Computer Networks COSC 6377

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Computer Networks COSC 6377"

Transcription

1 Computer Networks COSC 6377 Lecture 25 Fall 2011 November 30,

2 Announcements Grades will be sent to each student for verificagon P2 deadline extended 2

3 Large- scale computagon Search Engine Tasks Crawl Build Index Answer query How much computagon, storage, and bandwidth do we need? How to get them cheap? Economy of scale 3

4 Map Reduce Large list of tasks that can be performed in parallel Count the number of web pages in which a special word appears Count the number of Gmes a person appears in a collecgon of images Map Reduce Transform each element (map) Aggregate (reduce) 4

5 Internet- scale Map Reduce Large number of workers performing map and reduce operagon CommunicaGon between machines Results of map needs to be processed by reduce In general, output of one operagon in a machine an input for another process in a different machine How to opgmize data center topology for communicagon between arbitrary machines? Trees, and other topologies, we will see later today 5

6 Data center video 6

7 Rest of the slides are from CosGn Raiciu s SIGCOMM talk 7

8 Improving Datacenter Performance and Robustness with Multipath TCP Costin Raiciu Department of Computer Science University Politehnica of Bucharest Sebastien Barre (UCL-BE), Christopher Pluntke (UCL), Adam Greenhalgh (UCL), Damon Wischik (UCL) and Mark Handley (UCL) Thanks to:

9 Motivation Datacenter apps are distributed across thousands of machines Want any machine to play any role To achieve this: Use dense parallel datacenter topologies Map each flow to a path Problem: This is the wrong place to start Naïve random allocation gives poor performance Improving performance adds complexity

10 Contributions Multipath topologies need multipath transport Multipath transport enables better topologies

11 To satisfy demand, modern datacenters provide many parallel paths Traditional Topologies are treebased Poor performance Not fault tolerant Shift towards multipath topologies: FatTree, BCube, VL2, Cisco, EC2

12 Fat Tree Topology [Fares et al., 2008; Clos, 1953] K=4 AggregaGon Switches 1Gbps 1Gbps K Pods with K Switches each Racks of servers

13 Fat Tree Topology [Fares et al., 2008; Clos, 1953] K=4 AggregaGon Switches K Pods with K Switches each Racks of servers

14 Collisions

15 Single-path TCP collisions reduce throughput 1000 Throughput (Mb/s) Optimal Throughput TCP Flow Throughput Rank of Flow

16 Collision

17

18

19 Not fair

20 Not fair

21

22

23 No matter how you do it, mapping each flow to a path is the wrong goal

24 Instead, we should pool capacity from different links

25 Instead, we should pool capacity from different links

26 Instead, we should pool capacity from different links

27 Instead, we should pool capacity from different links

28 Multipath Transport

29 Multipath Transport can pool datacenter networks Instead of using one path for each flow, use many random paths Don t worry about collisions. Just don t send (much) traffic on colliding paths

30 Multipath TCP Primer [IETF MPTCP WG] MPTCP is a drop in replacement for TCP MPTCP spreads application data over multiple subflows

31 Multipath TCP: Congestion Control [NSDI, 2011]

32 MPTCP better utilizes the FatTree network 1000 Throughput (Mb/s) MPTCP Optimal Throughput TCP Flow Throughput Rank of Flow

33 MPTCP on EC2 Amazon EC2: infrastructure as a service We can borrow virtual machines by the hour These run in Amazon data centers worldwide We can boot our own kernel A few availability zones have multipath topologies 2-8 paths available between hosts not on the same machine or in the same rack Available via ECMP

34 Amazon EC2 Experiment 40 medium CPU instances running MPTCP For 12 hours, we sequentially ran all-to-all iperf cycling through: TCP MPTCP (2 and 4 subflows)

35 MPTCP improves performance on EC2 Throughput (Mb/s) TCP MPTCP, 4 subflows MPTCP, 2 subflows Same Rack Flow Rank

36 What do the benefits depend on?

37 How many subflows are needed? How does the topology affect results? How does the traffic matrix affect results?

38 At most 8 subflows are needed Throughput (% of optimal) Total Throughput TCP RLB Multipath TCP

39 MPTCP improves fairness in VL topologies VL2 Throughput (Mb/s) Fairness is important: 400 Jobs finish when the slowest worker finishes Single Path TCP MPTCP, 2 subflows MPTCP, 4 subflows Rank of Flow

40 MPTCP improves throughput and fairness in BCube Throughput (Mb/s) BCube Single Path TCP MPTCP, 2 subflows MPTCP, 5 subflows Rank of Flow

41 Oversubscribed Topologies n To saturate full bisectional bandwidth: There must be no traffic locality All hosts must send at the same time Host links must not be bottlenecks n It makes sense to under-provision the network core This is what happens in practice Does MPTCP still provide benefits?

42 Performance improvements depend on Relative MPTCP Throughput Underloaded traffic matrix TCP MPTCP Sweet Spot Overloaded Connections per host Increase Load

43 What is an optimal datacenter topology for multipath transport?

44 In single homed topologies: o Hosts links are often bottlenecks o ToR switch failures wipe out tens of hosts for days MulG- homing servers is the obvious way forward

45 Fat Tree Topology

46 Fat Tree Topology Upper Pod Switch ToR Switch Servers

47 Dual Homed Fat Tree Topology Upper Pod Switch ToR Switch Servers

48 Is DHFT any better than Fat Tree? Not for traffic matrices that fully utilize the core Let s examine random traffic patterns Other TMs in the paper

49 DHFT provides significant improvements when core is not overloaded Relative throughput TCP Perfect Switch MPTCP DHFT TCP DHFT Core Underloaded Core Overloaded Connections per host

50 Summary One flow, one path thinking has constrained datacenter design Collisions, unfairness, limited utilization Multipath transport enables resource pooling in datacenter networks: Improves throughput Improves fairness Improves robustness One flow, many paths frees designers to consider topologies that offer improved performance for similar cost

51 Backup Slides

52 Effect of MPTCP on short flows Flow sizes from VL2 dataset MPTCP enabled for long flows only (timer) Oversubscribed Fat Tree topology Results: TCP/ECMP Completion time: 79ms Core Utilization: 25% MPTCP 97ms 65%

53 MPTCP vs Centralized Dynamic Scheduling Throughput (% of max) Infinite Centralized Scheduling MPTCP VLB 1s 500ms 100ms 10ms MTCP Scheduling First Interval Fit Scheduler

54 Centralized Scheduling: Setting the Threshold Throughput 1Gbps Hope 17% worse than mulgpath TCP 100Mbps App Limited

55 Centralized Scheduling: Setting the Threshold Throughput 1Gbps 21% worse than mulgpath TCP 100Mbps App Limited Hope

56 Centralized Scheduling: Setting the Threshold Throughput 1Gbps 500Mbps 100Mbps 51% 17% 45% 21%

57 Effect of Locality in the Dual Homed Fat Tree Total Network Throughput (Gb/s) Perfect Switch TCP MPTCP Multi-path region Single-path region Locality (percent)

58 Overloaded Fat Tree: better fairness with Multipath TCP

59 VL2 Topology [Greenberg et al, 2009, Clos topology] 10Gbps 10Gbps 20 hosts

60 BCube Topology [Guo et al, 2009] BCube (4,1)

Data Center Networking with Multipath TCP

Data Center Networking with Multipath TCP Data Center Networking with Multipath TCP Costin Raiciu, Christopher Pluntke, Sebastien Barre, Adam Greenhalgh, Damon Wischik, Mark Handley Hotnets 2010 報 告 者 : 莊 延 安 Outline Introduction Analysis Conclusion

More information

Multipath TCP in Data Centres (work in progress)

Multipath TCP in Data Centres (work in progress) Multipath TCP in Data Centres (work in progress) Costin Raiciu Joint work with Christopher Pluntke, Adam Greenhalgh, Sebastien Barre, Mark Handley, Damon Wischik Data Centre Trends Cloud services are driving

More information

Multipath TCP design, and application to data centers. Damon Wischik, Mark Handley, Costin Raiciu, Christopher Pluntke

Multipath TCP design, and application to data centers. Damon Wischik, Mark Handley, Costin Raiciu, Christopher Pluntke Multipath TCP design, and application to data centers Damon Wischik, Mark Handley, Costin Raiciu, Christopher Pluntke Packet switching pools circuits. Multipath pools links : it is Packet Switching 2.0.

More information

Data Center Networking with Multipath TCP

Data Center Networking with Multipath TCP Data Center Networking with Costin Raiciu, Christopher Pluntke, Sebastien Barre, Adam Greenhalgh, Damon Wischik, Mark Handley University College London, Universite Catholique de Louvain ABSTRACT Recently

More information

Data Center Netwokring with Multipath TCP

Data Center Netwokring with Multipath TCP UCL DEPARTMENT OF COMPUTER SCIENCE Research Note RN/1/3 Data Center Netwokring with 1/7/21 Costin Raiciu Christopher Pluntke Sebastien Barre Adam Greenhalgh Damon Wischik Mark Handley Abstract Data centre

More information

Improving datacenter performance and robustness with multipath TCP

Improving datacenter performance and robustness with multipath TCP Improving datacenter performance and robustness with multipath TCP Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh, Damon Wischik, Mark Handley University College London, Universite

More information

MMPTCP: A Novel Transport Protocol for Data Centre Networks

MMPTCP: A Novel Transport Protocol for Data Centre Networks MMPTCP: A Novel Transport Protocol for Data Centre Networks Morteza Kheirkhah FoSS, Department of Informatics, University of Sussex Modern Data Centre Networks FatTree It provides full bisection bandwidth

More information

Improving Datacenter Performance and Robustness with Multipath TCP

Improving Datacenter Performance and Robustness with Multipath TCP Improving Datacenter Performance and Robustness with Multipath Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh, Damon Wischik, Mark Handley University College London, Universite Catholique

More information

Operating Systems. Cloud Computing and Data Centers

Operating Systems. Cloud Computing and Data Centers Operating ystems Fall 2014 Cloud Computing and Data Centers Myungjin Lee myungjin.lee@ed.ac.uk 2 Google data center locations 3 A closer look 4 Inside data center 5 A datacenter has 50-250 containers A

More information

Lecture 7: Data Center Networks"

Lecture 7: Data Center Networks Lecture 7: Data Center Networks" CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Nick Feamster Lecture 7 Overview" Project discussion Data Centers overview Fat Tree paper discussion CSE

More information

An Overview of Multipath TCP

An Overview of Multipath TCP An Overview of Multipath TCP Olivier Bonaventure, Mark Handley, and Costin Raiciu Olivier Bonaventure is a Professor at Catholic University of Louvain, Belgium. His research focus is primarily on Internet

More information

Data Center Network Topologies: FatTree

Data Center Network Topologies: FatTree Data Center Network Topologies: FatTree Hakim Weatherspoon Assistant Professor, Dept of Computer Science CS 5413: High Performance Systems and Networking September 22, 2014 Slides used and adapted judiciously

More information

Load Balancing Mechanisms in Data Center Networks

Load Balancing Mechanisms in Data Center Networks Load Balancing Mechanisms in Data Center Networks Santosh Mahapatra Xin Yuan Department of Computer Science, Florida State University, Tallahassee, FL 33 {mahapatr,xyuan}@cs.fsu.edu Abstract We consider

More information

Data Center Network Topologies

Data Center Network Topologies Data Center Network Topologies. Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides and audio/video recordings of this class lecture are at: 3-1 Overview

More information

Cisco s Massively Scalable Data Center

Cisco s Massively Scalable Data Center Cisco s Massively Scalable Data Center Network Fabric for Warehouse Scale Computer At-A-Glance Datacenter is the Computer MSDC is the Network Cisco s Massively Scalable Data Center (MSDC) is a framework

More information

Data Center Network Topologies: VL2 (Virtual Layer 2)

Data Center Network Topologies: VL2 (Virtual Layer 2) Data Center Network Topologies: VL2 (Virtual Layer 2) Hakim Weatherspoon Assistant Professor, Dept of Computer cience C 5413: High Performance ystems and Networking eptember 26, 2014 lides used and adapted

More information

Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford

Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford The difference between theory and practice is in theory somewhat smaller than in practice. In theory, this

More information

Advanced Computer Networks. Datacenter Network Fabric

Advanced Computer Networks. Datacenter Network Fabric Advanced Computer Networks 263 3501 00 Datacenter Network Fabric Patrick Stuedi Spring Semester 2014 Oriana Riva, Department of Computer Science ETH Zürich 1 Outline Last week Today Supercomputer networking

More information

On the Impact of Packet Spraying in Data Center Networks

On the Impact of Packet Spraying in Data Center Networks On the Impact of Packet Spraying in Data Center Networks Advait Dixit, Pawan Prakash, Y. Charlie Hu, and Ramana Rao Kompella Purdue University Abstract Modern data center networks are commonly organized

More information

Lecture 16: Multi-path TCP"

Lecture 16: Multi-path TCP Lecture 16: Multi-path TCP" CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Costin Raiciu Lecture 16 Overview" TCP review MPTCP Overview 2 TCP Connection Setup HTTP server listening on

More information

MAPS: Adaptive Path Selection for Multipath Transport Protocols in the Internet

MAPS: Adaptive Path Selection for Multipath Transport Protocols in the Internet MAPS: Adaptive Path Selection for Multipath Transport Protocols in the Internet TR-11-09 Yu Chen Xin Wu Xiaowei Yang Department of Computer Science, Duke University {yuchen, xinwu, xwy}@cs.duke.edu ABSTRACT

More information

Workload Generator for Cloud Data Centres

Workload Generator for Cloud Data Centres Workload Generator for Cloud Data Centres Georgios Moleski - 1103614 School of Computing Science Sir Alwyn Williams Building University of Glasgow G12 8QQ Level 4 Project March 27, 2015 Education Use Consent

More information

Paolo Costa costa@imperial.ac.uk

Paolo Costa costa@imperial.ac.uk joint work with Ant Rowstron, Austin Donnelly, and Greg O Shea (MSR Cambridge) Hussam Abu-Libdeh, Simon Schubert (Interns) Paolo Costa costa@imperial.ac.uk Paolo Costa CamCube - Rethinking the Data Center

More information

Data Center Load Balancing. 11.11.2015 Kristian Hartikainen

Data Center Load Balancing. 11.11.2015 Kristian Hartikainen Data Center Load Balancing 11.11.2015 Kristian Hartikainen Load Balancing in Computing Efficient distribution of the workload across the available computing resources Distributing computation over multiple

More information

Load Balancing in Data Center Networks

Load Balancing in Data Center Networks Load Balancing in Data Center Networks Henry Xu Computer Science City University of Hong Kong HKUST, March 2, 2015 Background Aggregator Aggregator Aggregator Worker Worker Worker Worker Low latency for

More information

Xiaoqiao Meng, Vasileios Pappas, Li Zhang IBM T.J. Watson Research Center Presented by: Payman Khani

Xiaoqiao Meng, Vasileios Pappas, Li Zhang IBM T.J. Watson Research Center Presented by: Payman Khani Improving the Scalability of Data Center Networks with Traffic-aware Virtual Machine Placement Xiaoqiao Meng, Vasileios Pappas, Li Zhang IBM T.J. Watson Research Center Presented by: Payman Khani Overview:

More information

Data Center Network Architectures

Data Center Network Architectures Servers Servers Servers Data Center Network Architectures Juha Salo Aalto University School of Science and Technology juha.salo@aalto.fi Abstract Data centers have become increasingly essential part of

More information

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) ISSN: 0976-1353 Volume 8 Issue 1 APRIL 2014.

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) ISSN: 0976-1353 Volume 8 Issue 1 APRIL 2014. IMPROVING LINK UTILIZATION IN DATA CENTER NETWORK USING NEAR OPTIMAL TRAFFIC ENGINEERING TECHNIQUES L. Priyadharshini 1, S. Rajanarayanan, M.E (Ph.D) 2 1 Final Year M.E-CSE, 2 Assistant Professor 1&2 Selvam

More information

OpenFlow based Load Balancing for Fat-Tree Networks with Multipath Support

OpenFlow based Load Balancing for Fat-Tree Networks with Multipath Support OpenFlow based Load Balancing for Fat-Tree Networks with Multipath Support Yu Li and Deng Pan Florida International University Miami, FL Abstract Data center networks are designed for satisfying the data

More information

Hedera: Dynamic Flow Scheduling for Data Center Networks

Hedera: Dynamic Flow Scheduling for Data Center Networks Hedera: Dynamic Flow Scheduling for Data Center Networks Mohammad Al-Fares Sivasankar Radhakrishnan Barath Raghavan * Nelson Huang Amin Vahdat UC San Diego * Williams College - USENIX NSDI 2010 - Motivation!"#$%&'($)*

More information

Advanced Computer Networks. Scheduling

Advanced Computer Networks. Scheduling Oriana Riva, Department of Computer Science ETH Zürich Advanced Computer Networks 263-3501-00 Scheduling Patrick Stuedi, Qin Yin and Timothy Roscoe Spring Semester 2015 Outline Last time Load balancing

More information

Per-packet Load-balanced, Low-Latency Routing for Clos-based Data Center Networks

Per-packet Load-balanced, Low-Latency Routing for Clos-based Data Center Networks Per-packet Load-balanced, Low-Latency Routing for Clos-based Data Center Networks Jiaxin Cao,, Rui Xia,, Pengkun Yang 3, Chuanxiong Guo, Guohan Lu, Lihua Yuan, Yixin Zheng 5, Haitao Wu, Yongqiang Xiong,

More information

Networking Topology For Your System

Networking Topology For Your System This chapter describes the different networking topologies supported for this product, including the advantages and disadvantages of each. Select the one that best meets your needs and your network deployment.

More information

Resource Pooling across the Internet. Mark Handley, UCL

Resource Pooling across the Internet. Mark Handley, UCL Resource Pooling across the Internet Mark Handley, UCL Resource Pooling Make a network's resources behave like a single pooled resource. Aim is to increase reliability, flexibility and efficiency. Method

More information

Portland: how to use the topology feature of the datacenter network to scale routing and forwarding

Portland: how to use the topology feature of the datacenter network to scale routing and forwarding LECTURE 15: DATACENTER NETWORK: TOPOLOGY AND ROUTING Xiaowei Yang 1 OVERVIEW Portland: how to use the topology feature of the datacenter network to scale routing and forwarding ElasticTree: topology control

More information

Outline. VL2: A Scalable and Flexible Data Center Network. Problem. Introduction 11/26/2012

Outline. VL2: A Scalable and Flexible Data Center Network. Problem. Introduction 11/26/2012 VL2: A Scalable and Flexible Data Center Network 15744: Computer Networks, Fall 2012 Presented by Naveen Chekuri Outline Introduction Solution Approach Design Decisions Addressing and Routing Evaluation

More information

Traffic Engineering for Multiple Spanning Tree Protocol in Large Data Centers

Traffic Engineering for Multiple Spanning Tree Protocol in Large Data Centers Traffic Engineering for Multiple Spanning Tree Protocol in Large Data Centers Ho Trong Viet, Yves Deville, Olivier Bonaventure, Pierre François ICTEAM, Université catholique de Louvain (UCL), Belgium.

More information

DARD: Distributed Adaptive Routing for Datacenter Networks

DARD: Distributed Adaptive Routing for Datacenter Networks DARD: Distributed Adaptive Routing for Datacenter Networks Xin Wu Dept. of Computer Science, Duke University Durham, USA xinwu@cs.duke.edu Xiaowei Yang Dept. of Computer Science, Duke University Durham,

More information

BigPi: Sharing Link Pools in Cloud Networks

BigPi: Sharing Link Pools in Cloud Networks : Sharing Link Pools in Cloud Networks Yu Chen, Xin Wu, Qiang Cao, Xiaowei Yang and Theophilus Benson TR23-, Department of Computer Science, Duke University Abstract In cloud networks, sharing network

More information

Longer is Better? Exploiting Path Diversity in Data Centre Networks

Longer is Better? Exploiting Path Diversity in Data Centre Networks Longer is Better? Exploiting Path Diversity in Data Centre Networks Fung Po (Posco) Tso, Gregg Hamilton, Rene Weber, Colin S. Perkins and Dimitrios P. Pezaros University of Glasgow Cloud Data Centres Are

More information

TRILL Large Layer 2 Network Solution

TRILL Large Layer 2 Network Solution TRILL Large Layer 2 Network Solution Contents 1 Network Architecture Requirements of Data Centers in the Cloud Computing Era... 3 2 TRILL Characteristics... 5 3 Huawei TRILL-based Large Layer 2 Network

More information

On implementation of DCTCP on three tier and fat tree data center network topologies

On implementation of DCTCP on three tier and fat tree data center network topologies DOI 10.1186/s40064-016-2454-4 RESEARCH Open Access On implementation of DCTCP on three tier and fat tree data center network topologies Saima Zafar 1*, Abeer Bashir 1 and Shafique Ahmad Chaudhry 2 *Correspondence:

More information

TinyFlow: Breaking Elephants Down Into Mice in Data Center Networks

TinyFlow: Breaking Elephants Down Into Mice in Data Center Networks TinyFlow: Breaking Elephants Down Into Mice in Data Center Networks Hong Xu, Baochun Li henry.xu@cityu.edu.hk, bli@ece.toronto.edu Department of Computer Science, City University of Hong Kong Department

More information

SIGCOMM Preview Session: Data Center Networking (DCN)

SIGCOMM Preview Session: Data Center Networking (DCN) SIGCOMM Preview Session: Data Center Networking (DCN) George Porter, UC San Diego 2015 These slides are licensed under a Creative Commons Attribution- NonCommercial- ShareAlike 4.0 International license

More information

CONGA: Distributed Congestion-Aware Load Balancing for Datacenters

CONGA: Distributed Congestion-Aware Load Balancing for Datacenters CONGA: Distributed Congestion-Aware Load Balancing for Datacenters Mohammad Alizadeh Tom Edsall, Sarang Dharmapurikar, Ramanan Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Matus, Rong

More information

Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang, Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya and Amin Vahdat

Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang, Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya and Amin Vahdat Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang, Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya and Amin Vahdat 1 PortLand In A Nutshell PortLand is a single logical

More information

Data Center Switch Fabric Competitive Analysis

Data Center Switch Fabric Competitive Analysis Introduction Data Center Switch Fabric Competitive Analysis This paper analyzes Infinetics data center network architecture in the context of the best solutions available today from leading vendors such

More information

Mul$path Networking OpenFlow and MPTCP Friend or Foe?

Mul$path Networking OpenFlow and MPTCP Friend or Foe? Mul$path Networking OpenFlow and MPTCP Friend or Foe? Benno Overeinder, Ronald van der Pol, SURFnet The Problem (or Challenge) Mul;path networking for resilience (think of mul;- homing) for load balancing

More information

[Yawen comments]: The first author Ruoyan Liu is a visting student coming from our collaborator, A/Prof. Huaxi Gu s research group, Xidian

[Yawen comments]: The first author Ruoyan Liu is a visting student coming from our collaborator, A/Prof. Huaxi Gu s research group, Xidian [Yawen comments]: The first author Ruoyan Liu is a visting student coming from our collaborator, A/Prof. Huaxi Gu s research group, Xidian Universtity. He stays in the University of Otago for 2 mongths

More information

102 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 1, FEBRUARY 2011

102 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 1, FEBRUARY 2011 102 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 1, FEBRUARY 2011 Scalable and Cost-Effective Interconnection of Data-Center Servers Using Dual Server Ports Dan Li, Member, IEEE, Chuanxiong Guo, Haitao

More information

ICTCP: Incast Congestion Control for TCP in Data Center Networks

ICTCP: Incast Congestion Control for TCP in Data Center Networks ICTCP: Incast Congestion Control for TCP in Data Center Networks Haitao Wu, Zhenqian Feng, Chuanxiong Guo, Yongguang Zhang {hwu, v-zhfe, chguo, ygz}@microsoft.com, Microsoft Research Asia, China School

More information

Large-Scale Web Applications

Large-Scale Web Applications Large-Scale Web Applications Mendel Rosenblum Web Application Architecture Web Browser Web Server / Application server Storage System HTTP Internet CS142 Lecture Notes - Intro LAN 2 Large-Scale: Scale-Out

More information

Voice Over IP. MultiFlow 5048. IP Phone # 3071 Subnet # 10.100.24.0 Subnet Mask 255.255.255.0 IP address 10.100.24.171. Telephone.

Voice Over IP. MultiFlow 5048. IP Phone # 3071 Subnet # 10.100.24.0 Subnet Mask 255.255.255.0 IP address 10.100.24.171. Telephone. Anritsu Network Solutions Voice Over IP Application Note MultiFlow 5048 CALL Manager Serv # 10.100.27 255.255.2 IP address 10.100.27.4 OC-48 Link 255 255 25 IP add Introduction Voice communications over

More information

TRILL for Service Provider Data Center and IXP. Francois Tallet, Cisco Systems

TRILL for Service Provider Data Center and IXP. Francois Tallet, Cisco Systems for Service Provider Data Center and IXP Francois Tallet, Cisco Systems 1 : Transparent Interconnection of Lots of Links overview How works designs Conclusion 2 IETF standard for Layer 2 multipathing Driven

More information

How swift is your Swift? Ning Zhang, OpenStack Engineer at Zmanda Chander Kant, CEO at Zmanda

How swift is your Swift? Ning Zhang, OpenStack Engineer at Zmanda Chander Kant, CEO at Zmanda How swift is your Swift? Ning Zhang, OpenStack Engineer at Zmanda Chander Kant, CEO at Zmanda 1 Outline Build a cost-efficient Swift cluster with expected performance Background & Problem Solution Experiments

More information

Data Center Networks

Data Center Networks Data Center Networks (Lecture #3) 1/04/2010 Professor H. T. Kung Harvard School of Engineering and Applied Sciences Copyright 2010 by H. T. Kung Main References Three Approaches VL2: A Scalable and Flexible

More information

Distributed File System. MCSN N. Tonellotto Complements of Distributed Enabling Platforms

Distributed File System. MCSN N. Tonellotto Complements of Distributed Enabling Platforms Distributed File System 1 How do we get data to the workers? NAS Compute Nodes SAN 2 Distributed File System Don t move data to workers move workers to the data! Store data on the local disks of nodes

More information

Chapter 6. Paper Study: Data Center Networking

Chapter 6. Paper Study: Data Center Networking Chapter 6 Paper Study: Data Center Networking 1 Data Center Networks Major theme: What are new networking issues posed by large-scale data centers? Network Architecture? Topology design? Addressing? Routing?

More information

Evolution into PaaS Hardware-centric vs. API-centric Platform as a Service (PaaS) is higher level

Evolution into PaaS Hardware-centric vs. API-centric Platform as a Service (PaaS) is higher level Utility Computing August 2006: Amazon Elastic Compute Cloud, EC2+S3 first successful IaaS offering Computer Networks IaaS == Infrastructure as a Service swipe your credit card, and spin up your VM Provides

More information

Gatekeeper: Supporting Bandwidth Guarantees for Multi-tenant Datacenter Networks

Gatekeeper: Supporting Bandwidth Guarantees for Multi-tenant Datacenter Networks Gatekeeper: Supporting Bandwidth Guarantees for Multi-tenant Datacenter Networks Henrique Rodrigues, Yoshio Turner, Jose Renato Santos, Paolo Victor, Dorgival Guedes HP Labs WIOV 2011, Portland, OR The

More information

Design, implementation and evaluation of congestion control for multipath TCP

Design, implementation and evaluation of congestion control for multipath TCP Design, implementation and evaluation of congestion control for multipath TCP Damon Wischik, Costin Raiciu, Adam Greenhalgh, Mark Handley University College London ABSTRACT Multipath TCP, as proposed by

More information

The Software Defined Hybrid Packet Optical Datacenter Network SDN AT LIGHT SPEED TM. 2012-13 CALIENT Technologies www.calient.

The Software Defined Hybrid Packet Optical Datacenter Network SDN AT LIGHT SPEED TM. 2012-13 CALIENT Technologies www.calient. The Software Defined Hybrid Packet Optical Datacenter Network SDN AT LIGHT SPEED TM 2012-13 CALIENT Technologies www.calient.net 1 INTRODUCTION In datacenter networks, video, mobile data, and big data

More information

Designing and Experimenting with Data Center Architectures. Aditya Akella UW-Madison

Designing and Experimenting with Data Center Architectures. Aditya Akella UW-Madison Designing and Experimenting with Data Center Architectures Aditya Akella UW-Madison http://www.infotechlead.com/2013/03/28/gartner-data-center-spending-to-grow-3-7-to-146-billion-in-2013-8707 Charles E.

More information

Sustainable Network Resource Management System for Virtual Private Clouds

Sustainable Network Resource Management System for Virtual Private Clouds Sustainable Network Resource Management System for Virtual Private Clouds Takahiro Miyamoto Michiaki Hayashi Kosuke Nishimura KDDI R&D Laboratories Inc. Cloud computing environment Infrastructure as a

More information

A Reliability Analysis of Datacenter Topologies

A Reliability Analysis of Datacenter Topologies A Reliability Analysis of Datacenter Topologies Rodrigo S. Couto, Miguel Elias M. Campista, and Luís Henrique M. K. Costa Universidade Federal do Rio de Janeiro - PEE/COPPE/GTA - DEL/POLI Email:{souza,miguel,luish}@gta.ufrj.br

More information

DARD: Distributed Adaptive Routing for Datacenter Networks

DARD: Distributed Adaptive Routing for Datacenter Networks DARD: Distributed Adaptive Routing for Datacenter Networks Xin Wu Xiaowei Yang Dept. of Computer Science, Duke University Duke-CS-TR-2011-01 ABSTRACT Datacenter networks typically have many paths connecting

More information

! 10 data centers. ! 3 classes " Universities " Private enterprise " Clouds. ! Internal users " Univ/priv " Small " Local to campus. !

! 10 data centers. ! 3 classes  Universities  Private enterprise  Clouds. ! Internal users  Univ/priv  Small  Local to campus. ! The*Case*for*Understanding*Data* Center*Traffic* Better understanding! better techniques Network(Traffic(Characteris1cs(of( Data(Centers(in(the(Wild( Theophilus*Benson,*Aditya*Akella,**David*A.*Maltz*

More information

Falloc: Fair Network Bandwidth Allocation in IaaS Datacenters via a Bargaining Game Approach

Falloc: Fair Network Bandwidth Allocation in IaaS Datacenters via a Bargaining Game Approach Falloc: Fair Network Bandwidth Allocation in IaaS Datacenters via a Bargaining Game Approach Fangming Liu 1,2 In collaboration with Jian Guo 1,2, Haowen Tang 1,2, Yingnan Lian 1,2, Hai Jin 2 and John C.S.

More information

Managing the performance of large, distributed storage systems

Managing the performance of large, distributed storage systems Managing the performance of large, distributed storage systems Scott A. Brandt and Carlos Maltzahn, Anna Povzner, Roberto Pineiro, Andrew Shewmaker, and Tim Kaldewey Computer Science Department University

More information

TCP loss sensitivity analysis ADAM KRAJEWSKI, IT-CS-CE

TCP loss sensitivity analysis ADAM KRAJEWSKI, IT-CS-CE TCP loss sensitivity analysis ADAM KRAJEWSKI, IT-CS-CE Original problem IT-DB was backuping some data to Wigner CC. High transfer rate was required in order to avoid service degradation. 4G out of... 10G

More information

RAMCloud and the Low- Latency Datacenter. John Ousterhout Stanford University

RAMCloud and the Low- Latency Datacenter. John Ousterhout Stanford University RAMCloud and the Low- Latency Datacenter John Ousterhout Stanford University Most important driver for innovation in computer systems: Rise of the datacenter Phase 1: large scale Phase 2: low latency Introduction

More information

Towards Predictable Datacenter Networks

Towards Predictable Datacenter Networks Towards Predictable Datacenter Networks Hitesh Ballani, Paolo Costa, Thomas Karagiannis and Ant Rowstron Microsoft Research, Cambridge This talk is about Guaranteeing network performance for tenants in

More information

Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components

Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components of Hadoop. We will see what types of nodes can exist in a Hadoop

More information

Load Balancing in Data Center Networks

Load Balancing in Data Center Networks Load Balancing in Data Center Networks Henry Xu Department of Computer Science City University of Hong Kong ShanghaiTech Symposium on Data Scinece June 23, 2015 Today s plan Overview of research in DCN

More information

Windows Server Performance Monitoring

Windows Server Performance Monitoring Spot server problems before they are noticed The system s really slow today! How often have you heard that? Finding the solution isn t so easy. The obvious questions to ask are why is it running slowly

More information

Subways: A Case for Redundant, Inexpensive Data Center Edge Links

Subways: A Case for Redundant, Inexpensive Data Center Edge Links Subways: A Case for Redundant, Inexpensive Data Center Edge Links Vincent Liu, Danyang Zhuo, Simon Peter, Arvind Krishnamurthy, Thomas Anderson University of Washington Data Centers Are Growing Quickly

More information

Storage I/O Control: Proportional Allocation of Shared Storage Resources

Storage I/O Control: Proportional Allocation of Shared Storage Resources Storage I/O Control: Proportional Allocation of Shared Storage Resources Chethan Kumar Sr. Member of Technical Staff, R&D VMware, Inc. Outline The Problem Storage IO Control (SIOC) overview Technical Details

More information

Experiences with MPTCP in an intercontinental OpenFlow network

Experiences with MPTCP in an intercontinental OpenFlow network Experiences with MPTCP in an intercontinental OpenFlow network Ronald van der Pol, Michael Bredel, Artur Barczyk, Benno Overeinder, Niels van Adrichem, Fernando Kuipers SURFnet Radboudkwartier 273 3511

More information

Transparent Optimization of Grid Server Selection with Real-Time Passive Network Measurements. Marcia Zangrilli and Bruce Lowekamp

Transparent Optimization of Grid Server Selection with Real-Time Passive Network Measurements. Marcia Zangrilli and Bruce Lowekamp Transparent Optimization of Grid Server Selection with Real-Time Passive Network Measurements Marcia Zangrilli and Bruce Lowekamp Overview Grid Services Grid resources modeled as services Define interface

More information

Increasing Datacenter Network Utilisation with GRIN Alexandru Agache, Razvan Deaconescu and Costin Raiciu University Politehnica of Bucharest

Increasing Datacenter Network Utilisation with GRIN Alexandru Agache, Razvan Deaconescu and Costin Raiciu University Politehnica of Bucharest Increasing Datacenter Network Utilisation with GRIN Alexandru Agache, Razvan Deaconescu and Costin Raiciu University Politehnica of Bucharest Abstract Various full bisection designs have been proposed

More information

SCDA: SLA-aware Cloud Datacenter Architecture for Efficient Content Storage and Retrieval

SCDA: SLA-aware Cloud Datacenter Architecture for Efficient Content Storage and Retrieval : SLA-aware Cloud Datacenter Architecture for Efficient Content Storage and Retrieval Debessay Fesehaye Department of Computer Science University of Illinois at Urbana-Champaign dkassa2@illinois.edu Klara

More information

How the Port Density of a Data Center LAN Switch Impacts Scalability and Total Cost of Ownership

How the Port Density of a Data Center LAN Switch Impacts Scalability and Total Cost of Ownership How the Port Density of a Data Center LAN Switch Impacts Scalability and Total Cost of Ownership June 4, 2012 Introduction As data centers are forced to accommodate rapidly growing volumes of information,

More information

Datacenter Network Large Flow Detection and Scheduling from the Edge

Datacenter Network Large Flow Detection and Scheduling from the Edge Datacenter Network Large Flow Detection and Scheduling from the Edge Rui (Ray) Zhou rui_zhou@brown.edu Supervisor : Prof. Rodrigo Fonseca Reading & Research Project - Spring 2014 Abstract Today, datacenter

More information

Non-blocking Switching in the Cloud Computing Era

Non-blocking Switching in the Cloud Computing Era Non-blocking Switching in the Cloud Computing Era Contents 1 Foreword... 3 2 Networks Must Go With the Flow in the Cloud Computing Era... 3 3 Fat-tree Architecture Achieves a Non-blocking Data Center Network...

More information

Ch. 4 - Topics of Discussion

Ch. 4 - Topics of Discussion CPET 581 Cloud Computing: Technologies and Enterprise IT Strategies Lecture 6 Cloud Platform Architecture over Virtualized Data Centers Part -2: Data-Center Design and Interconnection Networks & Architecture

More information

Topology Switching for Data Center Networks

Topology Switching for Data Center Networks Topology Switching for Data Center Networks Kevin C. Webb, Alex C. Snoeren, and Kenneth Yocum UC San Diego Abstract Emerging data-center network designs seek to provide physical topologies with high bandwidth,

More information

基 於 SDN 與 可 程 式 化 硬 體 架 構 之 雲 端 網 路 系 統 交 換 器

基 於 SDN 與 可 程 式 化 硬 體 架 構 之 雲 端 網 路 系 統 交 換 器 基 於 SDN 與 可 程 式 化 硬 體 架 構 之 雲 端 網 路 系 統 交 換 器 楊 竹 星 教 授 國 立 成 功 大 學 電 機 工 程 學 系 Outline Introduction OpenFlow NetFPGA OpenFlow Switch on NetFPGA Development Cases Conclusion 2 Introduction With the proposal

More information

Wireless Link Scheduling for Data Center Networks

Wireless Link Scheduling for Data Center Networks Wireless Link Scheduling for Data Center Networks Yong Cui Tsinghua University Beijing, 10084, P.R.China cuiyong@tsinghua.edu.cn Hongyi Wang Tsinghua University Beijing, 10084, P.R.China wanghongyi09@mails.

More information

Small is Better: Avoiding Latency Traps in Virtualized DataCenters

Small is Better: Avoiding Latency Traps in Virtualized DataCenters Small is Better: Avoiding Latency Traps in Virtualized DataCenters SOCC 2013 Yunjing Xu, Michael Bailey, Brian Noble, Farnam Jahanian University of Michigan 1 Outline Introduction Related Work Source of

More information

Decentralized Task-Aware Scheduling for Data Center Networks

Decentralized Task-Aware Scheduling for Data Center Networks Decentralized Task-Aware Scheduling for Data Center Networks Fahad R. Dogar, Thomas Karagiannis, Hitesh Ballani, Ant Rowstron Presented by Eric Dong (yd2dong) October 30, 2015 Tasks in data centers Applications

More information

Exploring Mobile/WiFi Handover with Multipath TCP

Exploring Mobile/WiFi Handover with Multipath TCP Exploring Mobile/WiFi Handover with Multipath TCP Fabien Duchene fabien.duchene@uclouvain.be Christoph Paasch christoph.paasch@uclouvain.be Costin Raiciu costin.raiciu@cs.pub.ro Gregory Detal gregory.detal@uclouvain.be

More information

Dahu: Commodity Switches for Direct Connect Data Center Networks

Dahu: Commodity Switches for Direct Connect Data Center Networks Dahu: Commodity Switches for Direct Connect Data Center Networks Sivasankar Radhakrishnan, Malveeka Tewari, Rishi Kapoor, George Porter, Amin Vahdat University of California, San Diego Google Inc. {sivasankar,

More information

DARD: Distributed Adaptive Routing for Datacenter Networks

DARD: Distributed Adaptive Routing for Datacenter Networks : Distributed Adaptive Routing for Datacenter Networks TR-2- Xin Wu Xiaowei Yang Dept. of Computer Science, Duke University {xinwu, xwy}@cs.duke.edu ABSTRACT Datacenter networks typically have many paths

More information

Using Random Neural Network for Load Balancing in Data Centers

Using Random Neural Network for Load Balancing in Data Centers Int'l Conf. Internet Computing and Big Data ICOMP'15 3 Using Random Neural Network for Load Balancing in Data Centers Peixiang Liu Graduate School of Computer and Information Sciences Nova Southeastern

More information

T. S. Eugene Ng Rice University

T. S. Eugene Ng Rice University T. S. Eugene Ng Rice University Guohui Wang, David Andersen, Michael Kaminsky, Konstantina Papagiannaki, Eugene Ng, Michael Kozuch, Michael Ryan, "c-through: Part-time Optics in Data Centers, SIGCOMM'10

More information

DiFS: Distributed Flow Scheduling for Adaptive Routing in Hierarchical Data Center Networks

DiFS: Distributed Flow Scheduling for Adaptive Routing in Hierarchical Data Center Networks : Distributed Flow Scheduling for Adaptive Routing in Hierarchical Data Center Networks ABSTRACT Wenzhi Cui Department of Computer Science The University of Texas at Austin Austin, Texas, 78712 wc8348@cs.utexas.edu

More information

GraySort on Apache Spark by Databricks

GraySort on Apache Spark by Databricks GraySort on Apache Spark by Databricks Reynold Xin, Parviz Deyhim, Ali Ghodsi, Xiangrui Meng, Matei Zaharia Databricks Inc. Apache Spark Sorting in Spark Overview Sorting Within a Partition Range Partitioner

More information

Dual Centric Data Center Network Architectures

Dual Centric Data Center Network Architectures Dual Centric Data Center Network Architectures DAWEI LI, JIE WU (TEMPLE UNIVERSITY) Z H I YONG LIU, A N D FA ZHANG (CHINESE ACADEMY OF SCIENCES) I CPP 2015 Agenda Introduction Preliminaries Dual-Centric

More information

Energy Optimizations for Data Center Network: Formulation and its Solution

Energy Optimizations for Data Center Network: Formulation and its Solution Energy Optimizations for Data Center Network: Formulation and its Solution Shuo Fang, Hui Li, Chuan Heng Foh, Yonggang Wen School of Computer Engineering Nanyang Technological University Singapore Khin

More information

DELAY MODELING IN DATA CENTER NETWORKS: A TAXONOMY AND PERFORMANCE ANALYSIS. A thesis submitted. to Kent State University in partial

DELAY MODELING IN DATA CENTER NETWORKS: A TAXONOMY AND PERFORMANCE ANALYSIS. A thesis submitted. to Kent State University in partial DELAY MODELING IN DATA CENTER NETWORKS: A TAXONOMY AND PERFORMANCE ANALYSIS A thesis submitted to Kent State University in partial fulfillment of the requirements for the degree of Master of Science by

More information