Lecture 16: Multi-path TCP"

Size: px
Start display at page:

Download "Lecture 16: Multi-path TCP""

Transcription

1 Lecture 16: Multi-path TCP" CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Costin Raiciu

2 Lecture 16 Overview" TCP review MPTCP Overview 2

3 TCP Connection Setup HTTP server listening on port 80 3

4 TCP Connection Setup SYN DPORT 80 SPORT

5 TCP Connection Setup SYN/ACK DPORT 80 SPORT

6 TCP Connection Setup ACK DPORT 80 SPORT

7 TCP Data Transmission Browser: Send 3KB of data HTTP Server: Read Request 7

8 TCP Data Transmission Data: Browser: Send 3KB of data HTTP Server: Read Request 8

9 TCP Data Transmission Data: Data: Browser: Send 3KB of data HTTP Server: Read Request 9

10 TCP Data Transmission Data: Data: Data: Browser: Send 3KB of data HTTP Server: Read Request 10

11 TCP: Lost Packets Data: Data: Browser: Send 3KB of data HTTP Server: Read Request 11

12 TCP: Reordering Data: Data: Data: Browser: Send 3KB of data HTTP Server: Read Request 12

13 TCP: Sequence #s and ACKs SEQ 2001 Data: SEQ 1001 Data: SEQ 1 Data: Browser: Send 3KB of data HTTP Server: Read Request 13

14 TCP: Sequence #s and ACKs SEQ 2001 Data: SEQ 1001 Data: ACK 1001 Browser: Send 3KB of data HTTP Server: Read Request 14

15 TCP: Sequence #s and ACKs SEQ 2001 Data: ACK 1001 ACK 2001 Browser: Send 3KB of data HTTP Server: Read Request 15

16 TCP: Sequence #s and ACKs ACK 1001 ACK 2001 ACK 3001 Browser: Send 3KB of data HTTP Server: Read Request 16

17 Multipath TCP" MPTCP is a drop in replacement for TCP Works with unmodified applications Over the existing network 17

18 18" Drop-in TCP Replacement" The sender stripes packets across paths user space socket API MPTCP MPTCP The receiver puts the packets in the correct order IP addr addr 1 addr 2 18

19 MPTCP Operation SYN MP_CAPABLE X 19

20 MPTCP Operation SYN/ACK MP_CAPABLE Y 20

21 MPTCP Operation STATE 1 CWND Snd.SEQNO Rcv.SEQNO 21

22 MPTCP Operation STATE 1 CWND Snd.SEQNO Rcv.SEQNO SYN JOIN Y 22

23 MPTCP Operation STATE 1 CWND Snd.SEQNO Rcv.SEQNO SYN/ACK JOIN X 23

24 MPTCP Operation STATE 1 CWND Snd.SEQNO Rcv.SEQNO STATE 2 CWND Snd.SEQNO Rcv.SEQNO 24

25 MPTCP Operation options SEQ 1000 DSEQ DATA STATE 1 CWND Snd.SEQNO Rcv.SEQNO STATE 2 CWND Snd.SEQNO Rcv.SEQNO 25

26 MPTCP Operation options SEQ 1000 DSEQ DATA STATE 1 CWND Snd.SEQNO Rcv.SEQNO STATE 2 CWND Snd.SEQNO Rcv.SEQNO 26

27 MPTCP Operation options SEQ 1000 DSEQ DATA STATE 1 CWND Snd.SEQNO Rcv.SEQNO SEQ 5000 options DSEQ DATA STATE 2 CWND Snd.SEQNO Rcv.SEQNO 27

28 MPTCP Operation options SEQ 1000 DSEQ DATA STATE 1 CWND Snd.SEQNO Rcv.SEQNO SEQ 5000 options DSEQ DATA STATE 2 CWND Snd.SEQNO Rcv.SEQNO 28

29 MPTCP Operation options SEQ 1000 DSEQ DATA STATE 1 CWND Snd.SEQNO Rcv.SEQNO SEQ 5000 options DSEQ DATA STATE 2 CWND Snd.SEQNO Rcv.SEQNO 29

30 MPTCP Operation options SEQ 1000 DSEQ DATA STATE 1 CWND Snd.SEQNO Rcv.SEQNO SEQ 5000 options DSEQ DATA STATE 2 CWND Snd.SEQNO Rcv.SEQNO 30

31 MPTCP Operation ACK 2000 STATE 1 CWND Snd.SEQNO Rcv.SEQNO STATE 2 CWND Snd.SEQNO Rcv.SEQNO 31

32 MPTCP Operation options SEQ 2000 DSEQ DATA STATE 1 CWND Snd.SEQNO Rcv.SEQNO STATE 2 CWND Snd.SEQNO Rcv.SEQNO 32

33 Pool BW to Balance Load" Each path runs its own congestion control, to detect and respond to the congestion it sees. But link the congestion control parameters, so as to move traffic away from the more congested paths. [Kelly & Voice, Key, Massoulie & Towsley] be less aggressive be more aggressive 33

34 Design goal 1: Be fair to regular TCP" A multipath TCP flow with two subflows Regular TCP To be fair, Multipath TCP should take as much capacity as TCP at a bottleneck link, no matter how many paths it is using. 34

35 Design goal 2: MPTCP should use efficient paths" 12Mb/s 12Mb/s 12Mb/s Each flow has a choice of a 1-hop and a 2-hop path. How should split its traffic? 35

36 Design goal 2: MPTCP should use efficient paths" 12Mb/s 8Mb/s 12Mb/s 8Mb/s 12Mb/s 8Mb/s If each flow split its traffic 1:

37 Design goal 2: MPTCP should use efficient paths" 12Mb/s 9Mb/s 12Mb/s 9Mb/s 12Mb/s 9Mb/s If each flow split its traffic 2:

38 Design goal 2: MPTCP should use efficient paths" 12Mb/s 10Mb/s 12Mb/s 10Mb/s 12Mb/s 10Mb/s If each flow split its traffic 4:

39 Design goal 2: MPTCP should use efficient paths" 12Mb/s 12Mb/s 12Mb/s 12Mb/s 12Mb/s 12Mb/s If each flow split its traffic :

40 Design goal 2: MPTCP should use efficient paths" 12Mb/s 12Mb/s 12Mb/s 12Mb/s 12Mb/s 12Mb/s Theoretical solution (Kelly+Voice 2005; Han, Towsley et al. 2006) MPTCP should send all its traffic on its least-congested paths. " Theorem. This will lead to the most efficient allocation possible, given a network topology and a set of available paths. 40

41 Design goal 3: Perform as well as TCP" wifi path: high loss, small RTT 3G path: low loss, high RTT Design Goal 2 says to send all your traffic on the least congested path, in this case 3G. But this has high RTT, hence it will give low throughput. Goal 3a. A Multipath TCP user should get at least as much throughput as a single-path TCP would on the best of the available paths. Goal 3b. A Multipath TCP flow should take no more capacity on any link than a single-path TCP would. 41

42 Design goals" Goal 1. Be fair to TCP at bottleneck links redundant Goal 2. Use efficient paths... Goal 3. as much as we can, while being fair to TCP Goal 4. Adapt quickly when congestion changes Goal 5. Don t oscillate How does MPTCP achieve all this? 42

43 TCP congestion control" Maintain a congestion window w. Increase w for each ACK, by 1/w Decrease w for each drop, by w/2 43

44 MPTCP congestion control" Maintain a congestion window w r, one window for each path, where r R ranges over the set of available paths. Increase w r for each ACK on path r, by Decrease w r for each drop on path r, by w r /2 44

45 MPTCP congestion control" Maintain a congestion window w r, one window for each path, where r R ranges over the set of available paths. Design goal 3: At any potential bottleneck S that path r might be in, look at the best that a single-path TCP could get, and compare to what I m getting. Increase w r for each ACK on path r, by Decrease w r for each drop on path r, by w r /2 45

46 MPTCP congestion control" Maintain a congestion window w r, one window for each path, where r R ranges over the set of available paths. Design goal 2: We want to shift traffic away from congestion. Increase w r for each ACK on path r, by To achieve this, we increase windows in proportion to their size. Decrease w r for each drop on path r, by w r /2 46

47 Discussion" How much of the Internet can be pooled?» What are the implications for network operators? How should we fit multipath congestion control to CompoundTCP or CubicTCP? Is it worth using multipath for small flows? 47

48 For Next Class " Read and review wireless paper posted later today Keep going on projects! Checkpoint 2 only 1 weeks away 48

Multipath TCP design, and application to data centers. Damon Wischik, Mark Handley, Costin Raiciu, Christopher Pluntke

Multipath TCP design, and application to data centers. Damon Wischik, Mark Handley, Costin Raiciu, Christopher Pluntke Multipath TCP design, and application to data centers Damon Wischik, Mark Handley, Costin Raiciu, Christopher Pluntke Packet switching pools circuits. Multipath pools links : it is Packet Switching 2.0.

More information

Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford

Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford The difference between theory and practice is in theory somewhat smaller than in practice. In theory, this

More information

The following reference answers are based on the trace files provided with the text book, which can be downloaded from the textbook website.

The following reference answers are based on the trace files provided with the text book, which can be downloaded from the textbook website. Wireshark Lab 3 TCP The following reference answers are based on the trace files provided with the text book, which can be downloaded from the textbook website. TCP Basics Answer the following questions

More information

An Overview of Multipath TCP

An Overview of Multipath TCP An Overview of Multipath TCP Olivier Bonaventure, Mark Handley, and Costin Raiciu Olivier Bonaventure is a Professor at Catholic University of Louvain, Belgium. His research focus is primarily on Internet

More information

Data Center Networking with Multipath TCP

Data Center Networking with Multipath TCP Data Center Networking with Multipath TCP Costin Raiciu, Christopher Pluntke, Sebastien Barre, Adam Greenhalgh, Damon Wischik, Mark Handley Hotnets 2010 報 告 者 : 莊 延 安 Outline Introduction Analysis Conclusion

More information

Lab 3. According to above figure, the client computer (source) s IP address is and the TPC port number is 1161.

Lab 3. According to above figure, the client computer (source) s IP address is and the TPC port number is 1161. Lab 3 1. What is the IP address and TCP port number used by the client computer (source) that is transferring the file to gaia.cs.umass.edu? To answer this question, it s probably easiest to select an

More information

Congestion Control of Multipath TCP: Problems and Solutions

Congestion Control of Multipath TCP: Problems and Solutions Congestion Control of Multipath TCP: Problems and Solutions Ramin Khalili, T-Labs/TU-Berlin, Germany draft-khalili-mptcp-performance-issues-03 draft-khalili-mptcp-congestion-control-01 Multipath TCP (MPTCP)

More information

Data Networks Summer 2007 Homework #3

Data Networks Summer 2007 Homework #3 Data Networks Summer Homework # Assigned June 8, Due June in class Name: Email: Student ID: Problem Total Points Problem ( points) Host A is transferring a file of size L to host B using a TCP connection.

More information

Good Ideas So Far Computer Networking. Outline. Sequence Number Space. Lecture 18 More TCP & Congestion Control. The devilish details of TCP

Good Ideas So Far Computer Networking. Outline. Sequence Number Space. Lecture 18 More TCP & Congestion Control. The devilish details of TCP Good Ideas So Far 15-441 Computer Networking Lecture 18 More TCP & Congestion Control Flow control Stop & wait Parallel stop & wait Sliding window (e.g., advertised windows) Loss recovery outs Acknowledgement-driven

More information

CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013

CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013 CSE 473 Introduction to Computer Networks Jon Turner Exam Solutions Your name: 0/3/03. (0 points). Consider a circular DHT with 7 nodes numbered 0,,...,6, where the nodes cache key-values pairs for 60

More information

MMPTCP: A Novel Transport Protocol for Data Centre Networks

MMPTCP: A Novel Transport Protocol for Data Centre Networks MMPTCP: A Novel Transport Protocol for Data Centre Networks Morteza Kheirkhah FoSS, Department of Informatics, University of Sussex Modern Data Centre Networks FatTree It provides full bisection bandwidth

More information

This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio).

This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio). Client App Network Server App 25-May-13 15:32 (Page 1) This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio). TCP is an end to end protocol which

More information

Multipath TCP in Data Centres (work in progress)

Multipath TCP in Data Centres (work in progress) Multipath TCP in Data Centres (work in progress) Costin Raiciu Joint work with Christopher Pluntke, Adam Greenhalgh, Sebastien Barre, Mark Handley, Damon Wischik Data Centre Trends Cloud services are driving

More information

How Different Components of the Internet Works Together?

How Different Components of the Internet Works Together? How Different Components of the Internet Works Together? Sandip Chakraborty Department of Computer Science and Engineering, INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR April 12, 2015 Sandip Chakraborty (IIT

More information

CS640: Introduction to Computer Networks. Transport Protocols. Functionality Split

CS640: Introduction to Computer Networks. Transport Protocols. Functionality Split CS640: Introduction to Computer Networks Aditya Akella Lecture 14 TCP I - Transport Protocols: TCP Segments, Flow control and Connection Setup Transport Protocols Lowest level endto-end protocol. Header

More information

Lecture 3: The Transport Layer: UDP and TCP

Lecture 3: The Transport Layer: UDP and TCP Lecture 3: The Transport Layer: UDP and TCP Prof. Shervin Shirmohammadi SITE, University of Ottawa Prof. Shervin Shirmohammadi CEG 4185 3-1 The Transport Layer Provides efficient and robust end-to-end

More information

L41: Lab 5 - TCP Latency and Bandwidth

L41: Lab 5 - TCP Latency and Bandwidth L41: Lab 5 - TCP Latency and Bandwidth Lent Term 2015 The goals of this lab are to: Learn to draw TCP time-bandwidth and time sequence-number diagrams Evaluate the effects of latency on TCP Evaluate the

More information

Analyze TCP traces to learn about capturing network path metrics and events. Produce and analyze your own traces.

Analyze TCP traces to learn about capturing network path metrics and events. Produce and analyze your own traces. Ricky Mok 1 Analyze TCP traces to learn about capturing network path metrics and events. Produce and analyze your own traces. Warning! This lab is NOT easy. Ask questions if you get lost. 2 Reliable data

More information

Outline. TCP connection setup/data transfer. 15-441 Computer Networking. TCP Reliability. Congestion sources and collapse. Congestion control basics

Outline. TCP connection setup/data transfer. 15-441 Computer Networking. TCP Reliability. Congestion sources and collapse. Congestion control basics Outline 15-441 Computer Networking Lecture 8 TCP & Congestion Control TCP connection setup/data transfer TCP Reliability Congestion sources and collapse Congestion control basics Lecture 8: 09-23-2002

More information

Chapter 9: Mobile Transport Layer. Mobile Communications. TCP for 2.5G/3G wireless. Additional optimizations. Classical approaches.

Chapter 9: Mobile Transport Layer. Mobile Communications. TCP for 2.5G/3G wireless. Additional optimizations. Classical approaches. Mobile Communications Chapter 9: Mobile Transport Layer Motivation TCP-mechanisms Classical approaches Indirect TCP Snooping TCP Mobile TCP PEPs in general Additional optimizations Fast retransmit/recovery

More information

Transport Layer Protocols

Transport Layer Protocols Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements

More information

Before beginning this lab, you ll probably want to review sections 3.5 and 3.7 in the text. 1

Before beginning this lab, you ll probably want to review sections 3.5 and 3.7 in the text. 1 Wireshark Lab: TCP Version: 2.0 2007 J.F. Kurose, K.W. Ross. All Rights Reserved Computer Networking: A Topdown Approach, 4 th edition. In this lab, we ll investigate the behavior of TCP in detail. We

More information

Study Guide for Midterm 1 CSC/ECE , Fall, 2012

Study Guide for Midterm 1 CSC/ECE , Fall, 2012 Study Guide for Midterm 1 CSC/ECE 573-001, Fall, 2012 The focus of this midterm will be on the IP and transport layer protocols. Together with IP, the functions which are required for lower layer interfacing,

More information

First Midterm for ECE374 03/09/12 Solution!!

First Midterm for ECE374 03/09/12 Solution!! 1 First Midterm for ECE374 03/09/12 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam

More information

The Transmission Control Protocol (TCP): Lecture 1

The Transmission Control Protocol (TCP): Lecture 1 Today s Lecture The Transmission Control Protocol (TCP): Lecture 1 I. TCP overview II. The TCP Header III. Connection establishment and termination Internet Protocols CSC / ECE 573 Fall, 2005 N. C. State

More information

Design, implementation and evaluation of congestion control for multipath TCP

Design, implementation and evaluation of congestion control for multipath TCP Design, implementation and evaluation of congestion control for multipath TCP Damon Wischik, Costin Raiciu, Adam Greenhalgh, Mark Handley University College London ABSTRACT Multipath TCP, as proposed by

More information

Before beginning this lab, you ll probably want to review sections 3.5 and 3.7 in the text. 1

Before beginning this lab, you ll probably want to review sections 3.5 and 3.7 in the text. 1 Ethereal Lab: TCP Version: July 2005 2005 J.F. Kurose, K.W. Ross. All Rights Reserved Computer Networking: A Topdown Approach Featuring the Internet, 3 rd edition. In this lab, we ll investigate the behavior

More information

Before beginning this lab, you ll probably want to review sections 3.5 and 3.7 in the text. 1

Before beginning this lab, you ll probably want to review sections 3.5 and 3.7 in the text. 1 Ethereal Lab: TCP Version: 1.0 2005 J.F. Kurose, K.W. Ross. All Rights Reserved Computer Networking: A Topdown Approach Featuring the Internet, 3 rd edition. In this lab, we ll investigate the behavior

More information

MultiPath TCP: Hands-On

MultiPath TCP: Hands-On MultiPath TCP: Hands-On Gerrie Veerman Author gerrie.veerman@os3.nl Ronald van der Pol Supervisor rvdp@sara.nl Universiteit van Amsterdam System & Network Engineering July 9, 2012 Abstract This project

More information

Mobile Communications Chapter 9: Mobile Transport Layer

Mobile Communications Chapter 9: Mobile Transport Layer Mobile Communications Chapter 9: Mobile Transport Layer Motivation TCP-mechanisms Classical approaches Indirect TCP Snooping TCP Mobile TCP PEPs in general Additional optimizations Fast retransmit/recovery

More information

TCP context and interfaces

TCP context and interfaces Linux Networking: tcp David Morgan TCP context and interfaces Computer A Computer B application process application process data data data data TCP process TCP process a network 1 TCP purposes and features

More information

Computer Networks COSC 6377

Computer Networks COSC 6377 Computer Networks COSC 6377 Lecture 25 Fall 2011 November 30, 2011 1 Announcements Grades will be sent to each student for verificagon P2 deadline extended 2 Large- scale computagon Search Engine Tasks

More information

Policy Based Forwarding

Policy Based Forwarding Policy Based Forwarding Tech Note PAN-OS 4.1 Revision A 2012, Palo Alto Networks, Inc. www.paloaltonetworks.com Contents Overview... 3 Security... 3 Performance... 3 Symmetric Routing... 3 Service Versus

More information

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Networks: GSM, GPRS, UMTS Chapter 4 Mobility on the

More information

Final for ECE374 05/06/13 Solution!!

Final for ECE374 05/06/13 Solution!! 1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -

More information

How do I get to www.randomsite.com?

How do I get to www.randomsite.com? Networking Primer* *caveat: this is just a brief and incomplete introduction to networking to help students without a networking background learn Network Security. How do I get to www.randomsite.com? Local

More information

Transmission Control Protocol (TCP) A brief summary

Transmission Control Protocol (TCP) A brief summary Transmission Control Protocol (TCP) A brief summary TCP Basics TCP (RFC 793) is a connection-oriented transport protocol TCP entities only present at hosts (end-end) retain state of each open connection

More information

How Hard Can It Be? Designing and Implementing a Deployable Multipath TCP

How Hard Can It Be? Designing and Implementing a Deployable Multipath TCP How Hard Can It Be? Designing and Implementing a Deployable Multipath TCP Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio Honda, Fabien Duchene, Olivier Bonaventure and Mark Handley

More information

MultiPath TCP (MPTCP)

MultiPath TCP (MPTCP) פרויקטים בתקשורת מחשבים - 236340 - סמסטר אביב 2016 MultiPath TCP (MPTCP) MultiPath TCP (MPTCP) is an ongoing effort of the Internet Engineering Task Force's (IETF) Multipath TCP working group, which aims

More information

LLECLAIR: A Cross Layer Design to Optimize the Performance of TCP in Wireless Networks

LLECLAIR: A Cross Layer Design to Optimize the Performance of TCP in Wireless Networks LLECLAIR: A Cross Layer Design to Optimize the Performance of TCP in Wireless Networks Prof Jay L. Borade 1, Prof Rajesh Bansode 2 1 Asst Proff IT FRCRCE, India 2 Asst Proff IT TCET, India Abstract Transmission

More information

Transport Layer: UDP vs. TCP

Transport Layer: UDP vs. TCP EEC 189Q: Computer Networks Transport Layer: UDP vs. TCP Reading: 8.4 & 8.5 Review: Internet Protocol Stack Application Telnet FTP HTTP Transport Network Link Physical bits on wire TCP LAN IP UDP Packet

More information

Second Midterm for ECE374 04/08/15 Solution!!

Second Midterm for ECE374 04/08/15 Solution!! ECE374: First Midterm 1 Second Midterm for ECE374 04/08/15 Solution!! Instructions: a. Put your name and student number on each sheet of paper! b. The exam is closed book. c. You have 90 minutes to complete

More information

Life of a Packet CS 640, 2015-01-22

Life of a Packet CS 640, 2015-01-22 Life of a Packet CS 640, 2015-01-22 Outline Recap: building blocks Application to application communication Process to process communication Host to host communication Announcements Syllabus Should have

More information

Congestion Control. Goals. Present principles of congestion control. Instantiation in existing netorks

Congestion Control. Goals. Present principles of congestion control. Instantiation in existing netorks Congestion Control Acknowledgements These Slides have been adapted from the originals made available by J. Kurose and K. Ross All material copyright 1996-2009 J.F Kurose and K.W. Ross, All Rights Reserved

More information

Boosting mobility performance with Multi-Path TCP

Boosting mobility performance with Multi-Path TCP Boosting mobility performance with Multi-Path TCP Name SURNAME 1, Name SURNAME 2 1 Organisation, Address, City, Postcode, Country Tel: +countrycode localcode number, Fax: + countrycode localcode number,

More information

CHAPTER 24. Questions PRACTICE SET

CHAPTER 24. Questions PRACTICE SET CHAPTER 24 PRACTICE SET Questions Q24-1. The protocol field of the datagram defines the transport-layer protocol that should receive the transport-layer packet. If the value is 06, the protocol is TCP;

More information

COMP 3331/9331: Computer Networks and Applications. Lab Exercise 3: TCP and UDP (Solutions)

COMP 3331/9331: Computer Networks and Applications. Lab Exercise 3: TCP and UDP (Solutions) COMP 3331/9331: Computer Networks and Applications Lab Exercise 3: TCP and UDP (Solutions) AIM To investigate the behaviour of TCP and UDP in greater detail. EXPERIMENT 1: Understanding TCP Basics Tools

More information

Mul$path Networking OpenFlow and MPTCP Friend or Foe?

Mul$path Networking OpenFlow and MPTCP Friend or Foe? Mul$path Networking OpenFlow and MPTCP Friend or Foe? Benno Overeinder, Ronald van der Pol, SURFnet The Problem (or Challenge) Mul;path networking for resilience (think of mul;- homing) for load balancing

More information

Application Level Congestion Control Enhancements in High BDP Networks. Anupama Sundaresan

Application Level Congestion Control Enhancements in High BDP Networks. Anupama Sundaresan Application Level Congestion Control Enhancements in High BDP Networks Anupama Sundaresan Organization Introduction Motivation Implementation Experiments and Results Conclusions 2 Developing a Grid service

More information

- TCP and UDP - Transport Layer Protocols

- TCP and UDP - Transport Layer Protocols 1 Transport Layer Protocols - TCP and UDP - The Transport layer (OSI Layer-4) does not actually transport data, despite its name. Instead, this layer is responsible for the reliable transfer of data, by

More information

Ch 14 Understanding. Magda El Zarki Prof. of CS Univ. of CA, Irvine

Ch 14 Understanding. Magda El Zarki Prof. of CS Univ. of CA, Irvine Ch 14 Understanding Transport Protocols Magda El Zarki Prof. of CS Univ. of CA, Irvine Email:elzarki@uci.edu http://www.ics.uci.edu/~magda Overview The most common end-to-end transport protocols today

More information

Transport Control Protocol (TCP)

Transport Control Protocol (TCP) Transport Control Protocol (TCP) Richard T. B. Ma School of Computing National University of Singapore CS 3103: Compute Networks and Protocols Transport services and protocols provide logical communication

More information

IP Network Layer. Datagram ID FLAG Fragment Offset. IP Datagrams. IP Addresses. IP Addresses. CSCE 515: Computer Network Programming TCP/IP

IP Network Layer. Datagram ID FLAG Fragment Offset. IP Datagrams. IP Addresses. IP Addresses. CSCE 515: Computer Network Programming TCP/IP CSCE 515: Computer Network Programming TCP/IP IP Network Layer Wenyuan Xu Department of Computer Science and Engineering University of South Carolina IP Datagrams IP is the network layer packet delivery

More information

Exploring Mobile/WiFi Handover with Multipath TCP

Exploring Mobile/WiFi Handover with Multipath TCP Exploring Mobile/WiFi Handover with Multipath TCP Fabien Duchene fabien.duchene@uclouvain.be Christoph Paasch christoph.paasch@uclouvain.be Costin Raiciu costin.raiciu@cs.pub.ro Gregory Detal gregory.detal@uclouvain.be

More information

Challenges of Sending Large Files Over Public Internet

Challenges of Sending Large Files Over Public Internet Challenges of Sending Large Files Over Public Internet CLICK TO EDIT MASTER TITLE STYLE JONATHAN SOLOMON SENIOR SALES & SYSTEM ENGINEER, ASPERA, INC. CLICK TO EDIT MASTER SUBTITLE STYLE OUTLINE Ø Setting

More information

Updating TCP to support Variable-Rate Traffic

Updating TCP to support Variable-Rate Traffic Updating TCP to support Variable-Rate Traffic Gorry Fairhurst Israfil Biswas {gorry, israfil}@erg.abdn.ac.uk Electronics Research Group School of Engineering University of Aberdeen Scotland, UK TCP behaviour

More information

Using Fuzzy Logic Control to Provide Intelligent Traffic Management Service for High-Speed Networks ABSTRACT:

Using Fuzzy Logic Control to Provide Intelligent Traffic Management Service for High-Speed Networks ABSTRACT: Using Fuzzy Logic Control to Provide Intelligent Traffic Management Service for High-Speed Networks ABSTRACT: In view of the fast-growing Internet traffic, this paper propose a distributed traffic management

More information

Understanding Layer 2, 3, and 4 Protocols

Understanding Layer 2, 3, and 4 Protocols 2 Understanding Layer 2, 3, and 4 Protocols While many of the concepts well known to traditional Layer 2 and Layer 3 networking still hold true in content switching applications, the area introduces new

More information

Firewall Port Handling in TENA Applications

Firewall Port Handling in TENA Applications Firewall Port Handling in TENA Applications The purpose of this report is to describe the manner in which TENA applications handle communications using TCP. This report will also present some insight for

More information

TCP in Wireless Mobile Networks

TCP in Wireless Mobile Networks TCP in Wireless Mobile Networks 1 Outline Introduction to transport layer Introduction to TCP (Internet) congestion control Congestion control in wireless networks 2 Transport Layer v.s. Network Layer

More information

Tutorial 1 Solutions (Week 5)

Tutorial 1 Solutions (Week 5) COMP 333/933 Computer Networks and Applications Tutorial Solutions (Week 5) Introduction Suppose two hosts, A and B are separated by, kms and are connected by a direct link of R = Mbps. Suppose the propagation

More information

Lecture 17: 802.11 Wireless Networking"

Lecture 17: 802.11 Wireless Networking Lecture 17: 802.11 Wireless Networking" CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Lili Qiu, Nitin Vaidya Lecture 17 Overview" Project discussion Intro to 802.11 WiFi Jigsaw discussion

More information

Computer Networks Homework 1

Computer Networks Homework 1 Computer Networks Homework 1 Reference Solution 1. (15%) Suppose users share a 1 Mbps link. Also suppose each user requires 100 kbps when transmitting, but each user transmits only 10 percent of the time.

More information

Advanced Computer Networks Project 2: File Transfer Application

Advanced Computer Networks Project 2: File Transfer Application 1 Overview Advanced Computer Networks Project 2: File Transfer Application Assigned: April 25, 2014 Due: May 30, 2014 In this assignment, you will implement a file transfer application. The application

More information

Why SSL is better than IPsec for Fully Transparent Mobile Network Access

Why SSL is better than IPsec for Fully Transparent Mobile Network Access Why SSL is better than IPsec for Fully Transparent Mobile Network Access SESSION ID: SP01-R03 Aidan Gogarty HOB Inc. aidan.gogarty@hob.de What are we all trying to achieve? Fully transparent network access

More information

Basic Networking Concepts. 1. Introduction 2. Protocols 3. Protocol Layers 4. Network Interconnection/Internet

Basic Networking Concepts. 1. Introduction 2. Protocols 3. Protocol Layers 4. Network Interconnection/Internet Basic Networking Concepts 1. Introduction 2. Protocols 3. Protocol Layers 4. Network Interconnection/Internet 1 1. Introduction -A network can be defined as a group of computers and other devices connected

More information

Question: 3 When using Application Intelligence, Server Time may be defined as.

Question: 3 When using Application Intelligence, Server Time may be defined as. 1 Network General - 1T6-521 Application Performance Analysis and Troubleshooting Question: 1 One component in an application turn is. A. Server response time B. Network process time C. Application response

More information

Secure Network Access System (SNAS) Indigenous Next Generation Network Security Solutions

Secure Network Access System (SNAS) Indigenous Next Generation Network Security Solutions Secure Network Access System (SNAS) Indigenous Next Generation Network Security Solutions Gigi Joseph, Computer Division,BARC. Gigi@barc.gov.in Intranet Security Components Network Admission Control (NAC)

More information

BCS THE CHARTERED INSTITUTE FOR IT BCS HIGHER EDUCATION QUALIFICATIONS. BCS Level 5 Diploma in IT SEPTEMBER 2014. Computer Networks EXAMINERS REPORT

BCS THE CHARTERED INSTITUTE FOR IT BCS HIGHER EDUCATION QUALIFICATIONS. BCS Level 5 Diploma in IT SEPTEMBER 2014. Computer Networks EXAMINERS REPORT BCS THE CHARTERED INSTITUTE FOR IT BCS HIGHER EDUCATION QUALIFICATIONS BCS Level 5 Diploma in IT SEPTEMBER 2014 Computer Networks EXAMINERS REPORT General Comments This session is again like the April

More information

Internet Transport Protocols

Internet Transport Protocols Internet Transport Protocols Transmission Control Protocol (TCP): TCP Socket Primitives. The TCP Segment Header. Establishing & Terminating TCP Connections: TCP Three-way Handshake. TCP Connection Management

More information

Communications Technology

Communications Technology 1 Multi-channel combining for Airborne Flight Research Will Ivancic william.d.ivancic@nasa.gov Matt Sargent matt.sargent@epeerless.com Joseph Ishac jishac@nasa.gov NASA Don Sullivan donald.v.sullivan@nasa.gov

More information

TCP (Transmission Control Protocol)

TCP (Transmission Control Protocol) TCP (Transmission Control Protocol) Originally defined in RFC 793 (September 1981) UDP features: multiplexing + protection against bit errors Ports, checksum Connection-oriented Establishment and teardown

More information

Protecting Mobile Devices From TCP Flooding Attacks

Protecting Mobile Devices From TCP Flooding Attacks Protecting Mobile Devices From TCP Flooding Attacks Yogesh Swami % and Hannes Tschofenig* % Nokia Research Center, Palo Alto, CA, USA. * Siemens Corporate Technology, Munich, DE. 1 Motivation Anatomy of

More information

On Bufferbloat and Delay Analysis of MultiPath TCP in Wireless Networks

On Bufferbloat and Delay Analysis of MultiPath TCP in Wireless Networks On Bufferbloat and Delay Analysis of MultiPath TCP in Wireless Networks Yung-Chih Chen School of Computer Science University of Massachusetts Amherst yungchih@cs.umass.edu Don Towsley School of Computer

More information

APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM

APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM 152 APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM A1.1 INTRODUCTION PPATPAN is implemented in a test bed with five Linux system arranged in a multihop topology. The system is implemented

More information

To see the details of TCP (Transmission Control Protocol). TCP is the main transport layer protocol used in the Internet.

To see the details of TCP (Transmission Control Protocol). TCP is the main transport layer protocol used in the Internet. Lab Exercise TCP Objective To see the details of TCP (Transmission Control Protocol). TCP is the main transport layer protocol used in the Internet. The trace file is here: http://scisweb.ulster.ac.uk/~kevin/com320/labs/wireshark/trace-tcp.pcap

More information

TCP Pacing in Data Center Networks

TCP Pacing in Data Center Networks TCP Pacing in Data Center Networks Monia Ghobadi, Yashar Ganjali Department of Computer Science, University of Toronto {monia, yganjali}@cs.toronto.edu 1 TCP, Oh TCP! 2 TCP, Oh TCP! TCP congestion control

More information

Sting: a TCP-based network measurement tool

Sting: a TCP-based network measurement tool Sting: a TCP-based network measurement tool Stefan Savage Department of Computer Science and Engineering University of Washington Simple problem Can we measure one-way packet loss rates to and from unmodified

More information

Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation

Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation R.Navaneethakrishnan Assistant Professor (SG) Bharathiyar College of Engineering and Technology, Karaikal, India.

More information

Computer Networks UDP and TCP

Computer Networks UDP and TCP Computer Networks UDP and TCP Saad Mneimneh Computer Science Hunter College of CUNY New York I m a system programmer specializing in TCP/IP communication protocol on UNIX systems. How can I explain a thing

More information

Sample Network Analysis Report

Sample Network Analysis Report Sample Network Analysis Report Report Information Report created on 1/9/2014 9:35:19 PM. Analyst Information Name Sample Analysis Report E-mail Address info@chappellu.com Phone Number 408-378-7841 Client

More information

The Internet. The Internet. The Internet. What is the internet, and how does it work?

The Internet. The Internet. The Internet. What is the internet, and how does it work? ECS 15; Lectures 17 and 18 Final paper: The Abstract 1-2 sentences defining the research problem. What is the internet, and how does it work? 1-2 sentences explaining your approach. 1-2 sentences describing

More information

Lecture 7: Data Center Networks"

Lecture 7: Data Center Networks Lecture 7: Data Center Networks" CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Nick Feamster Lecture 7 Overview" Project discussion Data Centers overview Fat Tree paper discussion CSE

More information

Optimization of Communication Systems Lecture 6: Internet TCP Congestion Control

Optimization of Communication Systems Lecture 6: Internet TCP Congestion Control Optimization of Communication Systems Lecture 6: Internet TCP Congestion Control Professor M. Chiang Electrical Engineering Department, Princeton University ELE539A February 21, 2007 Lecture Outline TCP

More information

Context. Congestion Control In High Bandwidth-Delay Nets [Katabi02a] What is XCP? Key ideas. Router Feedback: Utilization.

Context. Congestion Control In High Bandwidth-Delay Nets [Katabi02a] What is XCP? Key ideas. Router Feedback: Utilization. Congestion Control In High Bandwidth-Delay Nets [Katabi02a] CSci551: Computer Networks SP2006 Thursday Section John Heidemann 7e_Katabi02a: CSci551 SP2006 John Heidemann 1 Context limitations of TCP over

More information

Data Communication & Networks G22.2262-001. Session 9 - Main Theme The Internet Transport Protocols: TCP, UDP. Dr. Jean-Claude Franchitti

Data Communication & Networks G22.2262-001. Session 9 - Main Theme The Internet Transport Protocols: TCP, UDP. Dr. Jean-Claude Franchitti Data Communication & Networks G22.2262-001 Session 9 - Main Theme The Internet Transport Protocols: TCP, UDP Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute

More information

Visualizations and Correlations in Troubleshooting

Visualizations and Correlations in Troubleshooting Visualizations and Correlations in Troubleshooting Kevin Burns Comcast kevin_burns@cable.comcast.com 1 Comcast Technology Groups Cable CMTS, Modem, Edge Services Backbone Transport, Routing Converged Regional

More information

Multipath TCP. Breaking today's networks with tomorrow's protocol

Multipath TCP. Breaking today's networks with tomorrow's protocol Multipath TCP Breaking today's networks with tomorrow's protocol Speakers - Who are we? Catherine (Kate) Pearce Security Consultant / Pentester Loves her wine the way she likes her RFCs (Dry) New Zealand

More information

TCP Service Model. Announcements. TCP: Reliable, In-Order Delivery. Today s Lecture. TCP Header. TCP Support for Reliable Delivery

TCP Service Model. Announcements. TCP: Reliable, In-Order Delivery. Today s Lecture. TCP Header. TCP Support for Reliable Delivery Announcements Sukun is away this week. Dilip will cover his section and office hours. TCP: Reliable, In-Order Delivery EE 122: Intro to Communication Networks Fall 2006 (MW 4-5:30 in Donner 155) Vern Paxson

More information

Chapter 8 TCP/IP. Chapter Figures

Chapter 8 TCP/IP. Chapter Figures Chapter 8 TCP/IP Chapter Figures Application Application TCP UDP ICMP IP ARP RARP Network interface Figure 8. HTTP Request Header contains source & destination port numbers TCP header Header contains source

More information

Applications. Network Application Performance Analysis. Laboratory. Objective. Overview

Applications. Network Application Performance Analysis. Laboratory. Objective. Overview Laboratory 12 Applications Network Application Performance Analysis Objective The objective of this lab is to analyze the performance of an Internet application protocol and its relation to the underlying

More information

TCP - Introduction. Features of TCP

TCP - Introduction. Features of TCP TCP - Introduction The Internet Protocol (IP) provides unreliable datagram service between hosts The Transmission Control Protocol (TCP) provides reliable data delivery It uses IP for datagram delivery

More information

Is it Still Possible to Extend TCP?

Is it Still Possible to Extend TCP? Is it Still Possible to Extend TCP? Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam Greenhalgh, Mark Handley, Hideyuki Tokuda Keio University, Universitatea Politehnica Bucuresti, University College

More information

Project 4: (E)DoS Attacks

Project 4: (E)DoS Attacks Project4 EDoS Instructions 1 Project 4: (E)DoS Attacks Secure Systems and Applications 2009 Ben Smeets (C) Dept. of Electrical and Information Technology, Lund University, Sweden Introduction A particular

More information

A Survey: High Speed TCP Variants in Wireless Networks

A Survey: High Speed TCP Variants in Wireless Networks ISSN: 2321-7782 (Online) Volume 1, Issue 7, December 2013 International Journal of Advance Research in Computer Science and Management Studies Research Paper Available online at: www.ijarcsms.com A Survey:

More information

Lecture 6: Congestion Control

Lecture 6: Congestion Control Lecture 6: Congestion Control Overview Internet is a network of networks Narrow waist of IP: unreliable, best-effort datagram delivery Packet forwarding: input port to output port Routing protocols: computing

More information

First Midterm for ECE374 03/24/11 Solution!!

First Midterm for ECE374 03/24/11 Solution!! 1 First Midterm for ECE374 03/24/11 Solution!! Note: In all written assignments, please show as much of your work as you can. Even if you get a wrong answer, you can get partial credit if you show your

More information

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 socket door point-to-point: one sender, one receiver reliable, in-order byte steam: no message boundaries pipelined: TCP congestion and flow control set

More information

Networking Overview. (as usual, thanks to Dave Wagner and Vern Paxson)

Networking Overview. (as usual, thanks to Dave Wagner and Vern Paxson) Networking Overview (as usual, thanks to Dave Wagner and Vern Paxson) Focus For This Lecture Sufficient background in networking to then explore security issues in next few lectures Networking = the Internet

More information

TCP: Reliable, In-Order Delivery

TCP: Reliable, In-Order Delivery TCP: Reliable, In-Order Delivery EE 122: Intro to Communication Networks Fall 2006 (MW 4-5:30 in Donner 155) Vern Paxson TAs: Dilip Antony Joseph and Sukun Kim http://inst.eecs.berkeley.edu/~ee122/ Materials

More information