Lecture 16: Multi-path TCP"

Size: px
Start display at page:

Download "Lecture 16: Multi-path TCP""

Transcription

1 Lecture 16: Multi-path TCP" CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Costin Raiciu

2 Lecture 16 Overview" TCP review MPTCP Overview 2

3 TCP Connection Setup HTTP server listening on port 80 3

4 TCP Connection Setup SYN DPORT 80 SPORT

5 TCP Connection Setup SYN/ACK DPORT 80 SPORT

6 TCP Connection Setup ACK DPORT 80 SPORT

7 TCP Data Transmission Browser: Send 3KB of data HTTP Server: Read Request 7

8 TCP Data Transmission Data: Browser: Send 3KB of data HTTP Server: Read Request 8

9 TCP Data Transmission Data: Data: Browser: Send 3KB of data HTTP Server: Read Request 9

10 TCP Data Transmission Data: Data: Data: Browser: Send 3KB of data HTTP Server: Read Request 10

11 TCP: Lost Packets Data: Data: Browser: Send 3KB of data HTTP Server: Read Request 11

12 TCP: Reordering Data: Data: Data: Browser: Send 3KB of data HTTP Server: Read Request 12

13 TCP: Sequence #s and ACKs SEQ 2001 Data: SEQ 1001 Data: SEQ 1 Data: Browser: Send 3KB of data HTTP Server: Read Request 13

14 TCP: Sequence #s and ACKs SEQ 2001 Data: SEQ 1001 Data: ACK 1001 Browser: Send 3KB of data HTTP Server: Read Request 14

15 TCP: Sequence #s and ACKs SEQ 2001 Data: ACK 1001 ACK 2001 Browser: Send 3KB of data HTTP Server: Read Request 15

16 TCP: Sequence #s and ACKs ACK 1001 ACK 2001 ACK 3001 Browser: Send 3KB of data HTTP Server: Read Request 16

17 Multipath TCP" MPTCP is a drop in replacement for TCP Works with unmodified applications Over the existing network 17

18 18" Drop-in TCP Replacement" The sender stripes packets across paths user space socket API MPTCP MPTCP The receiver puts the packets in the correct order IP addr addr 1 addr 2 18

19 MPTCP Operation SYN MP_CAPABLE X 19

20 MPTCP Operation SYN/ACK MP_CAPABLE Y 20

21 MPTCP Operation STATE 1 CWND Snd.SEQNO Rcv.SEQNO 21

22 MPTCP Operation STATE 1 CWND Snd.SEQNO Rcv.SEQNO SYN JOIN Y 22

23 MPTCP Operation STATE 1 CWND Snd.SEQNO Rcv.SEQNO SYN/ACK JOIN X 23

24 MPTCP Operation STATE 1 CWND Snd.SEQNO Rcv.SEQNO STATE 2 CWND Snd.SEQNO Rcv.SEQNO 24

25 MPTCP Operation options SEQ 1000 DSEQ DATA STATE 1 CWND Snd.SEQNO Rcv.SEQNO STATE 2 CWND Snd.SEQNO Rcv.SEQNO 25

26 MPTCP Operation options SEQ 1000 DSEQ DATA STATE 1 CWND Snd.SEQNO Rcv.SEQNO STATE 2 CWND Snd.SEQNO Rcv.SEQNO 26

27 MPTCP Operation options SEQ 1000 DSEQ DATA STATE 1 CWND Snd.SEQNO Rcv.SEQNO SEQ 5000 options DSEQ DATA STATE 2 CWND Snd.SEQNO Rcv.SEQNO 27

28 MPTCP Operation options SEQ 1000 DSEQ DATA STATE 1 CWND Snd.SEQNO Rcv.SEQNO SEQ 5000 options DSEQ DATA STATE 2 CWND Snd.SEQNO Rcv.SEQNO 28

29 MPTCP Operation options SEQ 1000 DSEQ DATA STATE 1 CWND Snd.SEQNO Rcv.SEQNO SEQ 5000 options DSEQ DATA STATE 2 CWND Snd.SEQNO Rcv.SEQNO 29

30 MPTCP Operation options SEQ 1000 DSEQ DATA STATE 1 CWND Snd.SEQNO Rcv.SEQNO SEQ 5000 options DSEQ DATA STATE 2 CWND Snd.SEQNO Rcv.SEQNO 30

31 MPTCP Operation ACK 2000 STATE 1 CWND Snd.SEQNO Rcv.SEQNO STATE 2 CWND Snd.SEQNO Rcv.SEQNO 31

32 MPTCP Operation options SEQ 2000 DSEQ DATA STATE 1 CWND Snd.SEQNO Rcv.SEQNO STATE 2 CWND Snd.SEQNO Rcv.SEQNO 32

33 Pool BW to Balance Load" Each path runs its own congestion control, to detect and respond to the congestion it sees. But link the congestion control parameters, so as to move traffic away from the more congested paths. [Kelly & Voice, Key, Massoulie & Towsley] be less aggressive be more aggressive 33

34 Design goal 1: Be fair to regular TCP" A multipath TCP flow with two subflows Regular TCP To be fair, Multipath TCP should take as much capacity as TCP at a bottleneck link, no matter how many paths it is using. 34

35 Design goal 2: MPTCP should use efficient paths" 12Mb/s 12Mb/s 12Mb/s Each flow has a choice of a 1-hop and a 2-hop path. How should split its traffic? 35

36 Design goal 2: MPTCP should use efficient paths" 12Mb/s 8Mb/s 12Mb/s 8Mb/s 12Mb/s 8Mb/s If each flow split its traffic 1:

37 Design goal 2: MPTCP should use efficient paths" 12Mb/s 9Mb/s 12Mb/s 9Mb/s 12Mb/s 9Mb/s If each flow split its traffic 2:

38 Design goal 2: MPTCP should use efficient paths" 12Mb/s 10Mb/s 12Mb/s 10Mb/s 12Mb/s 10Mb/s If each flow split its traffic 4:

39 Design goal 2: MPTCP should use efficient paths" 12Mb/s 12Mb/s 12Mb/s 12Mb/s 12Mb/s 12Mb/s If each flow split its traffic :

40 Design goal 2: MPTCP should use efficient paths" 12Mb/s 12Mb/s 12Mb/s 12Mb/s 12Mb/s 12Mb/s Theoretical solution (Kelly+Voice 2005; Han, Towsley et al. 2006) MPTCP should send all its traffic on its least-congested paths. " Theorem. This will lead to the most efficient allocation possible, given a network topology and a set of available paths. 40

41 Design goal 3: Perform as well as TCP" wifi path: high loss, small RTT 3G path: low loss, high RTT Design Goal 2 says to send all your traffic on the least congested path, in this case 3G. But this has high RTT, hence it will give low throughput. Goal 3a. A Multipath TCP user should get at least as much throughput as a single-path TCP would on the best of the available paths. Goal 3b. A Multipath TCP flow should take no more capacity on any link than a single-path TCP would. 41

42 Design goals" Goal 1. Be fair to TCP at bottleneck links redundant Goal 2. Use efficient paths... Goal 3. as much as we can, while being fair to TCP Goal 4. Adapt quickly when congestion changes Goal 5. Don t oscillate How does MPTCP achieve all this? 42

43 TCP congestion control" Maintain a congestion window w. Increase w for each ACK, by 1/w Decrease w for each drop, by w/2 43

44 MPTCP congestion control" Maintain a congestion window w r, one window for each path, where r R ranges over the set of available paths. Increase w r for each ACK on path r, by Decrease w r for each drop on path r, by w r /2 44

45 MPTCP congestion control" Maintain a congestion window w r, one window for each path, where r R ranges over the set of available paths. Design goal 3: At any potential bottleneck S that path r might be in, look at the best that a single-path TCP could get, and compare to what I m getting. Increase w r for each ACK on path r, by Decrease w r for each drop on path r, by w r /2 45

46 MPTCP congestion control" Maintain a congestion window w r, one window for each path, where r R ranges over the set of available paths. Design goal 2: We want to shift traffic away from congestion. Increase w r for each ACK on path r, by To achieve this, we increase windows in proportion to their size. Decrease w r for each drop on path r, by w r /2 46

47 Discussion" How much of the Internet can be pooled?» What are the implications for network operators? How should we fit multipath congestion control to CompoundTCP or CubicTCP? Is it worth using multipath for small flows? 47

48 For Next Class " Read and review wireless paper posted later today Keep going on projects! Checkpoint 2 only 1 weeks away 48

Multipath TCP design, and application to data centers. Damon Wischik, Mark Handley, Costin Raiciu, Christopher Pluntke

Multipath TCP design, and application to data centers. Damon Wischik, Mark Handley, Costin Raiciu, Christopher Pluntke Multipath TCP design, and application to data centers Damon Wischik, Mark Handley, Costin Raiciu, Christopher Pluntke Packet switching pools circuits. Multipath pools links : it is Packet Switching 2.0.

More information

Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford

Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford The difference between theory and practice is in theory somewhat smaller than in practice. In theory, this

More information

An Overview of Multipath TCP

An Overview of Multipath TCP An Overview of Multipath TCP Olivier Bonaventure, Mark Handley, and Costin Raiciu Olivier Bonaventure is a Professor at Catholic University of Louvain, Belgium. His research focus is primarily on Internet

More information

Data Center Networking with Multipath TCP

Data Center Networking with Multipath TCP Data Center Networking with Multipath TCP Costin Raiciu, Christopher Pluntke, Sebastien Barre, Adam Greenhalgh, Damon Wischik, Mark Handley Hotnets 2010 報 告 者 : 莊 延 安 Outline Introduction Analysis Conclusion

More information

Congestion Control of Multipath TCP: Problems and Solutions

Congestion Control of Multipath TCP: Problems and Solutions Congestion Control of Multipath TCP: Problems and Solutions Ramin Khalili, T-Labs/TU-Berlin, Germany draft-khalili-mptcp-performance-issues-03 draft-khalili-mptcp-congestion-control-01 Multipath TCP (MPTCP)

More information

Data Networks Summer 2007 Homework #3

Data Networks Summer 2007 Homework #3 Data Networks Summer Homework # Assigned June 8, Due June in class Name: Email: Student ID: Problem Total Points Problem ( points) Host A is transferring a file of size L to host B using a TCP connection.

More information

CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013

CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013 CSE 473 Introduction to Computer Networks Jon Turner Exam Solutions Your name: 0/3/03. (0 points). Consider a circular DHT with 7 nodes numbered 0,,...,6, where the nodes cache key-values pairs for 60

More information

MMPTCP: A Novel Transport Protocol for Data Centre Networks

MMPTCP: A Novel Transport Protocol for Data Centre Networks MMPTCP: A Novel Transport Protocol for Data Centre Networks Morteza Kheirkhah FoSS, Department of Informatics, University of Sussex Modern Data Centre Networks FatTree It provides full bisection bandwidth

More information

Multipath TCP in Data Centres (work in progress)

Multipath TCP in Data Centres (work in progress) Multipath TCP in Data Centres (work in progress) Costin Raiciu Joint work with Christopher Pluntke, Adam Greenhalgh, Sebastien Barre, Mark Handley, Damon Wischik Data Centre Trends Cloud services are driving

More information

This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio).

This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio). Client App Network Server App 25-May-13 15:32 (Page 1) This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio). TCP is an end to end protocol which

More information

Transport Layer Protocols

Transport Layer Protocols Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements

More information

First Midterm for ECE374 03/09/12 Solution!!

First Midterm for ECE374 03/09/12 Solution!! 1 First Midterm for ECE374 03/09/12 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam

More information

Design, implementation and evaluation of congestion control for multipath TCP

Design, implementation and evaluation of congestion control for multipath TCP Design, implementation and evaluation of congestion control for multipath TCP Damon Wischik, Costin Raiciu, Adam Greenhalgh, Mark Handley University College London ABSTRACT Multipath TCP, as proposed by

More information

Policy Based Forwarding

Policy Based Forwarding Policy Based Forwarding Tech Note PAN-OS 4.1 Revision A 2012, Palo Alto Networks, Inc. www.paloaltonetworks.com Contents Overview... 3 Security... 3 Performance... 3 Symmetric Routing... 3 Service Versus

More information

Boosting mobility performance with Multi-Path TCP

Boosting mobility performance with Multi-Path TCP Boosting mobility performance with Multi-Path TCP Name SURNAME 1, Name SURNAME 2 1 Organisation, Address, City, Postcode, Country Tel: +countrycode localcode number, Fax: + countrycode localcode number,

More information

Mobile Communications Chapter 9: Mobile Transport Layer

Mobile Communications Chapter 9: Mobile Transport Layer Mobile Communications Chapter 9: Mobile Transport Layer Motivation TCP-mechanisms Classical approaches Indirect TCP Snooping TCP Mobile TCP PEPs in general Additional optimizations Fast retransmit/recovery

More information

Outline. TCP connection setup/data transfer. 15-441 Computer Networking. TCP Reliability. Congestion sources and collapse. Congestion control basics

Outline. TCP connection setup/data transfer. 15-441 Computer Networking. TCP Reliability. Congestion sources and collapse. Congestion control basics Outline 15-441 Computer Networking Lecture 8 TCP & Congestion Control TCP connection setup/data transfer TCP Reliability Congestion sources and collapse Congestion control basics Lecture 8: 09-23-2002

More information

Computer Networks COSC 6377

Computer Networks COSC 6377 Computer Networks COSC 6377 Lecture 25 Fall 2011 November 30, 2011 1 Announcements Grades will be sent to each student for verificagon P2 deadline extended 2 Large- scale computagon Search Engine Tasks

More information

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Networks: GSM, GPRS, UMTS Chapter 4 Mobility on the

More information

Final for ECE374 05/06/13 Solution!!

Final for ECE374 05/06/13 Solution!! 1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -

More information

How Hard Can It Be? Designing and Implementing a Deployable Multipath TCP

How Hard Can It Be? Designing and Implementing a Deployable Multipath TCP How Hard Can It Be? Designing and Implementing a Deployable Multipath TCP Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio Honda, Fabien Duchene, Olivier Bonaventure and Mark Handley

More information

Exploring Mobile/WiFi Handover with Multipath TCP

Exploring Mobile/WiFi Handover with Multipath TCP Exploring Mobile/WiFi Handover with Multipath TCP Fabien Duchene fabien.duchene@uclouvain.be Christoph Paasch christoph.paasch@uclouvain.be Costin Raiciu costin.raiciu@cs.pub.ro Gregory Detal gregory.detal@uclouvain.be

More information

Life of a Packet CS 640, 2015-01-22

Life of a Packet CS 640, 2015-01-22 Life of a Packet CS 640, 2015-01-22 Outline Recap: building blocks Application to application communication Process to process communication Host to host communication Announcements Syllabus Should have

More information

How do I get to www.randomsite.com?

How do I get to www.randomsite.com? Networking Primer* *caveat: this is just a brief and incomplete introduction to networking to help students without a networking background learn Network Security. How do I get to www.randomsite.com? Local

More information

Using Fuzzy Logic Control to Provide Intelligent Traffic Management Service for High-Speed Networks ABSTRACT:

Using Fuzzy Logic Control to Provide Intelligent Traffic Management Service for High-Speed Networks ABSTRACT: Using Fuzzy Logic Control to Provide Intelligent Traffic Management Service for High-Speed Networks ABSTRACT: In view of the fast-growing Internet traffic, this paper propose a distributed traffic management

More information

Understanding Layer 2, 3, and 4 Protocols

Understanding Layer 2, 3, and 4 Protocols 2 Understanding Layer 2, 3, and 4 Protocols While many of the concepts well known to traditional Layer 2 and Layer 3 networking still hold true in content switching applications, the area introduces new

More information

Mul$path Networking OpenFlow and MPTCP Friend or Foe?

Mul$path Networking OpenFlow and MPTCP Friend or Foe? Mul$path Networking OpenFlow and MPTCP Friend or Foe? Benno Overeinder, Ronald van der Pol, SURFnet The Problem (or Challenge) Mul;path networking for resilience (think of mul;- homing) for load balancing

More information

Application Level Congestion Control Enhancements in High BDP Networks. Anupama Sundaresan

Application Level Congestion Control Enhancements in High BDP Networks. Anupama Sundaresan Application Level Congestion Control Enhancements in High BDP Networks Anupama Sundaresan Organization Introduction Motivation Implementation Experiments and Results Conclusions 2 Developing a Grid service

More information

BCS THE CHARTERED INSTITUTE FOR IT BCS HIGHER EDUCATION QUALIFICATIONS. BCS Level 5 Diploma in IT SEPTEMBER 2014. Computer Networks EXAMINERS REPORT

BCS THE CHARTERED INSTITUTE FOR IT BCS HIGHER EDUCATION QUALIFICATIONS. BCS Level 5 Diploma in IT SEPTEMBER 2014. Computer Networks EXAMINERS REPORT BCS THE CHARTERED INSTITUTE FOR IT BCS HIGHER EDUCATION QUALIFICATIONS BCS Level 5 Diploma in IT SEPTEMBER 2014 Computer Networks EXAMINERS REPORT General Comments This session is again like the April

More information

A Measurement-based Study of MultiPath TCP Performance over Wireless Networks

A Measurement-based Study of MultiPath TCP Performance over Wireless Networks A Measurement-based Study of MultiPath TCP Performance over Wireless Networks Yung-Chih Chen School of Computer Science University of Massachusetts Amherst, MA USA yungchih@cs.umass.edu Erich M. Nahum

More information

Computer Networks Homework 1

Computer Networks Homework 1 Computer Networks Homework 1 Reference Solution 1. (15%) Suppose users share a 1 Mbps link. Also suppose each user requires 100 kbps when transmitting, but each user transmits only 10 percent of the time.

More information

Computer Networks UDP and TCP

Computer Networks UDP and TCP Computer Networks UDP and TCP Saad Mneimneh Computer Science Hunter College of CUNY New York I m a system programmer specializing in TCP/IP communication protocol on UNIX systems. How can I explain a thing

More information

COMP 3331/9331: Computer Networks and Applications. Lab Exercise 3: TCP and UDP (Solutions)

COMP 3331/9331: Computer Networks and Applications. Lab Exercise 3: TCP and UDP (Solutions) COMP 3331/9331: Computer Networks and Applications Lab Exercise 3: TCP and UDP (Solutions) AIM To investigate the behaviour of TCP and UDP in greater detail. EXPERIMENT 1: Understanding TCP Basics Tools

More information

Question: 3 When using Application Intelligence, Server Time may be defined as.

Question: 3 When using Application Intelligence, Server Time may be defined as. 1 Network General - 1T6-521 Application Performance Analysis and Troubleshooting Question: 1 One component in an application turn is. A. Server response time B. Network process time C. Application response

More information

Challenges of Sending Large Files Over Public Internet

Challenges of Sending Large Files Over Public Internet Challenges of Sending Large Files Over Public Internet CLICK TO EDIT MASTER TITLE STYLE JONATHAN SOLOMON SENIOR SALES & SYSTEM ENGINEER, ASPERA, INC. CLICK TO EDIT MASTER SUBTITLE STYLE OUTLINE Ø Setting

More information

Communications Technology

Communications Technology 1 Multi-channel combining for Airborne Flight Research Will Ivancic william.d.ivancic@nasa.gov Matt Sargent matt.sargent@epeerless.com Joseph Ishac jishac@nasa.gov NASA Don Sullivan donald.v.sullivan@nasa.gov

More information

Multipath TCP. Breaking today's networks with tomorrow's protocol

Multipath TCP. Breaking today's networks with tomorrow's protocol Multipath TCP Breaking today's networks with tomorrow's protocol Speakers - Who are we? Catherine (Kate) Pearce Security Consultant / Pentester Loves her wine the way she likes her RFCs (Dry) New Zealand

More information

How To Test For Middlebox Behavior On A Network With A Network Box On A Cnet 2.2 (Net 2) Or A Cntc (Net2) (Net 1) (Ipo) (Port 2) (Cnet

How To Test For Middlebox Behavior On A Network With A Network Box On A Cnet 2.2 (Net 2) Or A Cntc (Net2) (Net 1) (Ipo) (Port 2) (Cnet Is it Still Possible to Extend TCP? Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam Greenhalgh, Mark Handley, Hideyuki Tokuda Keio University, Universitatea Politehnica Bucuresti, University College

More information

TCP in Wireless Mobile Networks

TCP in Wireless Mobile Networks TCP in Wireless Mobile Networks 1 Outline Introduction to transport layer Introduction to TCP (Internet) congestion control Congestion control in wireless networks 2 Transport Layer v.s. Network Layer

More information

Basic Networking Concepts. 1. Introduction 2. Protocols 3. Protocol Layers 4. Network Interconnection/Internet

Basic Networking Concepts. 1. Introduction 2. Protocols 3. Protocol Layers 4. Network Interconnection/Internet Basic Networking Concepts 1. Introduction 2. Protocols 3. Protocol Layers 4. Network Interconnection/Internet 1 1. Introduction -A network can be defined as a group of computers and other devices connected

More information

Lecture 17: 802.11 Wireless Networking"

Lecture 17: 802.11 Wireless Networking Lecture 17: 802.11 Wireless Networking" CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Lili Qiu, Nitin Vaidya Lecture 17 Overview" Project discussion Intro to 802.11 WiFi Jigsaw discussion

More information

Why SSL is better than IPsec for Fully Transparent Mobile Network Access

Why SSL is better than IPsec for Fully Transparent Mobile Network Access Why SSL is better than IPsec for Fully Transparent Mobile Network Access SESSION ID: SP01-R03 Aidan Gogarty HOB Inc. aidan.gogarty@hob.de What are we all trying to achieve? Fully transparent network access

More information

Visualizations and Correlations in Troubleshooting

Visualizations and Correlations in Troubleshooting Visualizations and Correlations in Troubleshooting Kevin Burns Comcast kevin_burns@cable.comcast.com 1 Comcast Technology Groups Cable CMTS, Modem, Edge Services Backbone Transport, Routing Converged Regional

More information

Performance Measurement of Wireless LAN Using Open Source

Performance Measurement of Wireless LAN Using Open Source Performance Measurement of Wireless LAN Using Open Source Vipin M Wireless Communication Research Group AU KBC Research Centre http://comm.au-kbc.org/ 1 Overview General Network Why Network Performance

More information

Firewall Port Handling in TENA Applications

Firewall Port Handling in TENA Applications Firewall Port Handling in TENA Applications The purpose of this report is to describe the manner in which TENA applications handle communications using TCP. This report will also present some insight for

More information

Secure Network Access System (SNAS) Indigenous Next Generation Network Security Solutions

Secure Network Access System (SNAS) Indigenous Next Generation Network Security Solutions Secure Network Access System (SNAS) Indigenous Next Generation Network Security Solutions Gigi Joseph, Computer Division,BARC. Gigi@barc.gov.in Intranet Security Components Network Admission Control (NAC)

More information

Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation

Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation R.Navaneethakrishnan Assistant Professor (SG) Bharathiyar College of Engineering and Technology, Karaikal, India.

More information

IP Network Layer. Datagram ID FLAG Fragment Offset. IP Datagrams. IP Addresses. IP Addresses. CSCE 515: Computer Network Programming TCP/IP

IP Network Layer. Datagram ID FLAG Fragment Offset. IP Datagrams. IP Addresses. IP Addresses. CSCE 515: Computer Network Programming TCP/IP CSCE 515: Computer Network Programming TCP/IP IP Network Layer Wenyuan Xu Department of Computer Science and Engineering University of South Carolina IP Datagrams IP is the network layer packet delivery

More information

Lecture 7: Data Center Networks"

Lecture 7: Data Center Networks Lecture 7: Data Center Networks" CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Nick Feamster Lecture 7 Overview" Project discussion Data Centers overview Fat Tree paper discussion CSE

More information

Protecting Mobile Devices From TCP Flooding Attacks

Protecting Mobile Devices From TCP Flooding Attacks Protecting Mobile Devices From TCP Flooding Attacks Yogesh Swami % and Hannes Tschofenig* % Nokia Research Center, Palo Alto, CA, USA. * Siemens Corporate Technology, Munich, DE. 1 Motivation Anatomy of

More information

Networks: IP and TCP. Internet Protocol

Networks: IP and TCP. Internet Protocol Networks: IP and TCP 11/1/2010 Networks: IP and TCP 1 Internet Protocol Connectionless Each packet is transported independently from other packets Unreliable Delivery on a best effort basis No acknowledgments

More information

Sting: a TCP-based network measurement tool

Sting: a TCP-based network measurement tool Sting: a TCP-based network measurement tool Stefan Savage Department of Computer Science and Engineering University of Washington Simple problem Can we measure one-way packet loss rates to and from unmodified

More information

M U L T I P A T H T C P, P W N I N G T O D A Y S N E T W O R K S W I T H

M U L T I P A T H T C P, P W N I N G T O D A Y S N E T W O R K S W I T H M U L T I P A T H T C P, P W N I N G T O D A Y S N E T W O R K S W I T H T O M O R R O W S P R O T O C O L S. Catherine Pearce Catherine.pearce@neohapsis.com, twitter: @secvalve A B S T R A C T : MultiPath

More information

Optimization of Communication Systems Lecture 6: Internet TCP Congestion Control

Optimization of Communication Systems Lecture 6: Internet TCP Congestion Control Optimization of Communication Systems Lecture 6: Internet TCP Congestion Control Professor M. Chiang Electrical Engineering Department, Princeton University ELE539A February 21, 2007 Lecture Outline TCP

More information

TCP Pacing in Data Center Networks

TCP Pacing in Data Center Networks TCP Pacing in Data Center Networks Monia Ghobadi, Yashar Ganjali Department of Computer Science, University of Toronto {monia, yganjali}@cs.toronto.edu 1 TCP, Oh TCP! 2 TCP, Oh TCP! TCP congestion control

More information

WiFi, LTE, or Both? Measuring Multi-Homed Wireless Internet Performance

WiFi, LTE, or Both? Measuring Multi-Homed Wireless Internet Performance ,, or Both? Measuring Multi-Homed Wireless Internet Performance Shuo Deng, Ravi Netravali, Anirudh Sivaraman, Hari Balakrishnan MIT Computer Science and Artificial Intelligence Lab Cambridge, Massachusetts,

More information

On Uplink Measurement of Cellular Networks for Mobile Multi-Path TCP

On Uplink Measurement of Cellular Networks for Mobile Multi-Path TCP On Uplink Measurement of Cellular Networks for Mobile Multi-Path TCP Yung-Chih Chen 1, Erich M. Nahum 2, Don Towsley 1, and Chang Liu 1 1 Department of Computer Science, University of Massachusetts Amherst

More information

A Survey: High Speed TCP Variants in Wireless Networks

A Survey: High Speed TCP Variants in Wireless Networks ISSN: 2321-7782 (Online) Volume 1, Issue 7, December 2013 International Journal of Advance Research in Computer Science and Management Studies Research Paper Available online at: www.ijarcsms.com A Survey:

More information

1 An application in BPC: a Web-Server

1 An application in BPC: a Web-Server 1 An application in BPC: a Web-Server We briefly describe our web-server case-study, dwelling in particular on some of the more advanced features of the BPC framework, such as timeouts, parametrized events,

More information

Context. Congestion Control In High Bandwidth-Delay Nets [Katabi02a] What is XCP? Key ideas. Router Feedback: Utilization.

Context. Congestion Control In High Bandwidth-Delay Nets [Katabi02a] What is XCP? Key ideas. Router Feedback: Utilization. Congestion Control In High Bandwidth-Delay Nets [Katabi02a] CSci551: Computer Networks SP2006 Thursday Section John Heidemann 7e_Katabi02a: CSci551 SP2006 John Heidemann 1 Context limitations of TCP over

More information

Networking Overview. (as usual, thanks to Dave Wagner and Vern Paxson)

Networking Overview. (as usual, thanks to Dave Wagner and Vern Paxson) Networking Overview (as usual, thanks to Dave Wagner and Vern Paxson) Focus For This Lecture Sufficient background in networking to then explore security issues in next few lectures Networking = the Internet

More information

TCP for Wireless Networks

TCP for Wireless Networks TCP for Wireless Networks Outline Motivation TCP mechanisms Indirect TCP Snooping TCP Mobile TCP Fast retransmit/recovery Transmission freezing Selective retransmission Transaction oriented TCP Adapted

More information

Midterm Exam CMPSCI 453: Computer Networks Fall 2011 Prof. Jim Kurose

Midterm Exam CMPSCI 453: Computer Networks Fall 2011 Prof. Jim Kurose Midterm Exam CMPSCI 453: Computer Networks Fall 2011 Prof. Jim Kurose Instructions: There are 4 questions on this exam. Please use two exam blue books answer questions 1, 2 in one book, and the remaining

More information

Data Center Load Balancing. 11.11.2015 Kristian Hartikainen

Data Center Load Balancing. 11.11.2015 Kristian Hartikainen Data Center Load Balancing 11.11.2015 Kristian Hartikainen Load Balancing in Computing Efficient distribution of the workload across the available computing resources Distributing computation over multiple

More information

Internet Control Protocols Reading: Chapter 3

Internet Control Protocols Reading: Chapter 3 Internet Control Protocols Reading: Chapter 3 ARP - RFC 826, STD 37 DHCP - RFC 2131 ICMP - RFC 0792, STD 05 1 Goals of Today s Lecture Bootstrapping an end host Learning its own configuration parameters

More information

First Midterm for ECE374 03/24/11 Solution!!

First Midterm for ECE374 03/24/11 Solution!! 1 First Midterm for ECE374 03/24/11 Solution!! Note: In all written assignments, please show as much of your work as you can. Even if you get a wrong answer, you can get partial credit if you show your

More information

Objectives of Lecture. Network Architecture. Protocols. Contents

Objectives of Lecture. Network Architecture. Protocols. Contents Objectives of Lecture Network Architecture Show how network architecture can be understood using a layered approach. Introduce the OSI seven layer reference model. Introduce the concepts of internetworking

More information

VPN. Date: 4/15/2004 By: Heena Patel Email:hpatel4@stevens-tech.edu

VPN. Date: 4/15/2004 By: Heena Patel Email:hpatel4@stevens-tech.edu VPN Date: 4/15/2004 By: Heena Patel Email:hpatel4@stevens-tech.edu What is VPN? A VPN (virtual private network) is a private data network that uses public telecommunicating infrastructure (Internet), maintaining

More information

High-Speed TCP Performance Characterization under Various Operating Systems

High-Speed TCP Performance Characterization under Various Operating Systems High-Speed TCP Performance Characterization under Various Operating Systems Y. Iwanaga, K. Kumazoe, D. Cavendish, M.Tsuru and Y. Oie Kyushu Institute of Technology 68-4, Kawazu, Iizuka-shi, Fukuoka, 82-852,

More information

GATE CS Topic wise Questions Computer Network

GATE CS Topic wise Questions Computer Network www.gatehelp.com GATE CS Topic wise Questions YEAR 23 Question. 1 Which of the following assertions is false about the internet Protocol (IP)? (A) It is possible for a computer to have multiple IP addresses

More information

Student, Haryana Engineering College, Haryana, India 2 H.O.D (CSE), Haryana Engineering College, Haryana, India

Student, Haryana Engineering College, Haryana, India 2 H.O.D (CSE), Haryana Engineering College, Haryana, India Volume 5, Issue 6, June 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A New Protocol

More information

Wireless LAN Concepts

Wireless LAN Concepts Wireless LAN Concepts Wireless LAN technology is becoming increasingly popular for a wide variety of applications. After evaluating the technology, most users are convinced of its reliability, satisfied

More information

APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM

APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM 152 APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM A1.1 INTRODUCTION PPATPAN is implemented in a test bed with five Linux system arranged in a multihop topology. The system is implemented

More information

Disaster-Resilient Backbone and Access Networks

Disaster-Resilient Backbone and Access Networks The Workshop on Establishing Resilient Life-Space in the Cyber-Physical Integrated Society, March. 17, 2015, Sendai, Japan Disaster-Resilient Backbone and Access Networks Shigeki Yamada (shigeki@nii.ac.jp)

More information

Horizon: Balancing TCP over multiple paths in wireless mesh networks

Horizon: Balancing TCP over multiple paths in wireless mesh networks Horizon: Balancing TCP over multiple paths in wireless mesh networks Bozidar Radunovic, Christos Gkantsidis, Dinan Gunawardena, Peter Key Microsoft Research Cambridge, UK Wireless Mesh Networks Goals 1.

More information

Sample Network Analysis Report

Sample Network Analysis Report Sample Network Analysis Report Report Information Report created on 1/9/2014 9:35:19 PM. Analyst Information Name Sample Analysis Report E-mail Address info@chappellu.com Phone Number 408-378-7841 Client

More information

Advanced Computer Networks Project 2: File Transfer Application

Advanced Computer Networks Project 2: File Transfer Application 1 Overview Advanced Computer Networks Project 2: File Transfer Application Assigned: April 25, 2014 Due: May 30, 2014 In this assignment, you will implement a file transfer application. The application

More information

Lecture 2-ter. 2. A communication example Managing a HTTP v1.0 connection. G.Bianchi, G.Neglia, V.Mancuso

Lecture 2-ter. 2. A communication example Managing a HTTP v1.0 connection. G.Bianchi, G.Neglia, V.Mancuso Lecture 2-ter. 2 A communication example Managing a HTTP v1.0 connection Managing a HTTP request User digits URL and press return (or clicks ). What happens (HTTP 1.0): 1. Browser opens a TCP transport

More information

Measuring Cellular Networks: Characterizing 3G, 4G, and Path Diversity

Measuring Cellular Networks: Characterizing 3G, 4G, and Path Diversity Measuring Cellular Networks: Characterizing 3G, 4G, and Path Diversity Yung-Chih Chen University of Massachusetts Amherst, MA USA yungchih@cs.umass.edu Erich M. Nahum IBM T.J. Watson Research Center Hawthorne,

More information

CS5008: Internet Computing

CS5008: Internet Computing CS5008: Internet Computing Lecture 22: Internet Security A. O Riordan, 2009, latest revision 2015 Internet Security When a computer connects to the Internet and begins communicating with others, it is

More information

Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1)

Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1) Lecture Objectives Wireless and Mobile Systems Design Lecture 07 Mobile Networks: TCP in Wireless Networks Describe TCP s flow control mechanism Describe operation of TCP Reno and TCP Vegas, including

More information

Project 4: (E)DoS Attacks

Project 4: (E)DoS Attacks Project4 EDoS Instructions 1 Project 4: (E)DoS Attacks Secure Systems and Applications 2009 Ben Smeets (C) Dept. of Electrical and Information Technology, Lund University, Sweden Introduction A particular

More information

On Bufferbloat and Delay Analysis of MultiPath TCP in Wireless Networks

On Bufferbloat and Delay Analysis of MultiPath TCP in Wireless Networks On Bufferbloat and Delay Analysis of MultiPath TCP in Wireless Networks Yung-Chih Chen School of Computer Science University of Massachusetts Amherst yungchih@cs.umass.edu Don Towsley School of Computer

More information

Understanding and Configuring NAT Tech Note PAN-OS 4.1

Understanding and Configuring NAT Tech Note PAN-OS 4.1 Understanding and Configuring NAT Tech Note PAN-OS 4.1 Revision C 2012, Palo Alto Networks, Inc. www.paloaltonetworks.com Contents Overview... 3 Scope... 3 Design Consideration... 3 Software requirement...

More information

This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio).

This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio). This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio). Here we explore the sequence of interactions in a typical FTP (File Transfer Protocol) session.

More information

Transport layer protocols for ad hoc networks

Transport layer protocols for ad hoc networks Transport layer protocols for ad hoc networks Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/tlt-2616/ Which transport layer protocol? Classification of transport

More information

Overview. Securing TCP/IP. Introduction to TCP/IP (cont d) Introduction to TCP/IP

Overview. Securing TCP/IP. Introduction to TCP/IP (cont d) Introduction to TCP/IP Overview Securing TCP/IP Chapter 6 TCP/IP Open Systems Interconnection Model Anatomy of a Packet Internet Protocol Security (IPSec) Web Security (HTTP over TLS, Secure-HTTP) Lecturer: Pei-yih Ting 1 2

More information

Networking part 3: the transport layer

Networking part 3: the transport layer Networking part 3: the transport layer Juliusz Chroboczek Université de Paris-Diderot (Paris 7) September 2011 Summary of the previous episodes Episode 1: switching, packet switching and the Internet.

More information

First Midterm for ECE374 02/25/15 Solution!!

First Midterm for ECE374 02/25/15 Solution!! 1 First Midterm for ECE374 02/25/15 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam

More information

Measuring the Evolution of Transport Protocols in the Internet. Alberto Medina Mark Allman Sally Floyd

Measuring the Evolution of Transport Protocols in the Internet. Alberto Medina Mark Allman Sally Floyd Measuring the Evolution of Transport Protocols in the Internet Alberto Medina Mark Allman Sally Floyd 1 2 The Internet Protocol Stack Application Presentation Session Transport IP Data link Physical Internet

More information

Applications. Network Application Performance Analysis. Laboratory. Objective. Overview

Applications. Network Application Performance Analysis. Laboratory. Objective. Overview Laboratory 12 Applications Network Application Performance Analysis Objective The objective of this lab is to analyze the performance of an Internet application protocol and its relation to the underlying

More information

20. Switched Local Area Networks

20. Switched Local Area Networks 20. Switched Local Area Networks n Addressing in LANs (ARP) n Spanning tree algorithm n Forwarding in switched Ethernet LANs n Virtual LANs n Layer 3 switching n Datacenter networks John DeHart Based on

More information

Load Balancing in Data Center Networks

Load Balancing in Data Center Networks Load Balancing in Data Center Networks Henry Xu Computer Science City University of Hong Kong HKUST, March 2, 2015 Background Aggregator Aggregator Aggregator Worker Worker Worker Worker Low latency for

More information

Lecture 28: Internet Protocols

Lecture 28: Internet Protocols Lecture 28: Internet Protocols 15-110 Principles of Computing, Spring 2016 Dilsun Kaynar, Margaret Reid-Miller, Stephanie Balzer Reminder: Exam 2 Exam 2 will take place next Monday, on April 4. Further

More information

Network Performance: Networks must be fast. What are the essential network performance metrics: bandwidth and latency

Network Performance: Networks must be fast. What are the essential network performance metrics: bandwidth and latency Network Performance: Networks must be fast What are the essential network performance metrics: bandwidth and latency Transmission media AS systems Input'signal'f(t) Has'bandwidth'B System'with'H(-) Output'signal'g(t)

More information

Transport and Network Layer

Transport and Network Layer Transport and Network Layer 1 Introduction Responsible for moving messages from end-to-end in a network Closely tied together TCP/IP: most commonly used protocol o Used in Internet o Compatible with a

More information

COMP 361 Computer Communications Networks. Fall Semester 2003. Midterm Examination

COMP 361 Computer Communications Networks. Fall Semester 2003. Midterm Examination COMP 361 Computer Communications Networks Fall Semester 2003 Midterm Examination Date: October 23, 2003, Time 18:30pm --19:50pm Name: Student ID: Email: Instructions: 1. This is a closed book exam 2. This

More information

Distributed Denial of Service Attacks & Defenses

Distributed Denial of Service Attacks & Defenses Distributed Denial of Service Attacks & Defenses Guest Lecture by: Vamsi Kambhampati Fall 2011 Distributed Denial of Service (DDoS) Exhaust resources of a target, or the resources it depends on Resources:

More information

Network Security. Mobin Javed. October 5, 2011

Network Security. Mobin Javed. October 5, 2011 Network Security Mobin Javed October 5, 2011 In this class, we mainly had discussion on threat models w.r.t the class reading, BGP security and defenses against TCP connection hijacking attacks. 1 Takeaways

More information

TCP Westwood for Wireless

TCP Westwood for Wireless TCP Westwood for Wireless מבוא רקע טכני בקרת עומס ב- TCP TCP על קשר אלחוטי שיפור תפוקה עם פרוטוקול TCP Westwood סיכום.1.2.3.4.5 Seminar in Computer Networks and Distributed Systems Hadassah College Spring

More information