INDEX ABOUT HASHING IN GENERAL

Size: px
Start display at page:

Download "INDEX ABOUT HASHING IN GENERAL"

Transcription

1 INDEX ABOUT HASHING IN GENERAL 1. URL INTRODUCTION HASH TABLE STRUCTURE OPERATIONS CREATE A TABLE DELETE A TABLE STRING LOOKUP INSERT A STRING 6 4. HASHING FUNCTIONS INTRODUCTION SORTS OF HASHING FUNCTIONS DIVISION METHOD MULTIPLICATION METHOD VARIABLE STRING ADDITION METHOD COLLISIONS AND SOLUTIONS CHAINING RE-HASHING LINEAR PROBING OVERFLOW AREA EXAMPLE 12 1

2 1. URL HASH TABLE cuments/sman/volume/hashtables_files/s_has.htm 2. INTRODUCTION In computer science, a hash table is a data structure that provides fast lookup of a record indexed by a key where the domain of the key is too large for simple indexing. Like arrays, hash tables can lookup one element independently on the size of the structure. Hash tables are often used to implement associative arrays. Conceptually, an associative array is composed of a collection of keys and a collection of values, and each key is associated with one value. Hash tables allow reasonably simple implementations of the essential operations of associative arrays: lookup of a record given a key; setting a record at a given a key; and removing a record with a given key. Hash tables use an array to hold, or reference, the stored records. Each slot of the array is indexed by a range reduction of the key. The range reduction is achieved by a hash function. However, various keys will, potentially, map to the same array index. Thus a collision resolution strategy is used. Note however that hash tables do not naturally support any particular ordering of the records in the table, unlike a binary tree requires that keys be orderable. 2

3 3. HASH TABLE STRUCTURE A hash table is made up of two parts: an array (the actual table where the data to be searched is stored) and a mapping function, known as a hash function. The hash function is a mapping from the input space to the integer space that defines the indices of the array. In other words, the hash function provides a way for assigning numbers to the input data such that the data can then be stored at the array index corresponding to the assigned number. To resolve the collision it s used the separate chaining method which requires a slight modification to the data structure. Instead of storing the data elements right into the array, they are stored in linked lists. Each slot in the array then points to one of these linked lists. When an element hashes to a value, it is added to the linked list at that index in the array. This kind of hash table is the most known and used. You can see an example in the following figure: Next it s shown the hash table structure used in separate chaining method: typedef struct _hash_table_t_ { int size; /* the size of the table */ list_t **table; /* the table elements */ hash_table_t; typedef struct _list_t_ { char *string; /* a pointer to the stored data */ struct _list_t_ *next; /* a pointer to the next data */ list_t; 3

4 3.1 OPERATIONS CREATE A TABLE hash_table_t *create_hash_table(int size) { hash_table_t *new_table; if (size<1) return NULL; /* invalid size for table */ /* Attempt to allocate memory for the table structure */ if ((new_table = malloc(sizeof(hash_value_t))) == NULL) { return NULL; /* Attempt to allocate memory for the table itself */ if ((new_table->table = malloc(sizeof(list_t *) * size)) == NULL) { return NULL; /* Initialize the elements of the table */ for(i=0; itable[i] = NULL; /* Set the table's size */ new_table->size = size; return new_table; This function creates and returns a new empty hash table whose size depends on the data passed by value as parameter (int size). The cost in time of executing this operation depends on the size of the table DELETE A TABLE void free_table(hash_table_t *hashtable) { int i; list_t *list, *temp; if (hashtable==null) return; /* Free the memory for every item in the table, including the * strings themselves. */ for(i=0; isize; i++) { list = hashtable->table[i]; while(list!=null) { temp = list; list = list->next; free(temp->str); free(temp); /* Free the table itself */ free(hashtable->table); free(hashtable); 4

5 This function frees up the memory used to store the hash table. As it s commented on the code, at first it s deleted the memory associated with every item in the table and after that it s possible to free the table (the vector whose each slot pointed to a list of items). The cost of this operation in time depends on the size of the hash table. Before explaining the functions about insertion and lookup, it s introduced the hash function that will be used in these two operations: unsigned int hash(hash_table_t *hashtable, char *str) { unsigned int hashval; /* we start our hash out at 0 */ hashval = 0; for(; *str!= '\0'; str++) hashval = *str + (hashval << 5) - hashval; return hashval % hashtable->size; For each character to insert into the hash table, we multiply the old hash by 31 and add the current character. We should remember that shifting a number left is equivalent to multiplying it by 2 raised to the number of places shifted. So that, multiplying hashval by 32 is equivalent to shifting 5 places left. And the latter is a more efficient operation. Thus, the shifting operation will be executed instead of multiplying. The returned value is the slot of the hash table where the new character will be stored. This value is calculated as hashval modulus the hashtable size. The hashval is the value obtained by shifting STRING LOOKUP list_t *lookup_string(hash_table_t *hashtable, char *str) { list_t *list; unsigned int hashval = hash(hashtable, str); { for(list = hashtable->table[hashval]; list!= NULL; list = list->next) if (strcmp(str, list->str) == 0) return list; return NULL; 5

6 This function goes to the correct list based on the hash value and sees if str is in the list. If it is, a pointer to the list element is returned. If it isn t, a pointer to NULL is returned. In the worst case every data element hashed to the same value. So doing a lookup means really doing a straight linear search on a linked list. Therefore, the search operation is back to depending on the size of the structure. However, the probability of that happening is so small and most lookups are independent on the size of the hash table. This case happens when each slot just store one item INSERT A STRING int add_string(hash_table_t *hashtable, char *str) { list_t *new_list; list_t *current_list; unsigned int hashval = hash(hashtable, str); /* Attempt to allocate memory for list */ if ((new_list = malloc(sizeof(list_t))) == NULL) return 1; /* Does item already exist? */ current_list = lookup_string(hashtable, str); if (current_list!= NULL) return 2; /* item already exists, don't /* Insert into list */ new_list->str = strdup(str); new_list->next = hashtable->table[hashval]; hashtable->table[hashval] = new_list; return 0; Inserting a string is almost the same as looking up a string. Firstly, the string is hashed, then it s accessed to the correct place in the array and finally the new string is inserted at the beginning. This operation consumes the same steps as the string lookup. 6

7 4. HASHING FUNCTIONS 4.1 INTRODUCTION A hashing function maps keys to integers, usually to get an even distribution on a smaller set of values. If the hash function is uniform, or equally distributes the data keys among the hash table indices, then hashing effectively subdivides the list to be searched. The worst-case behaviour occurs when all keys hash to the same index. Then we simply have a single linked list that must be sequentially searched. Consequently, it is important to choose a good hash function. There are four main characteristics of a good hash function: 1) The hash value is fully determined by the data being hashed. 2) The hash function uses all the input data. 3) The hash function "uniformly" distributes the data across the entire set of possible hash values. 4) The hash function generates very different hash values for similar strings. Let's examine why each of these is important: Rule 1: If something else besides the input data is used to determine the hash, then the hash value is not as dependent upon the input data, thus allowing for a worse distribution of the hash values. Rule 2: If the hash function doesn't use all the input data, then slight variations to the input data would cause an inappropriate number of similar hash values resulting in too many collisions. Rule 3: If the hash function does not uniformly distribute the data across the entire set of possible hash values, a large number of collisions will result, cutting down on the efficiency of the hash table. Rule 4: In real world applications, many data sets contain very similar data elements. We would like these data elements to still be distributable over a hash table. 7

8 So let's take as an example the following hash function: int hash(char *str, int table_size) { int sum; // Make sure a valid string passed in if (str==null) return -1; // Sum up all the characters in the string for( ; *str; str++) sum += *str; // Return the sum mod the table size return sum % table_size; Which rules does it break and satisfy? Rule 1: Satisfies. The hash value is fully determined by the data being hashed. The hash value is just the sum of all the input characters. Rule 2: Satisfies. Every character is summed. Rule 3: Breaks. From looking at it, it isn't obvious that it doesn't uniformly distribute the strings, but if you were to analyze this function for a large input you would see certain statistical properties bad for a hash function. Rule 4: Breaks. Hash the string "bog". Now hash the string "gob". They're the same. Slight variations in the string should result in different hash values, but with this function they often don't. So this hash function isn't so good SORTS OF HASHING FUNCTIONS DIVISION METHOD (TABLESIZE = PRIME) A HashValue, from 0 to (HashTableSize - 1), is computed by dividing the key value by the size of the hash table and taking the remainder. For example: typedef int HashIndexType; HashIndexType Hash(int Key) { return Key % HashTableSize; Selecting an appropriate HashTableSize is important to the success of this method. To obtain a more random scattering, HashTableSize should be a prime number not too close to a power of two. 8

9 4.2.2 MULTIPLICATION METHOD (TABLESIZE = 2^n) The multiplication method may be used for a HashTableSize that is a power of 2. The Key is multiplied by a constant, and then the necessary bits are extracted to index into the table. Knuth recommends using the fractional part of the product of the key and the golden ratio, or (sqrt(5) - 1)/2. For example, assuming a word size of 8 bits, the golden ratio is multiplied by 2 8 to obtain 158. The product of the 8-bit key and 158 results in a 16-bit integer. For a table size of 2 5 the 5 most significant bits of the least significant word are extracted for the hash value. The following definitions may be used for the multiplication method: /* 8-bit index */ typedef unsigned char HashIndexType; static const HashIndexType K = 158; /* 16-bit index */ typedef unsigned short int HashIndexType; static const HashIndexType K = 40503; /* 32-bit index */ typedef unsigned long int HashIndexType; static const HashIndexType K = ; /* w=bitwidth(hashindextype), size of table=2**m */ static const int S = w - m; HashIndexType HashValue = (HashIndexType)(K * Key) >> S; For example, if HashTableSize is 1024 (2 10 ), then a 16-bit index is sufficient and S would be assigned a value of = 6. Thus, we have: typedef unsigned short int HashIndexType; HashIndexType Hash(int Key) { static const HashIndexType K = 40503; static const int S = 6; return (HashIndexType)(K * Key) >> S; 9

10 VARIABLE STRING ADDITION METHOD (TABLESIZE = 256) To hash a variable-length string, each character is added, modulo 256, to a total. A HashValue, range 0-255, is computed: typedef unsigned char HashIndexType; HashIndexType Hash(char *str) { HashIndexType h = 0; while (*str) h += *str++; return h; 5. COLLISIONS AND SOLUTIONS In the small number of cases, where multiple keys map to the same integer, then elements with different keys may be stored in the same "slot" of the hash table. It is clear that when the hash function is used to locate a potential match, it will be necessary to compare the key of that element with the search key. Various techniques are used to manage this problem: 5.1. CHAINING One simple scheme is to chain all collisions in lists attached to the appropriate slot. This allows an unlimited number of collisions to be handled and doesn't require a priori knowledge of how many elements are contained in the collection. The tradeoff is the same as with linked lists versus array implementations of collections RE-HASHING Re-hashing schemes use a second hashing operation when there is a collision. If there is a further collision, we re-hash until an empty "slot" in the table is found LINEAR PROBING One of the simplest re-hashing functions is +1 (or -1), ie on a collision, look in the neighbouring slot in the table. 10

11 The figure gives you a practical demonstration of the effect of linear probing: it also implements a quadratic re-hash function so that you can compare the difference: As h(j)=h(k), so the next hash function, h1 is used. And as a second collision occurs h2 is used OVERFLOW AREA Another scheme will divide the pre-allocated table into two sections: the primary area to which keys are mapped and an area for collisions, normally termed the overflow area. When a collision occurs, a slot in the overflow area is used for the new element and a link from the primary slot established as in a chained system. This is essentially the same as chaining, except that the overflow area is pre-allocated and thus possibly faster to access. As with re-hashing, the maximum number of elements must be known in advance, but in this case, two parameters must be estimated: the optimum size of the primary and overflow areas. 11

12 6. EXAMPLE Let's take a simple example. First, we start with a hash table array of strings. Let's say the hash table size is 12: 12

13 Next we need a hash function. Let's assume a simple hash function that takes a string as input. The returned hash value will be the sum of the ASCII characters that make up the string mod the size of the table: int hash(char *str, int table_size) { int sum; /* Make sure a valid string passed in */ if (str==null) return -1; /* Sum up all the characters in the string */ for( ; *str; str++) sum += *str; /* Return the sum mod the table size */ return sum % table_size; Now that we have a framework in place, let's try using it. First, let's store a string into the table: "Steve". We run "Steve" through the hash function, and find that hash("steve",12) yields 3: 13

14 Let's try another string: "Spark". We run the string through the hash function and find that hash("spark",12) yields 6. We insert it into the hash table: 14

15 Let's try another: "Notes". We run "Notes" through the hash function and find that hash("notes",12) is 3. We insert it into the hash table: We can see that a hash function doesn't guarantee that every input will map to a different output. So that there is always the chance that two inputs will hash to the same output. This indicates that both elements should be inserted at the same place in the array, and this is impossible. As it s explained before this phenomenon is known as collision. To resolve the collision it s used the separate chaining method which requires a slight modification to the data structure. Instead of storing the data elements right into the array, they are stored in linked lists. Each slot in the array then points to one of these linked lists. When an element hashes to a value, it is added to the linked list at that index in the array. 15

16 Let's look at the above example again, this time with our modified data structure: Again, let's try adding "Steve" which hashes to 3: 16

17 And "Spark" which hashes to 6: Now we add "Notes" which hashes to 3, just like "Steve": 17

Review of Hashing: Integer Keys

Review of Hashing: Integer Keys CSE 326 Lecture 13: Much ado about Hashing Today s munchies to munch on: Review of Hashing Collision Resolution by: Separate Chaining Open Addressing $ Linear/Quadratic Probing $ Double Hashing Rehashing

More information

Hash Tables. Computer Science E-119 Harvard Extension School Fall 2012 David G. Sullivan, Ph.D. Data Dictionary Revisited

Hash Tables. Computer Science E-119 Harvard Extension School Fall 2012 David G. Sullivan, Ph.D. Data Dictionary Revisited Hash Tables Computer Science E-119 Harvard Extension School Fall 2012 David G. Sullivan, Ph.D. Data Dictionary Revisited We ve considered several data structures that allow us to store and search for data

More information

Fundamental Algorithms

Fundamental Algorithms Fundamental Algorithms Chapter 7: Hash Tables Michael Bader Winter 2014/15 Chapter 7: Hash Tables, Winter 2014/15 1 Generalised Search Problem Definition (Search Problem) Input: a sequence or set A of

More information

Chapter Objectives. Chapter 9. Sequential Search. Search Algorithms. Search Algorithms. Binary Search

Chapter Objectives. Chapter 9. Sequential Search. Search Algorithms. Search Algorithms. Binary Search Chapter Objectives Chapter 9 Search Algorithms Data Structures Using C++ 1 Learn the various search algorithms Explore how to implement the sequential and binary search algorithms Discover how the sequential

More information

Record Storage and Primary File Organization

Record Storage and Primary File Organization Record Storage and Primary File Organization 1 C H A P T E R 4 Contents Introduction Secondary Storage Devices Buffering of Blocks Placing File Records on Disk Operations on Files Files of Unordered Records

More information

CSE373: Data Structures & Algorithms Lecture 14: Hash Collisions. Linda Shapiro Spring 2016

CSE373: Data Structures & Algorithms Lecture 14: Hash Collisions. Linda Shapiro Spring 2016 CSE373: Data Structures & Algorithms Lecture 14: Hash Collisions Linda Shapiro Spring 2016 Announcements Friday: Review List and go over answers to Practice Problems 2 Hash Tables: Review Aim for constant-time

More information

Universal hashing. In other words, the probability of a collision for two different keys x and y given a hash function randomly chosen from H is 1/m.

Universal hashing. In other words, the probability of a collision for two different keys x and y given a hash function randomly chosen from H is 1/m. Universal hashing No matter how we choose our hash function, it is always possible to devise a set of keys that will hash to the same slot, making the hash scheme perform poorly. To circumvent this, we

More information

Lecture Notes on Binary Search Trees

Lecture Notes on Binary Search Trees Lecture Notes on Binary Search Trees 15-122: Principles of Imperative Computation Frank Pfenning André Platzer Lecture 17 October 23, 2014 1 Introduction In this lecture, we will continue considering associative

More information

Stacks. Linear data structures

Stacks. Linear data structures Stacks Linear data structures Collection of components that can be arranged as a straight line Data structure grows or shrinks as we add or remove objects ADTs provide an abstract layer for various operations

More information

Data Structures and Algorithms!

Data Structures and Algorithms! Data Structures and Algorithms! The material for this lecture is drawn, in part, from! The Practice of Programming (Kernighan & Pike) Chapter 2! 1 Motivating Quotation!!! Every program depends on algorithms

More information

Data Structures and Algorithms!

Data Structures and Algorithms! Data Structures and Algorithms! The material for this lecture is drawn, in part, from! The Practice of Programming (Kernighan & Pike) Chapter 2! 1 Motivating Quotation!!! Every program depends on algorithms

More information

DATA STRUCTURES USING C

DATA STRUCTURES USING C DATA STRUCTURES USING C QUESTION BANK UNIT I 1. Define data. 2. Define Entity. 3. Define information. 4. Define Array. 5. Define data structure. 6. Give any two applications of data structures. 7. Give

More information

Krishna Institute of Engineering & Technology, Ghaziabad Department of Computer Application MCA-213 : DATA STRUCTURES USING C

Krishna Institute of Engineering & Technology, Ghaziabad Department of Computer Application MCA-213 : DATA STRUCTURES USING C Tutorial#1 Q 1:- Explain the terms data, elementary item, entity, primary key, domain, attribute and information? Also give examples in support of your answer? Q 2:- What is a Data Type? Differentiate

More information

INTRODUCTION The collection of data that makes up a computerized database must be stored physically on some computer storage medium.

INTRODUCTION The collection of data that makes up a computerized database must be stored physically on some computer storage medium. Chapter 4: Record Storage and Primary File Organization 1 Record Storage and Primary File Organization INTRODUCTION The collection of data that makes up a computerized database must be stored physically

More information

COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012

COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012 Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about

More information

Practical Survey on Hash Tables. Aurelian Țuțuianu

Practical Survey on Hash Tables. Aurelian Țuțuianu Practical Survey on Hash Tables Aurelian Țuțuianu In memoriam Mihai Pătraşcu (17 July 1982 5 June 2012) I have no intention to ever teach computer science. I want to teach the love for computer science,

More information

recursion, O(n), linked lists 6/14

recursion, O(n), linked lists 6/14 recursion, O(n), linked lists 6/14 recursion reducing the amount of data to process and processing a smaller amount of data example: process one item in a list, recursively process the rest of the list

More information

Why you shouldn't use set (and what you should use instead) Matt Austern

Why you shouldn't use set (and what you should use instead) Matt Austern Why you shouldn't use set (and what you should use instead) Matt Austern Everything in the standard C++ library is there for a reason, but it isn't always obvious what that reason is. The standard isn't

More information

Data Structures in Java. Session 15 Instructor: Bert Huang http://www1.cs.columbia.edu/~bert/courses/3134

Data Structures in Java. Session 15 Instructor: Bert Huang http://www1.cs.columbia.edu/~bert/courses/3134 Data Structures in Java Session 15 Instructor: Bert Huang http://www1.cs.columbia.edu/~bert/courses/3134 Announcements Homework 4 on website No class on Tuesday Midterm grades almost done Review Indexing

More information

Java Interview Questions and Answers

Java Interview Questions and Answers 1. What is the most important feature of Java? Java is a platform independent language. 2. What do you mean by platform independence? Platform independence means that we can write and compile the java

More information

Tables so far. set() get() delete() BST Average O(lg n) O(lg n) O(lg n) Worst O(n) O(n) O(n) RB Tree Average O(lg n) O(lg n) O(lg n)

Tables so far. set() get() delete() BST Average O(lg n) O(lg n) O(lg n) Worst O(n) O(n) O(n) RB Tree Average O(lg n) O(lg n) O(lg n) Hash Tables Tables so far set() get() delete() BST Average O(lg n) O(lg n) O(lg n) Worst O(n) O(n) O(n) RB Tree Average O(lg n) O(lg n) O(lg n) Worst O(lg n) O(lg n) O(lg n) Table naïve array implementation

More information

Lecture 1: Data Storage & Index

Lecture 1: Data Storage & Index Lecture 1: Data Storage & Index R&G Chapter 8-11 Concurrency control Query Execution and Optimization Relational Operators File & Access Methods Buffer Management Disk Space Management Recovery Manager

More information

APP INVENTOR. Test Review

APP INVENTOR. Test Review APP INVENTOR Test Review Main Concepts App Inventor Lists Creating Random Numbers Variables Searching and Sorting Data Linear Search Binary Search Selection Sort Quick Sort Abstraction Modulus Division

More information

CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92.

CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92. Name: Email ID: CSE 326, Data Structures Section: Sample Final Exam Instructions: The exam is closed book, closed notes. Unless otherwise stated, N denotes the number of elements in the data structure

More information

1. The memory address of the first element of an array is called A. floor address B. foundation addressc. first address D.

1. The memory address of the first element of an array is called A. floor address B. foundation addressc. first address D. 1. The memory address of the first element of an array is called A. floor address B. foundation addressc. first address D. base address 2. The memory address of fifth element of an array can be calculated

More information

1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++

1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++ Answer the following 1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++ 2) Which data structure is needed to convert infix notations to postfix notations? Stack 3) The

More information

Symbol Tables. Introduction

Symbol Tables. Introduction Symbol Tables Introduction A compiler needs to collect and use information about the names appearing in the source program. This information is entered into a data structure called a symbol table. The

More information

BM307 File Organization

BM307 File Organization BM307 File Organization Gazi University Computer Engineering Department 9/24/2014 1 Index Sequential File Organization Binary Search Interpolation Search Self-Organizing Sequential Search Direct File Organization

More information

Semantic Analysis: Types and Type Checking

Semantic Analysis: Types and Type Checking Semantic Analysis Semantic Analysis: Types and Type Checking CS 471 October 10, 2007 Source code Lexical Analysis tokens Syntactic Analysis AST Semantic Analysis AST Intermediate Code Gen lexical errors

More information

CS 2112 Spring 2014. 0 Instructions. Assignment 3 Data Structures and Web Filtering. 0.1 Grading. 0.2 Partners. 0.3 Restrictions

CS 2112 Spring 2014. 0 Instructions. Assignment 3 Data Structures and Web Filtering. 0.1 Grading. 0.2 Partners. 0.3 Restrictions CS 2112 Spring 2014 Assignment 3 Data Structures and Web Filtering Due: March 4, 2014 11:59 PM Implementing spam blacklists and web filters requires matching candidate domain names and URLs very rapidly

More information

Common Data Structures

Common Data Structures Data Structures 1 Common Data Structures Arrays (single and multiple dimensional) Linked Lists Stacks Queues Trees Graphs You should already be familiar with arrays, so they will not be discussed. Trees

More information

The Relational Data Model

The Relational Data Model CHAPTER 8 The Relational Data Model Database One of the most important applications for computers is storing and managing information. The manner in which information is organized can have a profound effect

More information

CS104: Data Structures and Object-Oriented Design (Fall 2013) October 24, 2013: Priority Queues Scribes: CS 104 Teaching Team

CS104: Data Structures and Object-Oriented Design (Fall 2013) October 24, 2013: Priority Queues Scribes: CS 104 Teaching Team CS104: Data Structures and Object-Oriented Design (Fall 2013) October 24, 2013: Priority Queues Scribes: CS 104 Teaching Team Lecture Summary In this lecture, we learned about the ADT Priority Queue. A

More information

Chapter 13. Disk Storage, Basic File Structures, and Hashing

Chapter 13. Disk Storage, Basic File Structures, and Hashing Chapter 13 Disk Storage, Basic File Structures, and Hashing Chapter Outline Disk Storage Devices Files of Records Operations on Files Unordered Files Ordered Files Hashed Files Dynamic and Extendible Hashing

More information

Chapter 13. Chapter Outline. Disk Storage, Basic File Structures, and Hashing

Chapter 13. Chapter Outline. Disk Storage, Basic File Structures, and Hashing Chapter 13 Disk Storage, Basic File Structures, and Hashing Copyright 2007 Ramez Elmasri and Shamkant B. Navathe Chapter Outline Disk Storage Devices Files of Records Operations on Files Unordered Files

More information

Fast Arithmetic Coding (FastAC) Implementations

Fast Arithmetic Coding (FastAC) Implementations Fast Arithmetic Coding (FastAC) Implementations Amir Said 1 Introduction This document describes our fast implementations of arithmetic coding, which achieve optimal compression and higher throughput by

More information

Linked Lists: Implementation Sequences in the C++ STL

Linked Lists: Implementation Sequences in the C++ STL Linked Lists: Implementation Sequences in the C++ STL continued CS 311 Data Structures and Algorithms Lecture Slides Wednesday, April 1, 2009 Glenn G. Chappell Department of Computer Science University

More information

Copyright 2007 Ramez Elmasri and Shamkant B. Navathe. Slide 13-1

Copyright 2007 Ramez Elmasri and Shamkant B. Navathe. Slide 13-1 Slide 13-1 Chapter 13 Disk Storage, Basic File Structures, and Hashing Chapter Outline Disk Storage Devices Files of Records Operations on Files Unordered Files Ordered Files Hashed Files Dynamic and Extendible

More information

Lecture Notes on Binary Search Trees

Lecture Notes on Binary Search Trees Lecture Notes on Binary Search Trees 15-122: Principles of Imperative Computation Frank Pfenning Lecture 17 March 17, 2010 1 Introduction In the previous two lectures we have seen how to exploit the structure

More information

Operating Systems CSE 410, Spring 2004. File Management. Stephen Wagner Michigan State University

Operating Systems CSE 410, Spring 2004. File Management. Stephen Wagner Michigan State University Operating Systems CSE 410, Spring 2004 File Management Stephen Wagner Michigan State University File Management File management system has traditionally been considered part of the operating system. Applications

More information

Analysis of a Search Algorithm

Analysis of a Search Algorithm CSE 326 Lecture 4: Lists and Stacks 1. Agfgd 2. Dgsdsfd 3. Hdffdsf 4. Sdfgsfdg 5. Tefsdgass We will review: Analysis: Searching a sorted array (from last time) List ADT: Insert, Delete, Find, First, Kth,

More information

DNS LOOKUP SYSTEM DATA STRUCTURES AND ALGORITHMS PROJECT REPORT

DNS LOOKUP SYSTEM DATA STRUCTURES AND ALGORITHMS PROJECT REPORT DNS LOOKUP SYSTEM DATA STRUCTURES AND ALGORITHMS PROJECT REPORT By GROUP Avadhut Gurjar Mohsin Patel Shraddha Pandhe Page 1 Contents 1. Introduction... 3 2. DNS Recursive Query Mechanism:...5 2.1. Client

More information

Node-Based Structures Linked Lists: Implementation

Node-Based Structures Linked Lists: Implementation Linked Lists: Implementation CS 311 Data Structures and Algorithms Lecture Slides Monday, March 30, 2009 Glenn G. Chappell Department of Computer Science University of Alaska Fairbanks CHAPPELLG@member.ams.org

More information

Chapter 13 Disk Storage, Basic File Structures, and Hashing.

Chapter 13 Disk Storage, Basic File Structures, and Hashing. Chapter 13 Disk Storage, Basic File Structures, and Hashing. Copyright 2004 Pearson Education, Inc. Chapter Outline Disk Storage Devices Files of Records Operations on Files Unordered Files Ordered Files

More information

Sequences in the C++ STL

Sequences in the C++ STL CS 311 Data Structures and Algorithms Lecture Slides Wednesday, November 4, 2009 Glenn G. Chappell Department of Computer Science University of Alaska Fairbanks CHAPPELLG@member.ams.org 2005 2009 Glenn

More information

8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

More information

Partitioning under the hood in MySQL 5.5

Partitioning under the hood in MySQL 5.5 Partitioning under the hood in MySQL 5.5 Mattias Jonsson, Partitioning developer Mikael Ronström, Partitioning author Who are we? Mikael is a founder of the technology behind NDB

More information

Class Notes CS 3137. 1 Creating and Using a Huffman Code. Ref: Weiss, page 433

Class Notes CS 3137. 1 Creating and Using a Huffman Code. Ref: Weiss, page 433 Class Notes CS 3137 1 Creating and Using a Huffman Code. Ref: Weiss, page 433 1. FIXED LENGTH CODES: Codes are used to transmit characters over data links. You are probably aware of the ASCII code, a fixed-length

More information

Output: 12 18 30 72 90 87. struct treenode{ int data; struct treenode *left, *right; } struct treenode *tree_ptr;

Output: 12 18 30 72 90 87. struct treenode{ int data; struct treenode *left, *right; } struct treenode *tree_ptr; 50 20 70 10 30 69 90 14 35 68 85 98 16 22 60 34 (c) Execute the algorithm shown below using the tree shown above. Show the exact output produced by the algorithm. Assume that the initial call is: prob3(root)

More information

Binary Trees and Huffman Encoding Binary Search Trees

Binary Trees and Huffman Encoding Binary Search Trees Binary Trees and Huffman Encoding Binary Search Trees Computer Science E119 Harvard Extension School Fall 2012 David G. Sullivan, Ph.D. Motivation: Maintaining a Sorted Collection of Data A data dictionary

More information

Chapter 8: Structures for Files. Truong Quynh Chi tqchi@cse.hcmut.edu.vn. Spring- 2013

Chapter 8: Structures for Files. Truong Quynh Chi tqchi@cse.hcmut.edu.vn. Spring- 2013 Chapter 8: Data Storage, Indexing Structures for Files Truong Quynh Chi tqchi@cse.hcmut.edu.vn Spring- 2013 Overview of Database Design Process 2 Outline Data Storage Disk Storage Devices Files of Records

More information

Recursion vs. Iteration Eliminating Recursion

Recursion vs. Iteration Eliminating Recursion Recursion vs. Iteration Eliminating Recursion continued CS 311 Data Structures and Algorithms Lecture Slides Monday, February 16, 2009 Glenn G. Chappell Department of Computer Science University of Alaska

More information

Chapter 8: Bags and Sets

Chapter 8: Bags and Sets Chapter 8: Bags and Sets In the stack and the queue abstractions, the order that elements are placed into the container is important, because the order elements are removed is related to the order in which

More information

Binary Search Trees CMPSC 122

Binary Search Trees CMPSC 122 Binary Search Trees CMPSC 122 Note: This notes packet has significant overlap with the first set of trees notes I do in CMPSC 360, but goes into much greater depth on turning BSTs into pseudocode than

More information

Lecture 2 February 12, 2003

Lecture 2 February 12, 2003 6.897: Advanced Data Structures Spring 003 Prof. Erik Demaine Lecture February, 003 Scribe: Jeff Lindy Overview In the last lecture we considered the successor problem for a bounded universe of size u.

More information

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Multidimensionale Indexstrukturen Ulf Leser Wissensmanagement in der Bioinformatik Content of this Lecture Multidimensional Indexing Grid-Files Kd-trees Ulf Leser: Data

More information

Chapter 6: Physical Database Design and Performance. Database Development Process. Physical Design Process. Physical Database Design

Chapter 6: Physical Database Design and Performance. Database Development Process. Physical Design Process. Physical Database Design Chapter 6: Physical Database Design and Performance Modern Database Management 6 th Edition Jeffrey A. Hoffer, Mary B. Prescott, Fred R. McFadden Robert C. Nickerson ISYS 464 Spring 2003 Topic 23 Database

More information

LINKED DATA STRUCTURES

LINKED DATA STRUCTURES LINKED DATA STRUCTURES 1 Linked Lists A linked list is a structure in which objects refer to the same kind of object, and where: the objects, called nodes, are linked in a linear sequence. we keep a reference

More information

Chapter 13: Query Processing. Basic Steps in Query Processing

Chapter 13: Query Processing. Basic Steps in Query Processing Chapter 13: Query Processing! Overview! Measures of Query Cost! Selection Operation! Sorting! Join Operation! Other Operations! Evaluation of Expressions 13.1 Basic Steps in Query Processing 1. Parsing

More information

How Caching Affects Hashing

How Caching Affects Hashing How Caching Affects Hashing Gregory L. Heileman heileman@ece.unm.edu Department of Electrical and Computer Engineering University of New Mexico, Albuquerque, NM Wenbin Luo wluo@stmarytx.edu Engineering

More information

A Comparison of Dictionary Implementations

A Comparison of Dictionary Implementations A Comparison of Dictionary Implementations Mark P Neyer April 10, 2009 1 Introduction A common problem in computer science is the representation of a mapping between two sets. A mapping f : A B is a function

More information

RSA Question 2. Bob thinks that p and q are primes but p isn t. Then, Bob thinks Φ Bob :=(p-1)(q-1) = φ(n). Is this true?

RSA Question 2. Bob thinks that p and q are primes but p isn t. Then, Bob thinks Φ Bob :=(p-1)(q-1) = φ(n). Is this true? RSA Question 2 Bob thinks that p and q are primes but p isn t. Then, Bob thinks Φ Bob :=(p-1)(q-1) = φ(n). Is this true? Bob chooses a random e (1 < e < Φ Bob ) such that gcd(e,φ Bob )=1. Then, d = e -1

More information

Linked Lists, Stacks, Queues, Deques. It s time for a chainge!

Linked Lists, Stacks, Queues, Deques. It s time for a chainge! Linked Lists, Stacks, Queues, Deques It s time for a chainge! Learning Goals After this unit, you should be able to... Differentiate an abstraction from an implementation. Define and give examples of problems

More information

C++ INTERVIEW QUESTIONS

C++ INTERVIEW QUESTIONS C++ INTERVIEW QUESTIONS http://www.tutorialspoint.com/cplusplus/cpp_interview_questions.htm Copyright tutorialspoint.com Dear readers, these C++ Interview Questions have been designed specially to get

More information

Part 5: More Data Structures for Relations

Part 5: More Data Structures for Relations 5. More Data Structures for Relations 5-1 Part 5: More Data Structures for Relations References: Elmasri/Navathe: Fundamentals of Database Systems, 3rd Ed., Chap. 5: Record Storage and Primary File Organizations,

More information

Questions 1 through 25 are worth 2 points each. Choose one best answer for each.

Questions 1 through 25 are worth 2 points each. Choose one best answer for each. Questions 1 through 25 are worth 2 points each. Choose one best answer for each. 1. For the singly linked list implementation of the queue, where are the enqueues and dequeues performed? c a. Enqueue in

More information

DATABASE DESIGN - 1DL400

DATABASE DESIGN - 1DL400 DATABASE DESIGN - 1DL400 Spring 2015 A course on modern database systems!! http://www.it.uu.se/research/group/udbl/kurser/dbii_vt15/ Kjell Orsborn! Uppsala Database Laboratory! Department of Information

More information

- Easy to insert & delete in O(1) time - Don t need to estimate total memory needed. - Hard to search in less than O(n) time

- Easy to insert & delete in O(1) time - Don t need to estimate total memory needed. - Hard to search in less than O(n) time Skip Lists CMSC 420 Linked Lists Benefits & Drawbacks Benefits: - Easy to insert & delete in O(1) time - Don t need to estimate total memory needed Drawbacks: - Hard to search in less than O(n) time (binary

More information

3 Some Integer Functions

3 Some Integer Functions 3 Some Integer Functions A Pair of Fundamental Integer Functions The integer function that is the heart of this section is the modulo function. However, before getting to it, let us look at some very simple

More information

Quick Tricks for Multiplication

Quick Tricks for Multiplication Quick Tricks for Multiplication Why multiply? A computer can multiply thousands of numbers in less than a second. A human is lucky to multiply two numbers in less than a minute. So we tend to have computers

More information

Efficient representation of integer sets

Efficient representation of integer sets Efficient representation of integer sets Marco Almeida Rogério Reis Technical Report Series: DCC-2006-06 Version 1.0 Departamento de Ciência de Computadores & Laboratório de Inteligência Artificial e Ciência

More information

Lecture 11 Doubly Linked Lists & Array of Linked Lists. Doubly Linked Lists

Lecture 11 Doubly Linked Lists & Array of Linked Lists. Doubly Linked Lists Lecture 11 Doubly Linked Lists & Array of Linked Lists In this lecture Doubly linked lists Array of Linked Lists Creating an Array of Linked Lists Representing a Sparse Matrix Defining a Node for a Sparse

More information

Abstract Data Type. EECS 281: Data Structures and Algorithms. The Foundation: Data Structures and Abstract Data Types

Abstract Data Type. EECS 281: Data Structures and Algorithms. The Foundation: Data Structures and Abstract Data Types EECS 281: Data Structures and Algorithms The Foundation: Data Structures and Abstract Data Types Computer science is the science of abstraction. Abstract Data Type Abstraction of a data structure on that

More information

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems

More information

Lecture 2: Data Structures Steven Skiena. http://www.cs.sunysb.edu/ skiena

Lecture 2: Data Structures Steven Skiena. http://www.cs.sunysb.edu/ skiena Lecture 2: Data Structures Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena String/Character I/O There are several approaches

More information

Efficient Data Structures for Decision Diagrams

Efficient Data Structures for Decision Diagrams Artificial Intelligence Laboratory Efficient Data Structures for Decision Diagrams Master Thesis Nacereddine Ouaret Professor: Supervisors: Boi Faltings Thomas Léauté Radoslaw Szymanek Contents Introduction...

More information

Physical Data Organization

Physical Data Organization Physical Data Organization Database design using logical model of the database - appropriate level for users to focus on - user independence from implementation details Performance - other major factor

More information

IMPROVING PERFORMANCE OF RANDOMIZED SIGNATURE SORT USING HASHING AND BITWISE OPERATORS

IMPROVING PERFORMANCE OF RANDOMIZED SIGNATURE SORT USING HASHING AND BITWISE OPERATORS Volume 2, No. 3, March 2011 Journal of Global Research in Computer Science RESEARCH PAPER Available Online at www.jgrcs.info IMPROVING PERFORMANCE OF RANDOMIZED SIGNATURE SORT USING HASHING AND BITWISE

More information

Lecture 9. Semantic Analysis Scoping and Symbol Table

Lecture 9. Semantic Analysis Scoping and Symbol Table Lecture 9. Semantic Analysis Scoping and Symbol Table Wei Le 2015.10 Outline Semantic analysis Scoping The Role of Symbol Table Implementing a Symbol Table Semantic Analysis Parser builds abstract syntax

More information

1 Abstract Data Types Information Hiding

1 Abstract Data Types Information Hiding 1 1 Abstract Data Types Information Hiding 1.1 Data Types Data types are an integral part of every programming language. ANSI-C has int, double and char to name just a few. Programmers are rarely content

More information

Useful Java Collections

Useful Java Collections Useful Java Collections Nathaniel Osgood MIT 15.879 May 9, 2012 Java.util Collection Hierarchies Collection Objects in AnyLogic Informal Collection Variables in AnyLogic Useful Collections Array ArrayList

More information

New Hash Function Construction for Textual and Geometric Data Retrieval

New Hash Function Construction for Textual and Geometric Data Retrieval Latest Trends on Computers, Vol., pp.483-489, ISBN 978-96-474-3-4, ISSN 79-45, CSCC conference, Corfu, Greece, New Hash Function Construction for Textual and Geometric Data Retrieval Václav Skala, Jan

More information

A binary search tree or BST is a binary tree that is either empty or in which the data element of each node has a key, and:

A binary search tree or BST is a binary tree that is either empty or in which the data element of each node has a key, and: Binary Search Trees 1 The general binary tree shown in the previous chapter is not terribly useful in practice. The chief use of binary trees is for providing rapid access to data (indexing, if you will)

More information

Keywords are identifiers having predefined meanings in C programming language. The list of keywords used in standard C are : unsigned void

Keywords are identifiers having predefined meanings in C programming language. The list of keywords used in standard C are : unsigned void 1. Explain C tokens Tokens are basic building blocks of a C program. A token is the smallest element of a C program that is meaningful to the compiler. The C compiler recognizes the following kinds of

More information

1. Relational database accesses data in a sequential form. (Figures 7.1, 7.2)

1. Relational database accesses data in a sequential form. (Figures 7.1, 7.2) Chapter 7 Data Structures for Computer Graphics (This chapter was written for programmers - option in lecture course) Any computer model of an Object must comprise three different types of entities: 1.

More information

1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal:

1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal: Exercises 1 - number representations Questions 1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal: (a) 3012 (b) - 435 2. For each of

More information

10CS35: Data Structures Using C

10CS35: Data Structures Using C CS35: Data Structures Using C QUESTION BANK REVIEW OF STRUCTURES AND POINTERS, INTRODUCTION TO SPECIAL FEATURES OF C OBJECTIVE: Learn : Usage of structures, unions - a conventional tool for handling a

More information

Lecture 12 Doubly Linked Lists (with Recursion)

Lecture 12 Doubly Linked Lists (with Recursion) Lecture 12 Doubly Linked Lists (with Recursion) In this lecture Introduction to Doubly linked lists What is recursion? Designing a node of a DLL Recursion and Linked Lists o Finding a node in a LL (recursively)

More information

EE 261 Introduction to Logic Circuits. Module #2 Number Systems

EE 261 Introduction to Logic Circuits. Module #2 Number Systems EE 261 Introduction to Logic Circuits Module #2 Number Systems Topics A. Number System Formation B. Base Conversions C. Binary Arithmetic D. Signed Numbers E. Signed Arithmetic F. Binary Codes Textbook

More information

Introduction to Data Structures

Introduction to Data Structures Introduction to Data Structures Albert Gural October 28, 2011 1 Introduction When trying to convert from an algorithm to the actual code, one important aspect to consider is how to store and manipulate

More information

To My Parents -Laxmi and Modaiah. To My Family Members. To My Friends. To IIT Bombay. To All Hard Workers

To My Parents -Laxmi and Modaiah. To My Family Members. To My Friends. To IIT Bombay. To All Hard Workers To My Parents -Laxmi and Modaiah To My Family Members To My Friends To IIT Bombay To All Hard Workers Copyright 2010 by CareerMonk.com All rights reserved. Designed by Narasimha Karumanchi Printed in

More information

Oct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8

Oct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8 ECE Department Summer LECTURE #5: Number Systems EEL : Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz Decimal Number System: -Our standard number system is base, also

More information

PART-A Questions. 2. How does an enumerated statement differ from a typedef statement?

PART-A Questions. 2. How does an enumerated statement differ from a typedef statement? 1. Distinguish & and && operators. PART-A Questions 2. How does an enumerated statement differ from a typedef statement? 3. What are the various members of a class? 4. Who can access the protected members

More information

Zabin Visram Room CS115 CS126 Searching. Binary Search

Zabin Visram Room CS115 CS126 Searching. Binary Search Zabin Visram Room CS115 CS126 Searching Binary Search Binary Search Sequential search is not efficient for large lists as it searches half the list, on average Another search algorithm Binary search Very

More information

A COOL AND PRACTICAL ALTERNATIVE TO TRADITIONAL HASH TABLES

A COOL AND PRACTICAL ALTERNATIVE TO TRADITIONAL HASH TABLES A COOL AND PRACTICAL ALTERNATIVE TO TRADITIONAL HASH TABLES ULFAR ERLINGSSON, MARK MANASSE, FRANK MCSHERRY MICROSOFT RESEARCH SILICON VALLEY MOUNTAIN VIEW, CALIFORNIA, USA ABSTRACT Recent advances in the

More information

B+ Tree Properties B+ Tree Searching B+ Tree Insertion B+ Tree Deletion Static Hashing Extendable Hashing Questions in pass papers

B+ Tree Properties B+ Tree Searching B+ Tree Insertion B+ Tree Deletion Static Hashing Extendable Hashing Questions in pass papers B+ Tree and Hashing B+ Tree Properties B+ Tree Searching B+ Tree Insertion B+ Tree Deletion Static Hashing Extendable Hashing Questions in pass papers B+ Tree Properties Balanced Tree Same height for paths

More information

Solutions to Problem Set 1

Solutions to Problem Set 1 YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467b: Cryptography and Computer Security Handout #8 Zheng Ma February 21, 2005 Solutions to Problem Set 1 Problem 1: Cracking the Hill cipher Suppose

More information

Number Representation

Number Representation Number Representation CS10001: Programming & Data Structures Pallab Dasgupta Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur Topics to be Discussed How are numeric data

More information

To convert an arbitrary power of 2 into its English equivalent, remember the rules of exponential arithmetic:

To convert an arbitrary power of 2 into its English equivalent, remember the rules of exponential arithmetic: Binary Numbers In computer science we deal almost exclusively with binary numbers. it will be very helpful to memorize some binary constants and their decimal and English equivalents. By English equivalents

More information

Lecture 22: C Programming 4 Embedded Systems

Lecture 22: C Programming 4 Embedded Systems Lecture 22: C Programming 4 Embedded Systems Today s Goals Basic C programming process Variables and constants in C Pointers to access addresses Using a High Level Language High-level languages More human

More information