CHAPTER 5 FUZZY LOGIC CONTROLLER FOR THE CONICAL TANK PROCESS

Size: px
Start display at page:

Download "CHAPTER 5 FUZZY LOGIC CONTROLLER FOR THE CONICAL TANK PROCESS"

Transcription

1 99 CHAPTER 5 FUZZY LOGIC CONTROLLER FOR THE CONICAL TANK PROCESS 5.1 INTRODUCTION Fuzzy Logic Controllers are normally preferred for control applications, due to their fault tolerance, knowledge representation, expert knowledge, nonlinearity, uncertainty, real time operation, etc. The Fuzzy Logic Controller basically consists of three elements, viz, fuzzification, fuzzy inference engine, and defuzzification. To control the nonlinear conical tank process, the Mamdani type of Fuzzy Logic Controller is designed. In this work, the Fuzzy Logic Controller is selected as a controller for the nonlinear conical tank process, and its performance is compared with that of the Neuro tuned PI Controller. The simulation results are obtained by the servo, regulatory and servo-regulatory operations, for the above mentioned controllers, for the conical tank level process. 5.2 BLOCK DIAGRAM REPRESENTATION OF THE FUZZY LOGIC CONTROLLER The fuzzy set theory concept was proposed by Lotfi A.Zadeh of the University of California in his paper published in The fuzzy logic representations found in the Fuzzy set theory, try to capture the way humans represent and reason with real world knowledge in the context of uncertainty. The word fuzziness means, vagueness, cloudiness, unclearness and

2 100 indistinctness ; it was used in Washing machines, Refrigerators, Nuclear reactors, Automobiles, and Traffic Light Control, and many such uses were developed by the Japanese. The input variables in the fuzzy control system can be mapped into the set of membership functions which is termed as a Fuzzy set. The set of variables obeys the Boolean logic expression, and has the same characteristics of individual elements called Crisp set. The block diagram representation of a Fuzzy Logic Controller is shown in Figure 5.1. The Fuzzy Logic Controller consists of three basic elements: Fuzzification, Fuzzy Inference Engine, Defuzzification. Knowledge Base Rule Base Reference Input + _ Fuzzification Fuzzy Inference Engine Defuzzification Process Controlled Output Sensor Figure 5.1 Block diagram representation of Fuzzy Logic Controller 1. Fuzzification The Fuzzy Logic Controller requires that each input or output variable, which defines the control surface, can be expressed in fuzzy set notations using Linguistic levels. The linguistic values of each input and output variable divide its universe of discourse into adjacent intervals, to form the membership functions. The membership value denotes the extent to which

3 101 a variable belongs to a particular level. Fuzzification is the process of converting the crisp value into a fuzzy one. The different methods used for fuzzification may be : Ranking order method, Intuition, Inference, Neural networks, Genetic Algorithm, Inductive reasoning method, etc. For this work, the rank ordering method is preferred and used. 2. Knowledge based system The Knowledge based system consists of a data base and a rule base. Data based knowledge is used to form the linguistic variables to match the process with a controlled variable. The physical normalization and scaling factor can be done by this part. 3. Fuzzy Rules The fuzzy rule based system, which is used to represent the human knowledge, is in the form of natural language expression. The behaviour of the control surface relates the input and output variables of the system, and is governed by a set of rules. Normally, the IF-THEN rule form is preferred. A typical rule would be : where If x is A and y is B, then Z = f(x,y) (5.1) A,B = Fuzzy sets in the antecedent Z= f(x,y) = Crisp function consequence to the input variables x and y 4. Fuzzy Inference Engine When a set of input variables are read, a rule that has any degree of truth in its premise, fires and contributes to the forming of the control surface by approximately modifying it. When all the rules are fired, then the resulting

4 102 control surface is expressed as a fuzzy set, to represent the constraint output. The above operation is termed as Fuzzy Inference Engine. Two types of popular methods used for designing the inference engine of the Fuzzy Logic Controller are: Composition based Interface (Through Max-Min Composition operation) and Rule base matrix. For this work, the Mamdani Fuzzy model is used for the conical tank process. The inference used in this work is the max-min method where the min operation is used for the and conjunction, and max is used for the or conjunction. Thus, the membership function of the input is obtained for each rule. The value is the firing value for each rule. 5. Defuzzification Defuzzification is the block which converts the fuzzy quantity into crisp quantity. The different methods available for defuzzification may be : Maximum membership function method, Weighted average method, First in or Last out of the maximum, Centre of the Largest area, etc. (Thimorthy J. Ross). The most prevalent method is the centroid method, which utilizes the following formula: µ ( ) = µ( ) µ( ) (5.2) where µ=membership degree of the output of x 5.3 DEVELOPMENT OF THE FUZZY LOGIC CONTROLLER To design the Fuzzy Logic Controller (FLC), the variable which can represent the dynamic performance of the plant to be controlled, should

5 103 be chosen as the input to the controller. The Fuzzy Logic Controller has two input variables, namely, the error (e) and the rate of change of error (de), which produces the control signal (cs). The input and output variables are converted into Linguistic variables. This case consists of five fuzzy subsets, labeled as: Negatively Big (NB), Negatively Small (NS), Absolutely Zero (AZ), Positively Small (PS) and Positively Big (PB). Each membership function has two parameters, that may be the centre and the width of the triangular functions Selection of the Triangular Membership function of the Fuzzy Logic Controller For the design of the membership function, normally the triangle is selected. The Justification for selecting the triangular membership function in the Fuzzy Logic Controller is as follows: i. The triangular membership function has a left point, centre point and right point, by which we can calculate the slope of the triangle and obtain the best performance. ii. By changing the overlap (Point of cross-over between successive triangles) and sensitivity (Modify the shape of the membership function), the effect on the performance of the controller is modified. iii. The triangular membership function response produces : satisfactory transient response without any oscillations and also produces minimum settling time. minimum steady state error. speed of response is fast, and similarly, the speed of the overshoot is to be exactly equal to zero.

6 104 The minimum error in the set point changes, and a negligible overshoot at sudden load also changes Membership function of the Fuzzy Logic Controller follows: The membership functions of the Fuzzy Logic Controller are as 1. Membership function of the input variable error For the Fuzzy Logic Controller, the membership function of the input variable error, and the degree of membership function are shown in Figure 5.2. Figure 5.2 Membership function for the input variable error representation in FLC 2. Membership function for the input variable of the rate of change of error For the Fuzzy Logic Controller, the membership function of the input variable of the rate of change of error, and the degree of membership function are shown in Figure 5.3.

7 105 Figure 5.3 Membership functions for the input variable of the rate of change of error representation in FLC 3. Membership function for the Output or Controller variable For the Fuzzy Logic Controller, the membership function of the output variable or control signal, and the degree of membership function are shown in Figure 5.4. Figure 5.4 Membership functions for the output variable representation in FLC

8 Rule base tabulation of the Fuzzy Logic Controller The input error (e) and the rate of change of error (de) combination which produces the change in the control signal (cs) for the fuzzy rule base, is shown in Tabulation 5.1. The tabulation can be obtained, based on five fuzzy Linguistic variables as: Negatively Big (NB), Negatively Small (NS), Absolutely Zero (AZ), Positively Small (PS) and Positively Big (PB). Table 5.1 Rule base tabulation for the Fuzzy Logic Controller de e PB PS AZ NS NB PB PB PB PB PS AZ PS PB PS PS AZ NS AZ PB PS AZ NS NB NS PS AZ NS NS NB NB AZ NS NB NB NB 5.4 SIMULATION RESULTS Servo operation with the Fuzzy Logic Controller In the servo operation, the process with load variable needs to be a constant, and the set point value is a variable. The closed loop servo response for the nonlinear conical tank process is obtained, for the variation of the set point value, using the Fuzzy Logic Controller. For the servo operation, the simulation diagram for the Fuzzy Logic Controller with the height of 20 cm from 0 to 500 Seconds and further the height is increased 10 cm from 500 to 1000 Seconds is shown in Figure 5.5.

9 107 e ISE ITSE ITAE IAE Performance Indices 1 Display 1 de Memory1 Fin Lev el e Fuzzy Logic Controller1 Conical Tank 1 Scope 1 Setpoint Level 1 Setpoint Level 2 Figure 5.5 Simulation diagram of the Fuzzy Logic Controller for the conical tank process in the Servo operation The simulated diagram of the Fuzzy Inference System (FIS), Rule viewer representation and Surface viewer representation of the designed Fuzzy Logic Controller are shown in Figures 5.6, 5.7 and Fuzzy Inference System Editor The Fuzzy Inference System (FIS) editor displays the information about a fuzzy inference system. In the fuzzy inference system, the two inputs represented are: the left side of the inputs are error (e) and rate of change of error (de), and the right side of the output is the control signal (cs). The

10 108 simulated diagram of the Fuzzy Inference System (FIS) for the design of the Fuzzy Logic Controller is shown in Figure 5.6. Figure 5.6 Simulated diagram of the Fuzzy Inference System 2. Rule viewer The rule viewer shows how the shape of certain membership functions influences the overall result. The two inputs variables are : error (e) and the rate of change of error (de), which produce the control signal (cs). The simulated diagram of the rule viewer for the design of the Fuzzy Logic Controller is shown in Figure 5.7.

11 109 Figure 5.7 Simulated rule viewer of the Fuzzy Logic Controller 3. Surface Viewer The surface viewer is a three dimensional curve that represents the mapping. The surface viewer represents the 2-inputs for our application X (error), Y (rate of change of error) and the single output Z (control signal). The simulated diagram of the surface viewer for the design of the Fuzzy Logic Controller is shown in Figure 5.8.

12 110 Figure 5.8 Simulated surface viewer of the Fuzzy Logic Controller The simulated output graphs for Level versus Time, Error signal versus Time and Control signal versus Time are shown in Figures 5.9, 5.10 and 5.11.The control signal magnitude is made consistent through gain adjustment. For the servo operation, the performance index values such as ISE, ITSE, IAE, ITAE, and the Time domain specifications are obtained and tabulated in Table 5.2.

13 111 Figure 5.9 Process variables versus Time graph for the Servo operation of the Fuzzy Logic Controller for the conical tank process with the height of 20 cm and further the height is increased 10 cm Figure 5.10 Error signal versus Time graph for the Servo operation of the Fuzzy Logic Controller for the conical tank process

14 112 Figure 5.11 Control signal versus Time graph for the Servo Operation of the Fuzzy Logic Controller for the Conical tank process Regulatory operation with the Fuzzy Logic Controller In the regulatory operation, the set point value needs to be a constant and the process with the load variable is a variable. The closed loop regulatory response for the nonlinear conical tank process, using the Fuzzy Logic Controller is obtained for the variation of the load. For the regulatory operation, the simulation diagram of the Fuzzy Logic Controller for the height of 30 cm from 0 to 1000 Seconds with +10% Load changes after 800 Seconds, is shown in Figure The simulated output graphs for Level versus Time, Error signal versus Time and Control signal versus Time, are shown in Figures 5.13, 5.14 and For the regulatory operation, the performance index values such as ISE, ITSE, IAE, ITAE, and the Time domain specifications are obtained and tabulated in Table 5.2.

15 113 e ISE ITSE ITAE IAE Perfo rma nce Ind ices 1 Display 1 de M em ory1 Fin e Fuzzy Logic Control ler1 D Lev el Conica l T ank 1 Scope 1 Setpoint Level 1 Disturbance 1 Figure 5.12 Simulation diagram of the Fuzzy Logic Controller for the conical tank process in the Regulatory operation Figure 5.13 Process Level versus Time graph for the Regulatory Operation of the Fuzzy Logic Controller for the Conical tank for the height of 30 cm with +10% Load changes after 800 Seconds

16 114 Figure 5.14 Error signal versus Time graph for the Regulatory operation of the Fuzzy Logic Controller for the Conical tank process Figure 5.15 Control signal versus Time graph for the Regulatory Operation of the Fuzzy Logic Controller for the Conical tank process

17 Servo-Regulatory operation with the Fuzzy Logic Controller In the Servo-regulatory operation, the set point is variable and the process with load variable is also variable. For the variation of the set point value with the load variable changes, the closed loop servo-regulatory response for the nonlinear conical tank process with the Fuzzy Logic Controller is obtained. The simulation diagram of the Fuzzy Logic Controller for height of 20 cm from 0 to 500 Seconds and further height is increased 10 cm from 500 to 1000 Seconds with the load changes of +10% after 800 Seconds is shown in Figure The simulated output graphs for Level versus Time, Error signal versus Time and Control signal versus Time, are shown in Figures 5.17, 5.18 and For the Servo-regulatory operation, the performance index values such as ISE, ITSE, IAE, ITAE, and the Time domain specifications are obtained and tabulated in table 5.1. ISE e ITSE ITAE IAE Performance Indices 1 Display 1 de Memory1 Fin e Fuzzy Logic Controller1 D Lev el Conical T ank 1 Scope 1 Setpoint Level 1 Setpoint Level 2 Disturbance 1 Figure 5.16 Simulation diagram of the Fuzzy Logic Controller for the Conical tank process in the Servo-Regulatory operation

18 116 Figure 5.17 Process variable versus Time graph for the Servo- Regulatory operation of the Fuzzy Logic Controller for the conical tank process with the height of 20 cm and further the height is increased 10 cm with +10% Load changes after 800 Seconds Figure 5.18 Error signal versus Time graph for the Servo-Regulatory operation of the Fuzzy Logic Controller for the conical tank process

19 117 Figure 5.19 Control signal versus Time graph for the Servo- Regulatory operation of the Fuzzy Logic Controller for the conical tank process In Table 5.2 of results, the performance index values, and time domain specifications depend on the dead time or delay of the process. In the present case, the delay time is chosen as 15 Seconds, corresponding to the height of 30 cm of the conical tank. The designed Fuzzy Logic Controller is compared with the Neuro tuned PI Controller for the conical tank process, and operated by the servo tracking, regulatory, and servo-regulatory operations. The controller performance is evaluated by the performance index values of error minimization, and Time domain specification criteria.

20 118 Table 5.2 Comparison of the Performance index values and Time domain specifications of the Fuzzy Logic Controller with the Neuro tuned PI Controller for the conical tank process in the Servo, Regulatory and Servo-Regulatory operations Performance index values and Time domain specifications Regulatory operation Fuzzy Logic Controller Servo Operation Regulatory Operation Servo- Servo- Regulatory operation Neuro tuned PI Controller Servo Operation Regulatory Operation ISE ITSE ITAE IAE Peak overshoot (M p ) Settling time (T s ) 115Sec 110Sec 152Sec 188.5Sec 185 Sec 195.8Sec Steady state error (e ss ) For the servo operation, the Fuzzy Logic Controller and Neuro tuned PI Controller are operated at the height of 20 cm from 0 to 500 Seconds and further the height is increased 10 cm from 500 to 1000 Seconds. In servo operation, the above controller s performance index values such as ISE, ITSE, IAE, ITAE, and the Time domain specifications such as peak over shoot (M p ), settling time (T s ) and steady state error (e ss ) are obtained and tabulated in Table 5.2. From the table, it is observed that the Fuzzy Logic Controller produces better performance values and Time domain specifications, when compared with the Neuro tuned PI Controller. From this, it is concluded that the Fuzzy Logic Controller can produce faster settling response, when compared with the Neuro tuned PI Controller in the servo operation. In the regulatory operation, the Fuzzy Logic Controller and Neuro tuned PI Controller are operated at the height of 30 cm from 0 to 1000 Seconds with +10 % load changes after 800 Seconds. In the regulatory operation, the Fuzzy Logic Controller s performance index values such as

21 119 ISE, ITSE, IAE, ITAE, and the Time domain specifications, such as peak over shoot (M p ), settling time (T s ) and steady state error (e ss ) are obtained and tabulated in Table 5.2. From the table, it is observed that the Fuzzy Logic Controller produces better performance values and Time domain specifications, when compared with the Neuro tuned PI Controller. From this, it is concluded that the Fuzzy Logic Controller can produce faster settling response when compared with the Neuro tuned PI Controller in regulatory operation. Similarly, in the servo-regulatory operation, the Fuzzy Logic Controller and Neuro tuned PI Controller are operated at the height of 20 cm from 0 to 500 Seconds and further the height is increased 10 cm from 500 Seconds to 1000 Seconds with +10% Load changes after 800 Seconds. In the servo-regulatory operation, the above controller s performance index values such as ISE, ITSE, IAE, ITAE, and the Time domain specifications, such as peak over shoot (M p ), settling time (T s ) and steady state error (e ss ) are obtained, and tabulated in Table 5.2. From the table, it is observed that the Fuzzy Logic Controller produces better performance values and Time domain specifications when compared with the Neuro tuned PI Controller. From this, it is concluded that the Fuzzy Logic Controller can produce faster settling response, when compared with the Neuro tuned PI Controller in the servoregulatory operation. From the servo, regulatory and servo-regulatory operations, it is seen that the Fuzzy Logic Controller is able to produce faster response with minimum error, and is also preferable for the conical tank process, when compared with the Neuro tuned PI Controller. Further, Ganesh Ram et al. (2012) developed the Adaptive tuned Fuzzy PI Controller for conical tank process. But in this work, the Fuzzy Logic Controller for Conical tank process is developed, in which this

22 120 controller response produces a settling time and an error less than the one reported in Ganesh Ram et al. (2012). This shows that the developed Fuzzy Logic Controller performs better than the adaptive tuned Fuzzy PI controller of Ganesh Ram et al. 5.5 SUMMARY AND CONCLUSION This chapter presented the design of the Fuzzy Logic Controller for the conical tank level process. The simulation results are obtained for this controller by adjusting the set point changes, load changes and change in set point with load changes. It shows that the response oscillations are reduced for the set point variations, load variations and change in set point with load variations for the Fuzzy Logic Controller as against the Neuro tuned PI Controller. From the graph, it is seen that the Fuzzy Logic Controller produces the minimum peak over shoot and faster settling time. For the above changes in the set point, load changes and change in setpoint with load changes, the Fuzzy Logic Controller is able to produce a faster response when compared to the Neuro tuned PI Controller, Genetic Algorithm tuned PI Controller and Conventional PI Controller. The Fuzzy Logic Controller produces less error and better performance index values, viz., ISE, ITSE, IAE, ITAE. The Fuzzy Logic Controller of the conical tank process also produces better time domain specifications, when compared to the Neuro tuned PI Controller, Genetic Algorithm tuned PI Controller and Conventional PI Controller. The designed controller s performance is also tested in another non-linear process, called the ph process, and the same is discussed in the next Chapter.

Implementation of Fuzzy and PID Controller to Water Level System using LabView

Implementation of Fuzzy and PID Controller to Water Level System using LabView Implementation of Fuzzy and PID Controller to Water Level System using LabView Laith Abed Sabri, Ph.D University of Baghdad AL-Khwarizmi college of Engineering Hussein Ahmed AL-Mshat University of Baghdad

More information

Problems often have a certain amount of uncertainty, possibly due to: Incompleteness of information about the environment,

Problems often have a certain amount of uncertainty, possibly due to: Incompleteness of information about the environment, Uncertainty Problems often have a certain amount of uncertainty, possibly due to: Incompleteness of information about the environment, E.g., loss of sensory information such as vision Incorrectness in

More information

A FUZZY LOGIC APPROACH FOR SALES FORECASTING

A FUZZY LOGIC APPROACH FOR SALES FORECASTING A FUZZY LOGIC APPROACH FOR SALES FORECASTING ABSTRACT Sales forecasting proved to be very important in marketing where managers need to learn from historical data. Many methods have become available for

More information

Introduction to Fuzzy Control

Introduction to Fuzzy Control Introduction to Fuzzy Control Marcelo Godoy Simoes Colorado School of Mines Engineering Division 1610 Illinois Street Golden, Colorado 80401-1887 USA Abstract In the last few years the applications of

More information

Stabilizing a Gimbal Platform using Self-Tuning Fuzzy PID Controller

Stabilizing a Gimbal Platform using Self-Tuning Fuzzy PID Controller Stabilizing a Gimbal Platform using Self-Tuning Fuzzy PID Controller Nourallah Ghaeminezhad Collage Of Automation Engineering Nuaa Nanjing China Wang Daobo Collage Of Automation Engineering Nuaa Nanjing

More information

JAVA FUZZY LOGIC TOOLBOX FOR INDUSTRIAL PROCESS CONTROL

JAVA FUZZY LOGIC TOOLBOX FOR INDUSTRIAL PROCESS CONTROL JAVA FUZZY LOGIC TOOLBOX FOR INDUSTRIAL PROCESS CONTROL Bruno Sielly J. Costa, Clauber G. Bezerra, Luiz Affonso H. G. de Oliveira Instituto Federal de Educação Ciência e Tecnologia do Rio Grande do Norte

More information

Optimized Fuzzy Control by Particle Swarm Optimization Technique for Control of CSTR

Optimized Fuzzy Control by Particle Swarm Optimization Technique for Control of CSTR International Journal of Computer, Electrical, Automation, Control and Information Engineering Vol:5, No:, 20 Optimized Fuzzy Control by Particle Swarm Optimization Technique for Control of CSTR Saeed

More information

EMPLOYEE PERFORMANCE APPRAISAL SYSTEM USING FUZZY LOGIC

EMPLOYEE PERFORMANCE APPRAISAL SYSTEM USING FUZZY LOGIC EMPLOYEE PERFORMANCE APPRAISAL SYSTEM USING FUZZY LOGIC ABSTRACT Adnan Shaout* and Mohamed Khalid Yousif** *The Department of Electrical and Computer Engineering The University of Michigan Dearborn, MI,

More information

Project Management Efficiency A Fuzzy Logic Approach

Project Management Efficiency A Fuzzy Logic Approach Project Management Efficiency A Fuzzy Logic Approach Vinay Kumar Nassa, Sri Krishan Yadav Abstract Fuzzy logic is a relatively new technique for solving engineering control problems. This technique can

More information

A Fuzzy-Based Speed Control of DC Motor Using Combined Armature Voltage and Field Current

A Fuzzy-Based Speed Control of DC Motor Using Combined Armature Voltage and Field Current 3rd IFAC International Conference on Intelligent Control and Automation Science. A Fuzzy-Based Speed Control of DC Motor Using Combined Armature Voltage and Field Current A. A. Sadiq* G. A. Bakare* E.

More information

Detection of DDoS Attack Scheme

Detection of DDoS Attack Scheme Chapter 4 Detection of DDoS Attac Scheme In IEEE 802.15.4 low rate wireless personal area networ, a distributed denial of service attac can be launched by one of three adversary types, namely, jamming

More information

Real time MATLAB Interface for speed control of Induction motor drive using dspic 30F4011

Real time MATLAB Interface for speed control of Induction motor drive using dspic 30F4011 Real time MATLAB Interface for speed control of Induction motor drive using dspic 30F4011 R. Arulmozhiyal Senior Lecturer, Sona College of Technology, Salem, TamilNadu, India. K. Baskaran Assistant Professor,

More information

EECE 460 : Control System Design

EECE 460 : Control System Design EECE 460 : Control System Design PID Controller Design and Tuning Guy A. Dumont UBC EECE January 2012 Guy A. Dumont (UBC EECE) EECE 460 PID Tuning January 2012 1 / 37 Contents 1 Introduction 2 Control

More information

A Fuzzy Controller for Blood Glucose-Insulin System

A Fuzzy Controller for Blood Glucose-Insulin System Journal of Signal and Information Processing, 213, 4, 111-117 http://dx.doi.org/1.4236/jsip.213.4215 Published Online May 213 (http://www.scirp.org/journal/jsip) 111 Ahmed Y. Ben Sasi 1, Mahmud A. Elmalki

More information

Saumil Navalbhai Patel B.E., Gujarat University, India, 2007 PROJECT. Submitted in partial satisfaction of the requirements for the degree of

Saumil Navalbhai Patel B.E., Gujarat University, India, 2007 PROJECT. Submitted in partial satisfaction of the requirements for the degree of POWER LOAD BALANCING USING FUZZY LOGIC Saumil Navalbhai Patel B.E., Gujarat University, India, 2007 PROJECT Submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in

More information

stable response to load disturbances, e.g., an exothermic reaction.

stable response to load disturbances, e.g., an exothermic reaction. C REACTOR TEMPERATURE control typically is very important to product quality, production rate and operating costs. With continuous reactors, the usual objectives are to: hold temperature within a certain

More information

A FUZZY MATHEMATICAL MODEL FOR PEFORMANCE TESTING IN CLOUD COMPUTING USING USER DEFINED PARAMETERS

A FUZZY MATHEMATICAL MODEL FOR PEFORMANCE TESTING IN CLOUD COMPUTING USING USER DEFINED PARAMETERS A FUZZY MATHEMATICAL MODEL FOR PEFORMANCE TESTING IN CLOUD COMPUTING USING USER DEFINED PARAMETERS A.Vanitha Katherine (1) and K.Alagarsamy (2 ) 1 Department of Master of Computer Applications, PSNA College

More information

Leran Wang and Tom Kazmierski {lw04r,tjk}@ecs.soton.ac.uk

Leran Wang and Tom Kazmierski {lw04r,tjk}@ecs.soton.ac.uk BMAS 2005 VHDL-AMS based genetic optimization of a fuzzy logic controller for automotive active suspension systems Leran Wang and Tom Kazmierski {lw04r,tjk}@ecs.soton.ac.uk Outline Introduction and system

More information

Simulation of VSI-Fed Variable Speed Drive Using PI-Fuzzy based SVM-DTC Technique

Simulation of VSI-Fed Variable Speed Drive Using PI-Fuzzy based SVM-DTC Technique Simulation of VSI-Fed Variable Speed Drive Using PI-Fuzzy based SVM-DTC Technique B.Hemanth Kumar 1, Dr.G.V.Marutheshwar 2 PG Student,EEE S.V. College of Engineering Tirupati Senior Professor,EEE dept.

More information

Dynamic Simulation of Induction Motor Drive using Neuro Controller

Dynamic Simulation of Induction Motor Drive using Neuro Controller Int. J. on Recent Trends in Engineering and Technology, Vol. 1, No. 2, Jan 214 Dynamic Simulation of Induction Motor Drive using Neuro Controller P. M. Menghal 1, A. Jaya Laxmi 2, N.Mukhesh 3 1 Faculty

More information

Fuzzy Logic Based Reactivity Control in Nuclear Power Plants

Fuzzy Logic Based Reactivity Control in Nuclear Power Plants Fuzzy Logic Based Reactivity Control in Nuclear Power Plants Narrendar.R.C 1, Tilak 2 P.G. Student, Department of Mechatronics Engineering, VIT University, Vellore, India 1 P.G. Student, Department of

More information

Artificial Intelligence: Fuzzy Logic Explained

Artificial Intelligence: Fuzzy Logic Explained Artificial Intelligence: Fuzzy Logic Explained Fuzzy logic for most of us: It s not as fuzzy as you might think and has been working quietly behind the scenes for years. Fuzzy logic is a rulebased system

More information

Computational Intelligence Introduction

Computational Intelligence Introduction Computational Intelligence Introduction Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2011 Farzaneh Abdollahi Neural Networks 1/21 Fuzzy Systems What are

More information

Modeling and Simulation of Fuzzy Logic Variable Speed Drive Controller

Modeling and Simulation of Fuzzy Logic Variable Speed Drive Controller Chapter 4 Modeling and Simulation of Fuzzy Logic Variable Speed Drive Controller 4.1 Introduction Fuzzy logic is an important part of artificial intelligence. In recent times, artificial intelligence techniques

More information

Adaptive Optimal Scheduling of Public Utility Buses in Metro Manila Using Fuzzy Logic Controller

Adaptive Optimal Scheduling of Public Utility Buses in Metro Manila Using Fuzzy Logic Controller Adaptive Optimal Scheduling of Public Utility Buses in Metro Manila Using Fuzzy Logic Controller Cyrill O. Escolano a*, Elmer P. Dadios a, and Alexis D. Fillone a a Gokongwei College of Engineering De

More information

Fast Fuzzy Control of Warranty Claims System

Fast Fuzzy Control of Warranty Claims System Journal of Information Processing Systems, Vol.6, No.2, June 2010 DOI : 10.3745/JIPS.2010.6.2.209 Fast Fuzzy Control of Warranty Claims System Sang-Hyun Lee*, Sung Eui Cho* and Kyung-li Moon** Abstract

More information

Brushless DC Motor Speed Control using both PI Controller and Fuzzy PI Controller

Brushless DC Motor Speed Control using both PI Controller and Fuzzy PI Controller Brushless DC Motor Speed Control using both PI Controller and Fuzzy PI Controller Ahmed M. Ahmed MSc Student at Computers and Systems Engineering Mohamed S. Elksasy Assist. Prof at Computers and Systems

More information

A simple method to determine control valve performance and its impacts on control loop performance

A simple method to determine control valve performance and its impacts on control loop performance A simple method to determine control valve performance and its impacts on control loop performance Keywords Michel Ruel p.eng., Top Control Inc. Process optimization, tuning, stiction, hysteresis, backlash,

More information

N Q.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.

N Q.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. Performance Assessment Task Swimming Pool Grade 9 The task challenges a student to demonstrate understanding of the concept of quantities. A student must understand the attributes of trapezoids, how to

More information

A Fuzzy Logic Based Approach for Selecting the Software Development Methodologies Based on Factors Affecting the Development Strategies

A Fuzzy Logic Based Approach for Selecting the Software Development Methodologies Based on Factors Affecting the Development Strategies Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 2015, 2(7): 70-75 Research Article ISSN: 2394-658X A Fuzzy Logic Based Approach for Selecting the Software Development

More information

Real Time Traffic Balancing in Cellular Network by Multi- Criteria Handoff Algorithm Using Fuzzy Logic

Real Time Traffic Balancing in Cellular Network by Multi- Criteria Handoff Algorithm Using Fuzzy Logic Real Time Traffic Balancing in Cellular Network by Multi- Criteria Handoff Algorithm Using Fuzzy Logic Solomon.T.Girma 1, Dominic B. O. Konditi 2, Edward N. Ndungu 3 1 Department of Electrical Engineering,

More information

5.3 The Cross Product in R 3

5.3 The Cross Product in R 3 53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

More information

DEVELOPMENT OF FUZZY LOGIC MODEL FOR LEADERSHIP COMPETENCIES ASSESSMENT CASE STUDY: KHOUZESTAN STEEL COMPANY

DEVELOPMENT OF FUZZY LOGIC MODEL FOR LEADERSHIP COMPETENCIES ASSESSMENT CASE STUDY: KHOUZESTAN STEEL COMPANY DEVELOPMENT OF FUZZY LOGIC MODEL FOR LEADERSHIP COMPETENCIES ASSESSMENT CASE STUDY: KHOUZESTAN STEEL COMPANY 1 MOHAMMAD-ALI AFSHARKAZEMI, 2 DARIUSH GHOLAMZADEH, 3 AZADEH TAHVILDAR KHAZANEH 1 Department

More information

About the NeuroFuzzy Module of the FuzzyTECH5.5 Software

About the NeuroFuzzy Module of the FuzzyTECH5.5 Software About the NeuroFuzzy Module of the FuzzyTECH5.5 Software Ágnes B. Simon, Dániel Biró College of Nyíregyháza, Sóstói út 31, simona@nyf.hu, bibby@freemail.hu Abstract: Our online edition of the software

More information

Time Response Analysis of DC Motor using Armature Control Method and Its Performance Improvement using PID Controller

Time Response Analysis of DC Motor using Armature Control Method and Its Performance Improvement using PID Controller Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 5, (6): 56-6 Research Article ISSN: 394-658X Time Response Analysis of DC Motor using Armature Control Method

More information

ABSTRACT. Keyword double rotary inverted pendulum, fuzzy logic controller, nonlinear system, LQR, MATLAB software 1 PREFACE

ABSTRACT. Keyword double rotary inverted pendulum, fuzzy logic controller, nonlinear system, LQR, MATLAB software 1 PREFACE DESIGN OF FUZZY LOGIC CONTROLLER FOR DOUBLE ROTARY INVERTED PENDULUM Dyah Arini, Dr.-Ing. Ir. Yul Y. Nazaruddin, M.Sc.DIC, Dr. Ir. M. Rohmanuddin, MT. Physics Engineering Department Institut Teknologi

More information

SAMPLE CHAPTERS UNESCO EOLSS PID CONTROL. Araki M. Kyoto University, Japan

SAMPLE CHAPTERS UNESCO EOLSS PID CONTROL. Araki M. Kyoto University, Japan PID CONTROL Araki M. Kyoto University, Japan Keywords: feedback control, proportional, integral, derivative, reaction curve, process with self-regulation, integrating process, process model, steady-state

More information

RISK ASSESSMENT BASED UPON FUZZY SET THEORY

RISK ASSESSMENT BASED UPON FUZZY SET THEORY RISK ASSESSMENT BASED UPON FUZZY SET THEORY László POKORÁDI, professor, University of Debrecen pokoradi@mfk.unideb.hu KEYWORDS: risk management; risk assessment; fuzzy set theory; reliability. Abstract:

More information

SIMATIC S7. 3 Fuzzy Control. Preface, Contents The Structure of Fuzzy Systems and How They Work. Fuzzy Control. Function Blocks.

SIMATIC S7. 3 Fuzzy Control. Preface, Contents The Structure of Fuzzy Systems and How They Work. Fuzzy Control. Function Blocks. Preface, Contents The Structure of Fuzzy Systems and How They Work 1 SIMATIC S7 User Manual Function Blocks Product Overview 2 The Function Blocks 3 Configuration Product Overview 4 The Configuration Tool

More information

Intrusion Detection Using Data Mining Along Fuzzy Logic and Genetic Algorithms

Intrusion Detection Using Data Mining Along Fuzzy Logic and Genetic Algorithms IJCSNS International Journal of Computer Science and Network Security, VOL.8 No., February 8 7 Intrusion Detection Using Data Mining Along Fuzzy Logic and Genetic Algorithms Y.Dhanalakshmi and Dr.I. Ramesh

More information

Conception and Development of a Health Care Risk Management System

Conception and Development of a Health Care Risk Management System 2011 International Conference on Biomedical Engineering and Technology IPCBEE vol.11 (2011) (2011) IACSIT Press, Singapore Conception and Development of a Health Care Risk Management System Nesrine Zoghlami,

More information

D A T A M I N I N G C L A S S I F I C A T I O N

D A T A M I N I N G C L A S S I F I C A T I O N D A T A M I N I N G C L A S S I F I C A T I O N FABRICIO VOZNIKA LEO NARDO VIA NA INTRODUCTION Nowadays there is huge amount of data being collected and stored in databases everywhere across the globe.

More information

FUZZY Based PID Controller for Speed Control of D.C. Motor Using LabVIEW

FUZZY Based PID Controller for Speed Control of D.C. Motor Using LabVIEW FUZZY Based PID Controller for Speed Control of D.C. Motor Using LabVIEW SALIM, JYOTI OHRI Department of Electrical Engineering National Institute of Technology Kurukshetra INDIA salimnitk@gmail.com ohrijyoti@rediffmail.com

More information

Applications of Fuzzy Logic in Control Design

Applications of Fuzzy Logic in Control Design MATLAB TECHNICAL COMPUTING BRIEF Applications of Fuzzy Logic in Control Design ABSTRACT Fuzzy logic can make control engineering easier for many types of tasks. It can also add control where it was previously

More information

DCMS DC MOTOR SYSTEM User Manual

DCMS DC MOTOR SYSTEM User Manual DCMS DC MOTOR SYSTEM User Manual release 1.3 March 3, 2011 Disclaimer The developers of the DC Motor System (hardware and software) have used their best efforts in the development. The developers make

More information

Linear functions Increasing Linear Functions. Decreasing Linear Functions

Linear functions Increasing Linear Functions. Decreasing Linear Functions 3.5 Increasing, Decreasing, Max, and Min So far we have been describing graphs using quantitative information. That s just a fancy way to say that we ve been using numbers. Specifically, we have described

More information

dspace DSP DS-1104 based State Observer Design for Position Control of DC Servo Motor

dspace DSP DS-1104 based State Observer Design for Position Control of DC Servo Motor dspace DSP DS-1104 based State Observer Design for Position Control of DC Servo Motor Jaswandi Sawant, Divyesh Ginoya Department of Instrumentation and control, College of Engineering, Pune. ABSTRACT This

More information

FLBVFT: A Fuzzy Load Balancing Technique for Virtualization and Fault Tolerance in Cloud

FLBVFT: A Fuzzy Load Balancing Technique for Virtualization and Fault Tolerance in Cloud 2015 (8): 131-135 FLBVFT: A Fuzzy Load Balancing Technique for Virtualization and Fault Tolerance in Cloud Rogheyeh Salehi 1, Alireza Mahini 2 1. Sama technical and vocational training college, Islamic

More information

Adaptive Cruise Control of a Passenger Car Using Hybrid of Sliding Mode Control and Fuzzy Logic Control

Adaptive Cruise Control of a Passenger Car Using Hybrid of Sliding Mode Control and Fuzzy Logic Control Adaptive Cruise Control of a assenger Car Using Hybrid of Sliding Mode Control and Fuzzy Logic Control Somphong Thanok, Manukid arnichkun School of Engineering and Technology, Asian Institute of Technology,

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION Power systems form the largest man made complex system. It basically consists of generating sources, transmission network and distribution centers. Secure and economic operation

More information

Strictly as per the compliance and regulations of:

Strictly as per the compliance and regulations of: Global Journal of Computer Science and Technology Interdisciplinary Volume 12 Issue 10 Version 1.0 Year 2012 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc.

More information

Geometry Notes VOLUME AND SURFACE AREA

Geometry Notes VOLUME AND SURFACE AREA Volume and Surface Area Page 1 of 19 VOLUME AND SURFACE AREA Objectives: After completing this section, you should be able to do the following: Calculate the volume of given geometric figures. Calculate

More information

054414 PROCESS CONTROL SYSTEM DESIGN. 054414 Process Control System Design. LECTURE 6: SIMO and MISO CONTROL

054414 PROCESS CONTROL SYSTEM DESIGN. 054414 Process Control System Design. LECTURE 6: SIMO and MISO CONTROL 05444 Process Control System Design LECTURE 6: SIMO and MISO CONTROL Daniel R. Lewin Department of Chemical Engineering Technion, Haifa, Israel 6 - Introduction This part of the course explores opportunities

More information

SPEED CONTROL OF INDUCTION MACHINE WITH REDUCTION IN TORQUE RIPPLE USING ROBUST SPACE-VECTOR MODULATION DTC SCHEME

SPEED CONTROL OF INDUCTION MACHINE WITH REDUCTION IN TORQUE RIPPLE USING ROBUST SPACE-VECTOR MODULATION DTC SCHEME International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 2, March-April 2016, pp. 78 90, Article ID: IJARET_07_02_008 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=2

More information

PID Controller Tuning: A Short Tutorial

PID Controller Tuning: A Short Tutorial PID Controller Tuning: A Short Tutorial Jinghua Zhong Mechanical Engineering, Purdue University Spring, 2006 Outline This tutorial is in PDF format with navigational control. You may press SPACE or, or

More information

Soft Computing in Economics and Finance

Soft Computing in Economics and Finance Ludmila Dymowa Soft Computing in Economics and Finance 4y Springer 1 Introduction 1 References 5 i 2 Applications of Modern Mathematics in Economics and Finance 7 2.1 Fuzzy'Set Theory and Applied Interval

More information

Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics

Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),

More information

Fuzzy Logic based user friendly Pico-Hydro Power generation for decentralized rural electrification

Fuzzy Logic based user friendly Pico-Hydro Power generation for decentralized rural electrification Fuzzy Logic based user friendly Pico-Hydro Power generation for decentralized rural electrification Priyabrata Adhikary #1, Susmita Kundu $2, Pankaj Kr Roy *3, Asis Mazumdar *4 # Mechanical Engineering

More information

A Trust-Evaluation Metric for Cloud applications

A Trust-Evaluation Metric for Cloud applications A Trust-Evaluation Metric for Cloud applications Mohammed Alhamad, Tharam Dillon, and Elizabeth Chang Abstract Cloud services are becoming popular in terms of distributed technology because they allow

More information

Energy Conservation of Heat, Ventilation & Air- Conditioning System with the help of Fuzzy Controller

Energy Conservation of Heat, Ventilation & Air- Conditioning System with the help of Fuzzy Controller Energy Conservation of Heat, Ventilation & Air- Conditioning System with the help of Fuzzy Controller i Harkamaljeet Singh Bhullar, Vikram Kumar Kamboj Abstract: The Management and Automation of a Commercial

More information

T1-Fuzzy vs T2-Fuzzy Stabilize Quadrotor Hover with Payload Position Disturbance

T1-Fuzzy vs T2-Fuzzy Stabilize Quadrotor Hover with Payload Position Disturbance International Journal of Applied Engineering Research ISSN 0973-4562 Volume 9, Number 22 (2014) pp. 17883-17894 Research India Publications http://www.ripublication.com T1-Fuzzy vs T2-Fuzzy Stabilize Quadrotor

More information

Threat Modeling Using Fuzzy Logic Paradigm

Threat Modeling Using Fuzzy Logic Paradigm Issues in Informing Science and Information Technology Volume 4, 2007 Threat Modeling Using Fuzzy Logic Paradigm A. S. Sodiya, S. A. Onashoga, and B. A. Oladunjoye Department of Computer Science, University

More information

NTC Project: S01-PH10 (formerly I01-P10) 1 Forecasting Women s Apparel Sales Using Mathematical Modeling

NTC Project: S01-PH10 (formerly I01-P10) 1 Forecasting Women s Apparel Sales Using Mathematical Modeling 1 Forecasting Women s Apparel Sales Using Mathematical Modeling Celia Frank* 1, Balaji Vemulapalli 1, Les M. Sztandera 2, Amar Raheja 3 1 School of Textiles and Materials Technology 2 Computer Information

More information

EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives

EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives to verify how the distance of a freely-falling body varies with time to investigate whether the velocity

More information

Dr. Yeffry Handoko Putra, S.T., M.T

Dr. Yeffry Handoko Putra, S.T., M.T Tuning Methods of PID Controller Dr. Yeffry Handoko Putra, S.T., M.T yeffry@unikom.ac.id 1 Session Outlines & Objectives Outlines Tuning methods of PID controller: Ziegler-Nichols Open-loop Coon-Cohen

More information

Design of Model Reference Self Tuning Mechanism for PID like Fuzzy Controller

Design of Model Reference Self Tuning Mechanism for PID like Fuzzy Controller Research Article International Journal of Current Engineering and Technology EISSN 77 46, PISSN 347 56 4 INPRESSCO, All Rights Reserved Available at http://inpressco.co/category/ijcet Design of Model Reference

More information

SOFT COMPUTING AND ITS USE IN RISK MANAGEMENT

SOFT COMPUTING AND ITS USE IN RISK MANAGEMENT SOFT COMPUTING AND ITS USE IN RISK MANAGEMENT doc. Ing. Petr Dostál, CSc. Brno University of Technology, Kolejní 4, 612 00 Brno, Czech Republic, Institute of Informatics, Faculty of Business and Management,

More information

A Fuzzy System Approach of Feed Rate Determination for CNC Milling

A Fuzzy System Approach of Feed Rate Determination for CNC Milling A Fuzzy System Approach of Determination for CNC Milling Zhibin Miao Department of Mechanical and Electrical Engineering Heilongjiang Institute of Technology Harbin, China e-mail:miaozhibin99@yahoo.com.cn

More information

Ziegler-Nichols-Based Intelligent Fuzzy PID Controller Design for Antenna Tracking System

Ziegler-Nichols-Based Intelligent Fuzzy PID Controller Design for Antenna Tracking System Ziegler-Nichols-Based Intelligent Fuzzy PID Controller Design for Antenna Tracking System Po-Kuang Chang, Jium-Ming Lin Member, IAENG, and Kun-Tai Cho Abstract This research is to augment the intelligent

More information

Automated Methods for Fuzzy Systems

Automated Methods for Fuzzy Systems Automated Methods for Fuzzy Systems Gradient Method Adriano Joaquim de Oliveira Cruz PPGI-UFRJ September 2012 Adriano Cruz (PPGI-UFRJ) Gradient Method 09/2012 1 / 41 Summary 1 Introduction Adriano Cruz

More information

DEA implementation and clustering analysis using the K-Means algorithm

DEA implementation and clustering analysis using the K-Means algorithm Data Mining VI 321 DEA implementation and clustering analysis using the K-Means algorithm C. A. A. Lemos, M. P. E. Lins & N. F. F. Ebecken COPPE/Universidade Federal do Rio de Janeiro, Brazil Abstract

More information

Current Loop Tuning Procedure. Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) General Procedure AN-015

Current Loop Tuning Procedure. Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) General Procedure AN-015 Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) The standard tuning values used in ADVANCED Motion Controls drives are conservative and work well in over 90%

More information

The Effects of Start Prices on the Performance of the Certainty Equivalent Pricing Policy

The Effects of Start Prices on the Performance of the Certainty Equivalent Pricing Policy BMI Paper The Effects of Start Prices on the Performance of the Certainty Equivalent Pricing Policy Faculty of Sciences VU University Amsterdam De Boelelaan 1081 1081 HV Amsterdam Netherlands Author: R.D.R.

More information

Controller Design in Frequency Domain

Controller Design in Frequency Domain ECSE 4440 Control System Engineering Fall 2001 Project 3 Controller Design in Frequency Domain TA 1. Abstract 2. Introduction 3. Controller design in Frequency domain 4. Experiment 5. Colclusion 1. Abstract

More information

PID Control. Chapter 10

PID Control. Chapter 10 Chapter PID Control Based on a survey of over eleven thousand controllers in the refining, chemicals and pulp and paper industries, 97% of regulatory controllers utilize PID feedback. Desborough Honeywell,

More information

Sensing and Control. A Process Control Primer

Sensing and Control. A Process Control Primer Sensing and Control A Process Control Primer Copyright, Notices, and Trademarks Printed in U.S.A. Copyright 2000 by Honeywell Revision 1 July 2000 While this information is presented in good faith and

More information

CHAPTER 3 SECURITY CONSTRAINED OPTIMAL SHORT-TERM HYDROTHERMAL SCHEDULING

CHAPTER 3 SECURITY CONSTRAINED OPTIMAL SHORT-TERM HYDROTHERMAL SCHEDULING 60 CHAPTER 3 SECURITY CONSTRAINED OPTIMAL SHORT-TERM HYDROTHERMAL SCHEDULING 3.1 INTRODUCTION Optimal short-term hydrothermal scheduling of power systems aims at determining optimal hydro and thermal generations

More information

GRADES 7, 8, AND 9 BIG IDEAS

GRADES 7, 8, AND 9 BIG IDEAS Table 1: Strand A: BIG IDEAS: MATH: NUMBER Introduce perfect squares, square roots, and all applications Introduce rational numbers (positive and negative) Introduce the meaning of negative exponents for

More information

Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary

Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:

More information

Common Core Unit Summary Grades 6 to 8

Common Core Unit Summary Grades 6 to 8 Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations

More information

So far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs.

So far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs. equential Logic o far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs. In sequential logic the output of the

More information

Intelligent Mechatronic Model Reference Theory for Robot Endeffector

Intelligent Mechatronic Model Reference Theory for Robot Endeffector , pp.165-172 http://dx.doi.org/10.14257/ijunesst.2015.8.1.15 Intelligent Mechatronic Model Reference Theory for Robot Endeffector Control Mohammad sadegh Dahideh, Mohammad Najafi, AliReza Zarei, Yaser

More information

A Fuzzy Expert System as a Stock Trading Advisor

A Fuzzy Expert System as a Stock Trading Advisor 1 A Fuzzy Expert System as a Stock Trading Advisor Paulo E. Merloti Abstract this paper demonstrates a Fuzzy Expert System that works as a very simple trading system that receives buying or selling orders

More information

Algebra 1 Course Information

Algebra 1 Course Information Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through

More information

Speed, velocity and acceleration

Speed, velocity and acceleration Chapter Speed, velocity and acceleration Figure.1 What determines the maximum height that a pole-vaulter can reach? 1 In this chapter we look at moving bodies, how their speeds can be measured and how

More information

Process Control Primer

Process Control Primer Process Control Primer At the onset of the Industrial Revolution, processes were controlled manually. Men turned valves, pulled levers or changed switches based on the need to turn devices on or off. As

More information

Performance Level Descriptors Grade 6 Mathematics

Performance Level Descriptors Grade 6 Mathematics Performance Level Descriptors Grade 6 Mathematics Multiplying and Dividing with Fractions 6.NS.1-2 Grade 6 Math : Sub-Claim A The student solves problems involving the Major Content for grade/course with

More information

Surface Area Quick Review: CH 5

Surface Area Quick Review: CH 5 I hope you had an exceptional Christmas Break.. Now it's time to learn some more math!! :) Surface Area Quick Review: CH 5 Find the surface area of each of these shapes: 8 cm 12 cm 4cm 11 cm 7 cm Find

More information

Design of Prediction System for Key Performance Indicators in Balanced Scorecard

Design of Prediction System for Key Performance Indicators in Balanced Scorecard Design of Prediction System for Key Performance Indicators in Balanced Scorecard Ahmed Mohamed Abd El-Mongy. Faculty of Systems and Computers Engineering, Al-Azhar University Cairo, Egypt. Alaa el-deen

More information

The Use of Hybrid Regulator in Design of Control Systems

The Use of Hybrid Regulator in Design of Control Systems World Applied Sciences Journal 23 (10): 1291-1297, 2013 ISSN 1818-4952 IDOSI Publications, 2013 DOI: 10.5829/idosi.wasj.2013.23.10.13144 The Use of Hybrid Regulator in Design of Control Systems Vladimir

More information

A STUDY ON THE CONVENTIONAL AND FUZZY CONTROL STEEL-CUTTING PROCESS

A STUDY ON THE CONVENTIONAL AND FUZZY CONTROL STEEL-CUTTING PROCESS A STUDY ON THE CONVENTIONAL AND FUZZY CONTROL STEEL-CUTTING PROCESS S. Bülent YAKUPOĞLU R. Nejat TUNCAY Murat YILMAZ e-mail: bulentsy@ixir.com e-mail: tuncay@elk.itu.edu.tr e-mail: mryilmaz@elk.itu.edu.tr

More information

Degree programme in Automation Engineering

Degree programme in Automation Engineering Degree programme in Automation Engineering Course descriptions of the courses for exchange students, 2014-2015 Autumn 2014 21727630 Application Programming Students know the basis of systems application

More information

Integer Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions

Integer Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero.

More information

In order to describe motion you need to describe the following properties.

In order to describe motion you need to describe the following properties. Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1-D path speeding up and slowing down In order to describe motion you need to describe the following properties.

More information

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization 2.1. Introduction Suppose that an economic relationship can be described by a real-valued

More information

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for

More information

NTC Project: S01-PH10 (formerly I01-P10) 1 Forecasting Women s Apparel Sales Using Mathematical Modeling

NTC Project: S01-PH10 (formerly I01-P10) 1 Forecasting Women s Apparel Sales Using Mathematical Modeling 1 Forecasting Women s Apparel Sales Using Mathematical Modeling Celia Frank* 1, Balaji Vemulapalli 1, Les M. Sztandera 2, Amar Raheja 3 1 School of Textiles and Materials Technology 2 Computer Information

More information

A Forecasting Decision Support System

A Forecasting Decision Support System A Forecasting Decision Support System Hanaa E.Sayed a, *, Hossam A.Gabbar b, Soheir A. Fouad c, Khalil M. Ahmed c, Shigeji Miyazaki a a Department of Systems Engineering, Division of Industrial Innovation

More information

Tamura Closed Loop Hall Effect Current Sensors

Tamura Closed Loop Hall Effect Current Sensors Tamura Closed Loop Hall Effect Current Sensors AC, DC, & Complex Currents Galvanic Isolation Fast Response Wide Frequency Bandwidth Quality & Reliability RoHs Compliance Closed Loop Hall Effect Sensors

More information

Title: Low EMI Spread Spectrum Clock Oscillators

Title: Low EMI Spread Spectrum Clock Oscillators Title: Low EMI oscillators Date: March 3, 24 TN No.: TN-2 Page 1 of 1 Background Title: Low EMI Spread Spectrum Clock Oscillators Traditional ways of dealing with EMI (Electronic Magnetic Interference)

More information