAE, and the Time domain specifications are obtained and tabulated in Table 5.2.
15 113 e ISE ITSE ITAE IAE Perfo rma nce Ind ices 1 Display 1 de M em ory1 Fin e Fuzzy Logic Control ler1 D Lev el Conica l T ank 1 Scope 1 Setpoint Level 1 Disturbance 1 Figure 5.12 Simulation diagram of the Fuzzy Logic Controller for the conical tank process in the Regulatory operation Figure 5.13 Process Level versus Time graph for the Regulatory Operation of the Fuzzy Logic Controller for the Conical tank for the height of 30 cm with +10% Load changes after 800 Seconds
16 114 Figure 5.14 Error signal versus Time graph for the Regulatory operation of the Fuzzy Logic Controller for the Conical tank process Figure 5.15 Control signal versus Time graph for the Regulatory Operation of the Fuzzy Logic Controller for the Conical tank process
17 ServoRegulatory operation with the Fuzzy Logic Controller In the Servoregulatory operation, the set point is variable and the process with load variable is also variable. For the variation of the set point value with the load variable changes, the closed loop servoregulatory response for the nonlinear conical tank process with the Fuzzy Logic Controller is obtained. The simulation diagram of the Fuzzy Logic Controller for height of 20 cm from 0 to 500 Seconds and further height is increased 10 cm from 500 to 1000 Seconds with the load changes of +10% after 800 Seconds is shown in Figure The simulated output graphs for Level versus Time, Error signal versus Time and Control signal versus Time, are shown in Figures 5.17, 5.18 and For the Servoregulatory operation, the performance index values such as ISE, ITSE, IAE, ITAE, and the Time domain specifications are obtained and tabulated in table 5.1. ISE e ITSE ITAE IAE Performance Indices 1 Display 1 de Memory1 Fin e Fuzzy Logic Controller1 D Lev el Conical T ank 1 Scope 1 Setpoint Level 1 Setpoint Level 2 Disturbance 1 Figure 5.16 Simulation diagram of the Fuzzy Logic Controller for the Conical tank process in the ServoRegulatory operation
18 116 Figure 5.17 Process variable versus Time graph for the Servo Regulatory operation of the Fuzzy Logic Controller for the conical tank process with the height of 20 cm and further the height is increased 10 cm with +10% Load changes after 800 Seconds Figure 5.18 Error signal versus Time graph for the ServoRegulatory operation of the Fuzzy Logic Controller for the conical tank process
19 117 Figure 5.19 Control signal versus Time graph for the Servo Regulatory operation of the Fuzzy Logic Controller for the conical tank process In Table 5.2 of results, the performance index values, and time domain specifications depend on the dead time or delay of the process. In the present case, the delay time is chosen as 15 Seconds, corresponding to the height of 30 cm of the conical tank. The designed Fuzzy Logic Controller is compared with the Neuro tuned PI Controller for the conical tank process, and operated by the servo tracking, regulatory, and servoregulatory operations. The controller performance is evaluated by the performance index values of error minimization, and Time domain specification criteria.
20 118 Table 5.2 Comparison of the Performance index values and Time domain specifications of the Fuzzy Logic Controller with the Neuro tuned PI Controller for the conical tank process in the Servo, Regulatory and ServoRegulatory operations Performance index values and Time domain specifications Regulatory operation Fuzzy Logic Controller Servo Operation Regulatory Operation Servo Servo Regulatory operation Neuro tuned PI Controller Servo Operation Regulatory Operation ISE ITSE ITAE IAE Peak overshoot (M p ) Settling time (T s ) 115Sec 110Sec 152Sec 188.5Sec 185 Sec 195.8Sec Steady state error (e ss ) For the servo operation, the Fuzzy Logic Controller and Neuro tuned PI Controller are operated at the height of 20 cm from 0 to 500 Seconds and further the height is increased 10 cm from 500 to 1000 Seconds. In servo operation, the above controller s performance index values such as ISE, ITSE, IAE, ITAE, and the Time domain specifications such as peak over shoot (M p ), settling time (T s ) and steady state error (e ss ) are obtained and tabulated in Table 5.2. From the table, it is observed that the Fuzzy Logic Controller produces better performance values and Time domain specifications, when compared with the Neuro tuned PI Controller. From this, it is concluded that the Fuzzy Logic Controller can produce faster settling response, when compared with the Neuro tuned PI Controller in the servo operation. In the regulatory operation, the Fuzzy Logic Controller and Neuro tuned PI Controller are operated at the height of 30 cm from 0 to 1000 Seconds with +10 % load changes after 800 Seconds. In the regulatory operation, the Fuzzy Logic Controller s performance index values such as
21 119 ISE, ITSE, IAE, ITAE, and the Time domain specifications, such as peak over shoot (M p ), settling time (T s ) and steady state error (e ss ) are obtained and tabulated in Table 5.2. From the table, it is observed that the Fuzzy Logic Controller produces better performance values and Time domain specifications, when compared with the Neuro tuned PI Controller. From this, it is concluded that the Fuzzy Logic Controller can produce faster settling response when compared with the Neuro tuned PI Controller in regulatory operation. Similarly, in the servoregulatory operation, the Fuzzy Logic Controller and Neuro tuned PI Controller are operated at the height of 20 cm from 0 to 500 Seconds and further the height is increased 10 cm from 500 Seconds to 1000 Seconds with +10% Load changes after 800 Seconds. In the servoregulatory operation, the above controller s performance index values such as ISE, ITSE, IAE, ITAE, and the Time domain specifications, such as peak over shoot (M p ), settling time (T s ) and steady state error (e ss ) are obtained, and tabulated in Table 5.2. From the table, it is observed that the Fuzzy Logic Controller produces better performance values and Time domain specifications when compared with the Neuro tuned PI Controller. From this, it is concluded that the Fuzzy Logic Controller can produce faster settling response, when compared with the Neuro tuned PI Controller in the servoregulatory operation. From the servo, regulatory and servoregulatory operations, it is seen that the Fuzzy Logic Controller is able to produce faster response with minimum error, and is also preferable for the conical tank process, when compared with the Neuro tuned PI Controller. Further, Ganesh Ram et al. (2012) developed the Adaptive tuned Fuzzy PI Controller for conical tank process. But in this work, the Fuzzy Logic Controller for Conical tank process is developed, in which this
22 120 controller response produces a settling time and an error less than the one reported in Ganesh Ram et al. (2012). This shows that the developed Fuzzy Logic Controller performs better than the adaptive tuned Fuzzy PI controller of Ganesh Ram et al. 5.5 SUMMARY AND CONCLUSION This chapter presented the design of the Fuzzy Logic Controller for the conical tank level process. The simulation results are obtained for this controller by adjusting the set point changes, load changes and change in set point with load changes. It shows that the response oscillations are reduced for the set point variations, load variations and change in set point with load variations for the Fuzzy Logic Controller as against the Neuro tuned PI Controller. From the graph, it is seen that the Fuzzy Logic Controller produces the minimum peak over shoot and faster settling time. For the above changes in the set point, load changes and change in setpoint with load changes, the Fuzzy Logic Controller is able to produce a faster response when compared to the Neuro tuned PI Controller, Genetic Algorithm tuned PI Controller and Conventional PI Controller. The Fuzzy Logic Controller produces less error and better performance index values, viz., ISE, ITSE, IAE, ITAE. The Fuzzy Logic Controller of the conical tank process also produces better time domain specifications, when compared to the Neuro tuned PI Controller, Genetic Algorithm tuned PI Controller and Conventional PI Controller. The designed controller s performance is also tested in another nonlinear process, called the ph process, and the same is discussed in the next Chapter.
DESIGN OF TUNING METHODS OF PID CONTROLLER USING FUZZY LOGIC
DESIGN OF TUNING METHODS OF PID CONTROLLER USING FUZZY LOGIC Venugopal P, 41994/4d, durganagar colony,chittoor, 9500359576, Ajanta Ganguly,95/2/1/1,Abinash Banerjee Lane,shibpur,Howrah711102,West Bengal,
More informationImplementation of Fuzzy and PID Controller to Water Level System using LabView
Implementation of Fuzzy and PID Controller to Water Level System using LabView Laith Abed Sabri, Ph.D University of Baghdad ALKhwarizmi college of Engineering Hussein Ahmed ALMshat University of Baghdad
More informationMatlab simulation of temperature control of heat exchanger using different controllers
Automation, Control and Intelligent Systems 2014; 2(1): 15 ublished online March 10, 2014 (http://www.sciencepublishinggroup.com/j/acis) doi: 10.11648/j.acis.20140201.11 Matlab simulation of temperature
More informationComparison of Fuzzy PID Controller with Conventional PID Controller in Controlling the Speed of a Brushless DC Motor
Comparison of Fuzzy PID Controller with Conventional PID Controller in Controlling the Speed of a Brushless DC Motor S. Sunisith 1, Lizi Joseph 2, M. Saritha 3 sunisith@gmail.com, lizialex06@gmail.com,
More informationPerformance analysis of FL, PI and PID controller for AGC and AVR of a TwoArea Power System
International Journal of Scientific and Research Publications, Volume 5, Issue 1, January 2015 1 Performance analysis of FL, PI and PID controller for AGC and AVR of a TwoArea Power System Chandrashekar.M.J
More informationA Fuzzy Logic LoadFrequency Controller for Power Systems
A Fuzzy Logic LoadFrequency Controller for Power Systems İsmail H. Altaş and Jelle Neyens 2 Department Of Electrical and Electronics Engineering, Karadeniz Technical University, Trabzon, Turkey ihaltas@altas.org
More informationProblems often have a certain amount of uncertainty, possibly due to: Incompleteness of information about the environment,
Uncertainty Problems often have a certain amount of uncertainty, possibly due to: Incompleteness of information about the environment, E.g., loss of sensory information such as vision Incorrectness in
More informationIntroduction to Fuzzy Control
Introduction to Fuzzy Control Marcelo Godoy Simoes Colorado School of Mines Engineering Division 1610 Illinois Street Golden, Colorado 804011887 USA Abstract In the last few years the applications of
More informationJAVA FUZZY LOGIC TOOLBOX FOR INDUSTRIAL PROCESS CONTROL
JAVA FUZZY LOGIC TOOLBOX FOR INDUSTRIAL PROCESS CONTROL Bruno Sielly J. Costa, Clauber G. Bezerra, Luiz Affonso H. G. de Oliveira Instituto Federal de Educação Ciência e Tecnologia do Rio Grande do Norte
More informationStabilizing a Gimbal Platform using SelfTuning Fuzzy PID Controller
Stabilizing a Gimbal Platform using SelfTuning Fuzzy PID Controller Nourallah Ghaeminezhad Collage Of Automation Engineering Nuaa Nanjing China Wang Daobo Collage Of Automation Engineering Nuaa Nanjing
More informationDefuzzification. Convert fuzzy grade to Crisp output. *Fuzzy Engineering, Bart Kosko
Defuzzification Convert fuzzy grade to Crisp output *Fuzzy Engineering, Bart Kosko Defuzzification (Cont.) Centroid Method: the most prevalent and physically appealing of all the defuzzification methods
More informationTO CONTROL THE CHARACTERISTICS OF AC MOTOR USING FUZZY LOGIC CONTROLLER
TO CONTROL THE CHARACTERISTICS OF AC MOTOR USING FUZZY LOGIC CONTROLLER Sandeep Goyat 1, Dr.Meena Tushir 2 1 Electrical Department, Research Scholar JJT University, Rajasthan, (India). 2 Electrical Department,
More informationPerformance Evaluation of Membership Functions on Fuzzy Logic Controlled AC Voltage Controller for Speed Control of Induction Motor Drive
Performance Evaluation of Membership Functions on Fuzzy Logic Controlled AC Voltage Controller for Speed Control of Induction Motor Drive J. Gayathri Monicka Dr. N.O.Guna Sekhar Bharath University, Chenni
More informationA FUZZY LOGIC APPROACH FOR SALES FORECASTING
A FUZZY LOGIC APPROACH FOR SALES FORECASTING ABSTRACT Sales forecasting proved to be very important in marketing where managers need to learn from historical data. Many methods have become available for
More informationEMPLOYEE PERFORMANCE APPRAISAL SYSTEM USING FUZZY LOGIC
EMPLOYEE PERFORMANCE APPRAISAL SYSTEM USING FUZZY LOGIC ABSTRACT Adnan Shaout* and Mohamed Khalid Yousif** *The Department of Electrical and Computer Engineering The University of Michigan Dearborn, MI,
More informationIntroduction to Fuzzy Logic using MATLAB
S.N. Sivanandam, S. Sumathi and S.N. Deepa Introduction to Fuzzy Logic using MATLAB With 304 Figures and 37 Tables &j Springer Contents 1 Introduction 1 1.1 Fuzzy Logic 1 1.2 Mat LAB  An Overview 6 2
More informationGenetic Tuning of Fuzzy Inference System for Furnace Temperature Controller
Genetic Tuning of Fuzzy Inference System for Furnace Controller Rachana R. Mudholkar, Umesh V. Somnatti P. G. Department of Computer Science and Engineering Dr. M. S. Sheshgiri College of Engineering and
More informationOptimized Fuzzy Control by Particle Swarm Optimization Technique for Control of CSTR
International Journal of Computer, Electrical, Automation, Control and Information Engineering Vol:5, No:, 20 Optimized Fuzzy Control by Particle Swarm Optimization Technique for Control of CSTR Saeed
More informationA Hybrid PSO_Fuzzy_PID Controller for Gas Turbine Speed Control
A Hybrid PSO_Fuzzy_PID Controller for Gas Turbine Speed Control Azadeh Mansouri Mansourabad 1, Mohammad Taghi Hamidi Beheshti 2 and Mohsen Simab 1 Department of Technical and Engineering, International
More informationSpace Vector Pulse Width Modulation Based Speed Control of Induction Motor using Fuzzy PI Controller
Space Vector Pulse Width Modulation Based Speed Control of Induction Motor using Fuzzy PI Controller R. Arulmozhiyal, Member, IEEE, K. Baskaran, Member, IEEE Abstract This paper presents design and implements
More informationMULTIOBJECTIVE GENETIC OPTIMISATION FOR SELFORGANISING FUZZY LOGIC CONTROL
MULTIOBJECTIVE GENETIC OPTIMISATION FOR SELFORGANISING FUZZY LOGIC CONTROL M.F. Abbod, M. Mahfouf and D.A. Linkens University of Sheffield, Sheffield, UK A multiobjective genetic algorithm is developed
More informationFPGA Implementation of ThreePhase Induction Motor Speed Control Using Fuzzy Logic and Logic Based PWM Technique
FPGA Implementation of ThreePhase Induction Motor Speed Control Using Fuzzy Logic and Logic Based PWM Technique R.P. Dhobale Prof. D.M. Chandwadkar Abstract This paper presents the design and implementation
More informationA FuzzyBased Speed Control of DC Motor Using Combined Armature Voltage and Field Current
3rd IFAC International Conference on Intelligent Control and Automation Science. A FuzzyBased Speed Control of DC Motor Using Combined Armature Voltage and Field Current A. A. Sadiq* G. A. Bakare* E.
More informationSliding Mode Fuzzy Logic Control of an Unstable Bioreactor
A publication of 113 CHEMICAL ENGINEERING TRANSACTIONS VOL. 3, 013 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 013, AIDIC Servizi S.r.l., ISBN 978889560835; ISSN 19749791 The Italian Association
More informationAdvanced Controllers Using Fuzzy Logic Controller (FLC) for Performance Improvement
Advanced Controllers Using Fuzzy Logic Controller (FLC) for Performance Improvement Kapil Dev Sharma 1, M. Ayyub 2, Sumit Saroha 3, Ahmad Faras 4 Department of Electrical Engineering, AMU Aligarh, India
More informationFuzzy Logic Derivation and Simulation of a ThreeVariable Solar Water Heater Using Matlab Fuzzy Logic Toolbox
Fuzzy Logic Derivation and Simulation of a ThreeVariable Solar Water Heater Using Matlab Fuzzy Logic Toolbox Rionel Belen Caldo Faculty Member and Research Coordinator, College of Engineering and Computer
More informationFUZZY LOGIC CONTROLLER FOR PHOTOVOLTAIC ARRAY SIMULATOR
FUZZY LOGIC CONTROLLER FOR PHOTOVOLTAIC ARRAY SIMULATOR R.Raja 1, L.Udhaya kumar 2, S.Rakesh kumar 3 School of Electrical and Electronics Engineering, SASTRA university, Tirumalaisamudram, Thanjavur613401,
More informationProject Management Efficiency A Fuzzy Logic Approach
Project Management Efficiency A Fuzzy Logic Approach Vinay Kumar Nassa, Sri Krishan Yadav Abstract Fuzzy logic is a relatively new technique for solving engineering control problems. This technique can
More informationDesign and Analysis of Speed Control Using Hybrid PIDFuzzy Controller for Induction Motors
Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 62015 Design and Analysis of Speed Control Using Hybrid PIDFuzzy Controller for Induction Motors Ahmed Fattah Western
More informationMULTIPHASE FUZZY CONTROL OF SINGLE INTERSECTION IN TRAFFIC SYSTEM BASED ON GENETIC ALGORITHM. Received February 2011; revised June 2011
International Journal of Innovative Computing, Information and Control ICIC International c 2012 ISSN 13494198 Volume 8, Number 5(A), May 2012 pp. 3387 3397 MULTIPHASE FUZZY CONTROL OF SINGLE INTERSECTION
More informationReal time MATLAB Interface for speed control of Induction motor drive using dspic 30F4011
Real time MATLAB Interface for speed control of Induction motor drive using dspic 30F4011 R. Arulmozhiyal Senior Lecturer, Sona College of Technology, Salem, TamilNadu, India. K. Baskaran Assistant Professor,
More informationStabilization of Frequency Deviation in an ACDC Interconnected Power Systems Using Supervisory Fuzzy Controller
Tamkang Journal of Science and Engineering, Vol. 14, No. 4, pp. 341 349 (2011) 341 Stabilization of Frequency Deviation in an ACDC Interconnected Power Systems Using Supervisory Fuzzy Controller S. Ramesh
More informationFuzzy Logic Control Implementation of Rectilinear Plant with Inverted Pendulum
Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics San Antonio, TX, USA  October 2009 Fuzzy Logic Control Implementation of Rectilinear Plant with Inverted Pendulum
More informationDetection of DDoS Attack Scheme
Chapter 4 Detection of DDoS Attac Scheme In IEEE 802.15.4 low rate wireless personal area networ, a distributed denial of service attac can be launched by one of three adversary types, namely, jamming
More informationFuzzy Logic based Reactive Power Control System in Radial Feeder
Fuzzy Logic based Reactive Power Control System in Radial Feeder Bijaya Lubanjar Pursuing B.E. Degree in Electrical Chandra Khatri Received B.E. Degree in Electrical Pradip Neupane Received B.E. Degree
More informationChapter 2 Introduction
Chapter 2 Introduction Preface As part of the Fuzzy Inference System [?], the Matlab environment offers some reliable tools, which allow characterising fuzzy problems. These include: The FIS (Fuzzy Inference
More informationFuzzy Set Theory : Soft Computing Course Lecture 29 34, notes, slides RC Chakraborty, Aug.
Fuzzy Set Theory : Soft Computing Course Lecture 29 34, notes, slides www.myreaders.info/, RC Chakraborty, email rcchak@gmail.com, Aug. 10, 2010 http://www.myreaders.info/html/soft_computing.html www.myreaders.info
More informationFIRE AND SMOKE DETECTION WITHOUT SENSORS: IMAGE PROCESSING BASED APPROACH
FIRE AND SMOKE DETECTION WITHOUT SENSORS: IMAGE PROCESSING BASED APPROACH Turgay Çelik, Hüseyin Özkaramanlı, and Hasan Demirel Electrical and Electronic Engineering, Eastern Mediterranean University Gazimağusa,
More informationA Fuzzy Controller for Blood GlucoseInsulin System
Journal of Signal and Information Processing, 213, 4, 111117 http://dx.doi.org/1.4236/jsip.213.4215 Published Online May 213 (http://www.scirp.org/journal/jsip) 111 Ahmed Y. Ben Sasi 1, Mahmud A. Elmalki
More informationSaumil Navalbhai Patel B.E., Gujarat University, India, 2007 PROJECT. Submitted in partial satisfaction of the requirements for the degree of
POWER LOAD BALANCING USING FUZZY LOGIC Saumil Navalbhai Patel B.E., Gujarat University, India, 2007 PROJECT Submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in
More informationInteractive Fuzzy Interval Reasoning for smart Web shopping
Applied Soft Computing 5 (2005) 433 439 www.elsevier.com/locate/asoc Interactive Fuzzy Interval Reasoning for smart Web shopping Fuyu Liu, Hongli Geng, YanQing Zhang* Department of Computer Science, Georgia
More informationFUZZY LOGIC SYSTEMS. 1. Why Fuzzy Logic? Environmental Control Air Conditioners Humidifiers
FUZZY LOGIC SYSTEMS James Vernon: Visiting Consultant Scientist, control systems principles.co.uk ABSTRACT: This is one of a series of white papers on systems modelling, analysis and control, prepared
More informationMODELING AND SIMULATION OF STATIC VAR COMPENSATOR FUZZY CONTROL FOR POWER SYSTEM STABILITY ENHANCEMENT
The 6 th edition of the Interdisciplinarity in Engineering International Conference Petru Maior University of Tîrgu Mureş, Romania, 202 MODELING AND SIMULATION OF STATIC VAR COMPENSATOR FUZZY CONTROL FOR
More informationPetraFuz: a Low Cost Embedded Controller Based Fuzzy Logic Development System
PetraFuz: a Low Cost Embedded Controller Based Fuzzy Logic Development System Thiang, Anies Hannawati, Resmana Lim and Hany Ferdinando Electrical Engineering Department, Petra Christian University Siwalankerto
More informationSurvey paper. Adaptive Fuzzy Logic Controllers for DC Drives: A Survey of the State of the art
E. E. Elkholy A. M. Dabroom General Organization for Technical Education and Vocational Training, College of Telecom. & Electronics, R & D Center, Jeddah, Saudi Arabia. eelkholy@yahoo.com amdabroom@yahoo.com
More informationFuzzy Priority CPU Scheduling Algorithm
www.ijcsi.org 386 Fuzzy CPU Scheduling Algorithm Bashir Alam 1, M.N. Doja 1, R. Biswas 3, M. Alam 4 1 Department of Computer Engineering, Jamia Millia Islamia 2 Department of Computer Engineering, Jamia
More informationAnother fuzzy membership function that is often used to represent vague, linguistic terms is the Gaussian which is given by:
Gaussian Membership Functions Another fuzzy membership function that is often used to represent vague, linguistic terms is the Gaussian which is given by: µ A i(x) = exp( (c i x) 2 ), (1) 2σ 2 i where
More informationDIAGNOSIS OF THE JAUNDICE USING FUZZY EXPERT SYSTEM
DIAGNOSIS OF THE JAUNDICE USING FUZZY EXPERT SYSTEM Nitin Sahai 1,Deepshikha Shrivastava 2, Pankaj Srivastava 3 1 Department of Biomedical Engineering, North Eastern Hill University, Shillong 2 Department
More informationEECE 460 : Control System Design
EECE 460 : Control System Design PID Controller Design and Tuning Guy A. Dumont UBC EECE January 2012 Guy A. Dumont (UBC EECE) EECE 460 PID Tuning January 2012 1 / 37 Contents 1 Introduction 2 Control
More informationPROBABILISTIC AND FUZZY FAULTTREE ANALYSES FOR MODELLING CAVEIN ACCIDENTS
H.M. AlHumaidi, Int. J. of Safety and Security Eng., Vol. 3, No. 3 (2013) 165 173 PROBABILISTIC AND FUZZY FAULTTREE ANALYSES FOR MODELLING CAVEIN ACCIDENTS H.M. ALHUMAIDI Kuwait University, Kuwait.
More informationMETHOD OF COMPUTATIONAL INTELLIGENCE IN POWER ELECTRONICS
METHOD OF COMPUTATIONAL INTELLIGENCE IN POWER ELECTRONICS Adriana FLORESCU, Dan Alexandru STOICHESCU, Dumitru STANCIU University Politehnica of Bucharest, Faculty of Electronics and Telecommunications,
More informationPID Controlled Automatic Voltage Regulator with Load Frequency Control
I J E E E C International Journal of Electrical, Electronics ISSN No. (Online): 22772626 and Computer Engineering 5(2): 0510(2016) PID Controlled Automatic Voltage Regulator with Load Frequency Control
More informationDynamic Simulation of Induction Motor Drive using Neuro Controller
Int. J. on Recent Trends in Engineering and Technology, Vol. 1, No. 2, Jan 214 Dynamic Simulation of Induction Motor Drive using Neuro Controller P. M. Menghal 1, A. Jaya Laxmi 2, N.Mukhesh 3 1 Faculty
More informationIMPLEMENTING FUZZY LOGIC IN DETERMINING SELLING PRICE
IMPLEMENTING FUZZY LOGIC IN DETERMINING SELLING PRICE (Danny Prabowo Soetanto) IMPLEMENTING FUZZY LOGIC IN DETERMINING SELLING PRICE Danny Prabowo Soetanto Dosen Fakultas Teknik Jurusan Teknik Industri
More informationstable response to load disturbances, e.g., an exothermic reaction.
C REACTOR TEMPERATURE control typically is very important to product quality, production rate and operating costs. With continuous reactors, the usual objectives are to: hold temperature within a certain
More informationAn Investigation Of Productivity In Boilers Of Thermal Power Plants With Fuzzy Gain Scheduled PI Controller
Int.J.Eng.Research & Development,Vol.2,No.1,January 2010 45 An Investigation Of Productivity In Boilers Of Thermal Plants With Fuzzy Gain Scheduled PI Controller İlhan KOCAARSLAN 1, Ertuğrul ÇAM 2, Hasan
More informationFuzzy Logic Operation Control for PVDieselBattery Hybrid Energy System
70 The Open Renewable Energy Journal, 2009, 2, 7078 Open Access Fuzzy Logic Operation Control for PVDieselBattery Hybrid Energy System Abd ElShafy A. Nafeh* Electronics Research Institute, Cairo, Egypt
More informationDeferring Elimination of Design Alternatives in Object Oriented Methods
Deferring Elimination of Design Alternatives in Object Oriented Methods Mehmet Aksit and Francesco Marcelloni TRESE project, Department of Computer Science, University of Twente, P.O. Box 217, 7500 AE
More informationCONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. XVII  Fuzzy Control Systems  Jens Jäkel, Ralf Mikut and Georg Bretthauer
FUZZY CONTROL SYSTEMS Jens Jäkel, Ralf Mikut and Institute of Applied Computer Science, Forschungszentrum Karlsruhe GmbH, Germany Keywords: Adaptation, defuzzification, expert knowledge, fuzzification,
More informationA FUZZY PI CONTROLLER APPLICATION IN BOILERS OF THERMAL POWER PLANTS
A FUZZY PI CONTROLLER APPLICATION IN BOILERS OF THERMAL POWER PLANTS İlhan Kocaarslan 1 Ertuğrul Çam 2 Hasan Tiryaki 3 M. Cengiz Taplamacıoğlu 4 1,2,3 Kirikkale University, Department of Electrical & Electronics
More informationA Learning Fuzzy System for Looper Control in Rolling Mills
A Learning Fuzzy System for Looper Control in Rolling Mills F. JanabiSharifi J. Fan Department of Mechanical Engineering Quad Engineering Inc. Ryerson Polytechnic University North Yor, Ontario, Canada
More informationObject Following Fuzzy Controller for a Mobile Robot
Copyright 2012 American Scientific Publishers All rights reserved Printed in the United States of America Journal of Computational Intelligence and Electronic Systems Vol. 1, 1 5, 2012 Irfan Ullah 1, Furqan
More informationWater Resources Research Report
THE UNIVERSITY OF WESTERN ONTARIO DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING Water Resources Research Report Water Resources Decision Making Under Uncertainty By: Dejan Vucetic and S. P. Simonovic
More informationA simple method to determine control valve performance and its impacts on control loop performance
A simple method to determine control valve performance and its impacts on control loop performance Keywords Michel Ruel p.eng., Top Control Inc. Process optimization, tuning, stiction, hysteresis, backlash,
More informationFast Fuzzy Control of Warranty Claims System
Journal of Information Processing Systems, Vol.6, No.2, June 2010 DOI : 10.3745/JIPS.2010.6.2.209 Fast Fuzzy Control of Warranty Claims System SangHyun Lee*, Sung Eui Cho* and Kyungli Moon** Abstract
More informationGenetic Optimization Tuning of an Automatic Voltage Regulator System
Genetic Optimization Tuning of an Automatic Voltage Regulator System Sapna Bhati, Dhiiraj Nitnawwre Depart,ent of Electronics and Telecommunication, IETDAVV Indore M.P. India Sapna_cit@yahoo.com, dheerajnitnaware@gmail.com
More informationDESIGN OF WATER LEVEL CONTROLLER USING FUZZY LOGIC SYSTEM
DESIGN OF WATER LEVEL CONTROLLER USING FUZZY LOGIC SYSTEM Thesis submitted in partial fulfilment of the requirements for the degree of Bachelor of Technology (B. Tech) In Mechanical Engineering By Harshdeep
More information1733 P a g e. Keywords: PI, Fuzzy controller, DVR, Voltage sags, Voltage swells.
(IJERA) ISS: 22489622 www.ijera.com Mitigation Of Voltage Sags/Swells By Dynamic Voltage Restorer Using i And Fuzzy Logic Controller CH SRISAILAM 1,A SREEIVAS 2 Asst.rofessors, Department Of Electrical
More informationComputational Intelligence Introduction
Computational Intelligence Introduction Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2011 Farzaneh Abdollahi Neural Networks 1/21 Fuzzy Systems What are
More informationModeling and Simulation of Fuzzy Logic Variable Speed Drive Controller
Chapter 4 Modeling and Simulation of Fuzzy Logic Variable Speed Drive Controller 4.1 Introduction Fuzzy logic is an important part of artificial intelligence. In recent times, artificial intelligence techniques
More informationFUZZY ROUND ROBIN CPU SCHEDULING ALGORITHM
Journal of Computer Science 9 (8): 10791085, 2013 ISSN: 15493636 2013 doi:10.3844/jcssp.2013.1079.1085 Published Online 9 (8) 2013 (http://www.thescipub.com/jcs.toc) FUZZY ROUND ROBIN CPU SCHEDULING
More informationA FUZZY MATHEMATICAL MODEL FOR PEFORMANCE TESTING IN CLOUD COMPUTING USING USER DEFINED PARAMETERS
A FUZZY MATHEMATICAL MODEL FOR PEFORMANCE TESTING IN CLOUD COMPUTING USING USER DEFINED PARAMETERS A.Vanitha Katherine (1) and K.Alagarsamy (2 ) 1 Department of Master of Computer Applications, PSNA College
More informationY(s) U(s) The continuous process transfer function is denoted by G: (Eq.4.40)
The Process PID control tuner provides the open and closed loop process system responses for a continuous process model (G) with a continuous PID controller (Gc). The Process model can be characterized
More informationFuzzy Logic Based Reactivity Control in Nuclear Power Plants
Fuzzy Logic Based Reactivity Control in Nuclear Power Plants Narrendar.R.C 1, Tilak 2 P.G. Student, Department of Mechatronics Engineering, VIT University, Vellore, India 1 P.G. Student, Department of
More informationReview of some concepts in predictive modeling
Review of some concepts in predictive modeling Brigham and Women s Hospital HarvardMIT Division of Health Sciences and Technology HST.951J: Medical Decision Support A disjoint list of topics? Naïve Bayes
More informationArtificial Intelligence: Fuzzy Logic Explained
Artificial Intelligence: Fuzzy Logic Explained Fuzzy logic for most of us: It s not as fuzzy as you might think and has been working quietly behind the scenes for years. Fuzzy logic is a rulebased system
More informationAdaptive Optimal Scheduling of Public Utility Buses in Metro Manila Using Fuzzy Logic Controller
Adaptive Optimal Scheduling of Public Utility Buses in Metro Manila Using Fuzzy Logic Controller Cyrill O. Escolano a*, Elmer P. Dadios a, and Alexis D. Fillone a a Gokongwei College of Engineering De
More informationMARCIN DETYNIECKI LIP6  CNRS University of Paris VI 4, place Jussieu Paris, France
vol. 8 (5), pp. 573592, 2. RANKING FUZZY NUMBERS USING WEIGHTED VALUATIONS MARCIN DETYNIECKI LIP6  CNRS University of Paris VI 4, place Jussieu 755 Paris, France Marcin.Detyniecki@lip6.fr RONALD R.
More informationBrushless DC Motor Speed Control using both PI Controller and Fuzzy PI Controller
Brushless DC Motor Speed Control using both PI Controller and Fuzzy PI Controller Ahmed M. Ahmed MSc Student at Computers and Systems Engineering Mohamed S. Elksasy Assist. Prof at Computers and Systems
More information
FUZZY HRRN CPU SCHEDULING ALGORITHM 1 Bashir Alam, 1 M.N. Doja, 2 R. Biswas, 3 M. Alam 1 Department of Computer Engineering, Jamia Millia Islamia, New Delhi, India 2 Department of Computer Science and
More informationProcess Control & Instrumentation part IV Control loops
This chapter aims to bring basic knowledge of control strategies in HVAC systems through a real case study: Temperature control of an open office. Objectives: At the end of this course, you should be able
More informationD A T A M I N I N G C L A S S I F I C A T I O N
D A T A M I N I N G C L A S S I F I C A T I O N FABRICIO VOZNIKA LEO NARDO VIA NA INTRODUCTION Nowadays there is huge amount of data being collected and stored in databases everywhere across the globe.
More informationFuzzy Implication Rules. Adnan Yazıcı Dept. of Computer Engineering, Middle East Technical University Ankara/Turkey
Fuzzy Implication Rules Adnan Yazıcı Dept. of Computer Engineering, Middle East Technical University Ankara/Turkey Fuzzy IfThen Rules Remember: The difference between the semantics of fuzzy mapping rules
More informationFuzzy Classification of Human Skin Color in Color Images
Fuzzy Classification of Human Skin Color in Color Images I. A. G. Boaventura, V. M. Volpe, I. N. da Silva, A. Gonzaga Abstract In this paper a fuzzy approach for the classification of skin color tones
More informationConception and Development of a Health Care Risk Management System
2011 International Conference on Biomedical Engineering and Technology IPCBEE vol.11 (2011) (2011) IACSIT Press, Singapore Conception and Development of a Health Care Risk Management System Nesrine Zoghlami,
More informationFuzzy decision trees
Fuzzy decision trees Catalin Pol Abstract Decision trees are arguably one of the most popular choices for learning and reasoning systems, especially when it comes to learning from discrete valued (feature
More informationLeran Wang and Tom Kazmierski {lw04r,tjk}@ecs.soton.ac.uk
BMAS 2005 VHDLAMS based genetic optimization of a fuzzy logic controller for automotive active suspension systems Leran Wang and Tom Kazmierski {lw04r,tjk}@ecs.soton.ac.uk Outline Introduction and system
More informationModels for Inexact Reasoning. Fuzzy Logic Lesson 1 Crisp and Fuzzy Sets. Master in Computational Logic Department of Artificial Intelligence
Models for Inexact Reasoning Fuzzy Logic Lesson 1 Crisp and Fuzzy Sets Master in Computational Logic Department of Artificial Intelligence Origins and Evolution of Fuzzy Logic Origin: Fuzzy Sets Theory
More informationSimulation of VSIFed Variable Speed Drive Using PIFuzzy based SVMDTC Technique
Simulation of VSIFed Variable Speed Drive Using PIFuzzy based SVMDTC Technique B.Hemanth Kumar 1, Dr.G.V.Marutheshwar 2 PG Student,EEE S.V. College of Engineering Tirupati Senior Professor,EEE dept.
More informationRISK ASSESSMENT BASED UPON FUZZY SET THEORY
RISK ASSESSMENT BASED UPON FUZZY SET THEORY László POKORÁDI, professor, University of Debrecen pokoradi@mfk.unideb.hu KEYWORDS: risk management; risk assessment; fuzzy set theory; reliability. Abstract:
More informationReal Time Traffic Balancing in Cellular Network by Multi Criteria Handoff Algorithm Using Fuzzy Logic
Real Time Traffic Balancing in Cellular Network by Multi Criteria Handoff Algorithm Using Fuzzy Logic Solomon.T.Girma 1, Dominic B. O. Konditi 2, Edward N. Ndungu 3 1 Department of Electrical Engineering,
More informationTime Response Analysis of DC Motor using Armature Control Method and Its Performance Improvement using PID Controller
Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 5, (6): 566 Research Article ISSN: 394658X Time Response Analysis of DC Motor using Armature Control Method
More informationControl of the Heating System with Fuzzy Logic
World Applied Sciences Journal 23 (11): 14411447, 2013 ISSN 18184952 IDOSI Publications, 2013 DOI: 10.5829/idosi.wasj.2013.23.11.13156 Control of the Heating System with Fuzzy Logic Iskandar Souleiman
More informationABSTRACT. Keyword double rotary inverted pendulum, fuzzy logic controller, nonlinear system, LQR, MATLAB software 1 PREFACE
DESIGN OF FUZZY LOGIC CONTROLLER FOR DOUBLE ROTARY INVERTED PENDULUM Dyah Arini, Dr.Ing. Ir. Yul Y. Nazaruddin, M.Sc.DIC, Dr. Ir. M. Rohmanuddin, MT. Physics Engineering Department Institut Teknologi
More informationDEVELOPMENT OF NEURO FUZZY CONTROLLER ALGORITHM FOR AIR CONDITIONING SYSTEM
DEVELOPMENT OF NEURO FUZZY CONTROLLER ALGORITHM FOR AIR CONDITIONING SYSTEM ARSHDEEP KAUR University College of Engineering, Punjabi University, Patiala, Punjab 147002, India arshdeep_24@yahoo.in AMRIT
More informationIntrusion Detection Using Data Mining Along Fuzzy Logic and Genetic Algorithms
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No., February 8 7 Intrusion Detection Using Data Mining Along Fuzzy Logic and Genetic Algorithms Y.Dhanalakshmi and Dr.I. Ramesh
More informationFS I: Fuzzy Sets and Fuzzy Logic. L.A.Zadeh, Fuzzy Sets, Information and Control, 8(1965)
FS I: Fuzzy Sets and Fuzzy Logic Fuzzy sets were introduced by Zadeh in 1965 to represent/manipulate data and information possessing nonstatistical uncertainties. L.A.Zadeh, Fuzzy Sets, Information and
More informationA Fuzzy Logic Based Approach for Selecting the Software Development Methodologies Based on Factors Affecting the Development Strategies
Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 2015, 2(7): 7075 Research Article ISSN: 2394658X A Fuzzy Logic Based Approach for Selecting the Software Development
More informationRealization of Fuzzy Logic in Temperature Control System over PID
Realization of Fuzzy Logic in Temperature Control System over PID Anil Kumar.K Jyoshna. P PG Student, Dept. of EEE Asst. Professor, Dept. of EEE Siddharth Institute Of Engg. & Technology, Puttur Siddharth
More informationFD20GPS Intelligent control.
Data Acquisition for hydraulic & process engineers Save your process by prompt action. Reduce down time. Save on fuel bills. now with remote GPS Intelligent control. System monitor & data logging 4 Channel
More information