2 Why measurement/inspection of the grounding system?

Size: px
Start display at page:

Download "2 Why measurement/inspection of the grounding system?"

Transcription

1 Grounding System Testing and Assessment Authors: Moritz Pikisch, OMICRON electronics Deutschland GmbH Sirko Böhme, DNV GL Dresden 1 Abstract Grounding System tests must be performed after construction of electric facilities and on a regular basis every 4-5 years as mentioned e.g. in DGUV Vorschrift 3. This is to guarantee personnel safety during a single phase fault and to check the quality of the grounding system s construction according to the dimensioning during the planning period. Therefore, it must be proven that no hazardous step & touch voltages in and around the substation or at the pole of an overhead transmission line are caused. For the construction check the measured ground impedance can be used for a comparison to the ground impedance value resulting from simulations during the planning period. 2 Why measurement/inspection of the grounding system? Requirement from national standards or safety regulations regarding personnel safety Grounding measurements need to be carried out for verification of the grounding system s effectiveness regarding personnel safety and livestock during single-phase-to-ground faults according to the European Standard EN 5522:21 [1] and are often a requirement from national accident prevention regulations (e.g. the German DGUV Vorschrift 3 [4]) for safe operation of the plant. Triggers for measurement/inspection The necessity for ground measurements and/or inspections may be driven by one or more of the following triggers: Increase of fault currents, Commissioning of new substations/power plants, Extension of plants, Bad corrosive state from visual inspection, Change of neutral treatment leads to higher fault currents or different tripping times. 3 Ground Impedance Measurement Remote Substation Current injection to remote substation A ~ V Measurement perpendicular to current injection Figure 1: Fall-of-potential measurement by using an existing line for injection OMICRON electronics GmbH, 215 1

2 Fall-of-Potential / V Impedance / mω For the determination of a ground grid s ground impedance resp. the ground potential rise a test current is injected into the soil via a remote ground electrode. Usually the remote ground electrode is another substation where the current is injected via an existing power line between the substation under test and the remote substation. The line used for injection must be taken out of service for this purpose. If no line is available for testing purpose the test can also be injected via an adequately remote current probe. The test current is driven by an AC source which causes a potential rise of the grounding system as it would be the case for a real fault. The only difference is that the current which is injected during the measurement is smaller than the maximum fault current. In general there are three common test methods for grounding system testing which allow effective noise suppression as interference must be carefully considered: The frequency selective measurement used by the CPC 1 and CP CU1, the polarity reversal method used by DNV GL and the beat method. Please refer to [5] for detailed information and comparative measurements on these methods. In order to measure true values it is important to ensure that the two grounding systems cone shaped potential rises are not overlapping. If this would be the case the ground impedance would be determined too small which means that a better (or smaller) value than the actual one would be measured. EN 5522 recommends to have a minimum distance to the auxiliary electrode of 1 5 km. IEEE 81 recommends at least 5 times the biggest dimension of the grounding system under test. The voltage is initially measured between a grounded reference point in the substation and a location at the edge of the ground grid. The connection at the location is realized by driving a metallic rod at least 2 cm into the soil. Since the ground grid s edge is hard to estimate the substation s fence is also a good reference point to start from. The voltage referring to the initial measurement is supposed to be quite small since the rod is close to the grounding system which theoretically has the same potential at each location. For the next measurements the rod s distance to the grounding system increases as shown in Figure 1. Increasing the rod s distance results in an increase of the impedance resp. the voltage. The measurement can be stopped as soon as the results for impedance and voltage do not change anymore as it is the case for the last 3 points of both curves in Figure 2. The value of the impedance curve s flat part is the ground impedance, the value of the voltage curve s flat part is the ground potential rise. Fall-of-Potential Impedance Distance / m Figure 2: Fall-of-Potential and Impedance Diagram Further it must be considered that the angle between the measurement trace and the current s injection path is 9 as recommended in EN 5522 and IEEE 81. This is not always possible due to obstacles and inaccessible private property. These standards therefore require a minimum angle of 6. The main reason for this recommendation is the inductive coupling between the line which is used for injection and the voltage measurement. If the trace for the voltage measurement would be in parallel to the injection path the injected current would couple into the voltage measurement and would therefore interfere the voltage caused by the potential rise. OMICRON electronics GmbH, 215 2

3 2 cm x 2 cm metal plate loaded with min. 5 kg 1 kω 4 Step and Touch Voltage Measurement For step & touch voltage measurements the injection of the test current remains the same as for the ground impedance measurement. The only difference is the voltage measurement which is now performed at selected locations in and outside the substation. V Figure 3: Touch voltage measurement setup according to EN 5522 EN 5522 suggests the personnel simulation method by measuring the touch voltage across a 1 kω resistor and using a metal plate which is simulating bare feet 1 m apart from the object. The plate must have dimensions of 2 cm x 2 cm and be loaded with at least 5 kg, ideally a person who steps on it (Figure 3). EN 5522 also recommends to wet the soil under the metal plate in order to simulate the worst case. For the assessment of measured touch voltages the limits in Figure 4 apply after the measured voltage has been calculated by taking into account the maximum current to earth IG as shown in equation ( 1 ). EN 5522, Table 1 outlines the calculation of IG for every neutral configuration. Measuring and assessing step voltage is not mentioned explicitly in EN I G V Tmeas,max I meas r < V ( 1 ) Tp,EN5522 IEEE 81 recommends to measure touch voltage with a rod which is driven at least 8 inches into soil by measuring with a high-ohmic volt meter. Hereby the prospective touch voltage is measured which is higher than the touch voltage a person would be exposed to. For the step voltage 2 rods are driven into soil 1 m apart from each other. For the assessment of step and touch voltages IEEE 8 therefore considers additional resistances which lead to higher permissible step and touch voltages than shown in Figure 4. Please refer to IEEE 8 chapter 8.3 in order to get the exact equations for the calculation of permissible step and touch voltages. OMICRON electronics GmbH, 215 3

4 Permissible Body Current in ma Permissible Touch Voltage in V Fault Duration in ms Biegelmeiers curve EN 5522 Dalziel 5 kg Dalziel 7 kg Figure 4: Permissible body currents and step & touch voltages 5 Reduction Factor Measurement I injected A ~ I return V I G Figure 5: Reduction factor measurement setup The reduction factor measurement determines the portion of the injected test current which is returning via the soil respectively the ground wire. Therefore a test current is injected as for the ground impedance measurement and the return current is measured by using e.g. a rogowski coil which is wrapped around a grounded conductor. This grounded conductor could be the connection of the ground-wire to ground as shown in Figure 5. Please note that modern rogowski coils produce a voltage which is proportional to the measured current and also consider the phase angle correctly. That s the reason why a voltmeter is shown in Figure 5 for the measurement of the return current. If the entire return current can t be determined at once the measurement is repeated at all conductors which are serving as return path. The individual currents must then be added by considering their phase angle in order to obtain the true value for the overall return current. The reduction factor r is then calculated according to formula ( 2 ) r = 1 I return I G = ( 2 ) I injected I injected OMICRON electronics GmbH, 215 4

5 Fall-of-Potential / V 6 Case Study I Test 2 kv /,4 kv Substation 11 kv / 2 kv Substation 11 kv line Remote Substation I E,I I E,II Figure 6: Grounding system configuration of case study This case study illustrates a grounding system test at a grounding system with the configuration in Figure 6. Close to the measured 11 kv / 2 kv substation a 2 kv /.4 kv substation is located. The shield of the 2 kv cable interconnects the grounding systems of both substations and merges them to one combined grounding system. The test current has been injected via a 11 kv line which has been grounded at a remote substation. For the sake of simplicity the two substations are called 11 kv and 2 kv substation. Trace 1, Shield connected Trace 1, Shield disconnected Trace 2, shield connected Distance / m Figure 7: Fall-of-potential measurement First the fall-of-potential measurement has been performed which provides the two curves in Figure 7. Additionally it also includes a third measurement which will be commented subsequently. It is quite common that 2 measurements are performed in different directions in order to cross check the correctness of the determined ground potential rise respectively the ground impedance. Here the ground potential rise has been determined to 1792 V. According to EN 5522 the step & touch voltage measurement can be skipped if the ground potential rise does not exceed double of the permissible touch voltage which is 176 V in this case due to a maximum fault duration of 6 ms. As this is not the case here step & touch voltages must be measured. OMICRON electronics GmbH, 215 5

6 Touch Voltage / V connected open Location # Figure 8: Touch voltage measurement Figure 8 shows the results of the touch voltage measurement. Locations # 1 4 are inside the 11 kv substation or in its close vicinity, e.g. its fence. These locations don t show any critical values as they all are lower than 176 V. Locations # are close to or right at the 2 kv substation. Here the touch voltage significantly exceeds the permissible touch voltage of 176 V. After these failed touch voltages have been measured the shield of the interconnecting 2 kv cable has been isolated from the 11 kv substation (orange dot in Figure 6) and locations # have been measured again and showing now much lower touch voltages. Due to the connection of the 2 kv substation to the 11 kv substation via the cable shield a significant portion of the grid current is returning via the 2 kv substation s grounding system which is obviously under-dimensioned for this purpose. If the cable shield is disconnected there is no grid current returning via the 2 kv grounding system anymore and therefore touch voltages are much lower. In addition to the touch voltage at selected locations # the fall-of-potential has been also measured by leaving the cable s shield disconnected from the 11 kv substation as shown in the third curve in Figure 7. The ground potential rise has been determined to 2328 V here which is clearly higher than for the measurement where the cable shield was connected. The increase of the ground potential rise is caused by the disconnection of the 2 kv substation s grounding system which results in a higher ground impedance as the individual ground impedances of the 2 kv and the 11 kv substation are considered as parallel impedances. This case study clearly demonstrates the necessity of grounding system tests by determination of touch voltages inside and outside the substation. It further demonstrates the accuracy of the test methods for the determination of the ground potential rise and touch voltages by comparing the measurements in Figure 7 as well as comparing touch voltage measurements at identical locations for different cable shield connections. OMICRON electronics GmbH, 215 6

7 7 Literature [1] EN 5522:21: Earthing of power installations exceeding 1 kv a.c. [2] IEEE 8-2: IEEE Guide for Safety in AC Substation Grounding [3] IEEE : IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Grounding System [4] DGUV Vorschrift 3: Elektrische Anlagen und Betriebsmittel [5] Methods for Grounding System Testing - A Comparison of the Polarity Reversal, Beat, and frequency-selective Method 8 Authors Moritz Pikisch studied Electrical Engineering at the University of Karlsruhe / Germany. After working as an instructor at OMICRON between 21 and 213, he switched to a product management role at the beginning of 214. In this new capacity, he is responsible for the development of testing solutions for line impedance measurement and the testing of grounding systems. Sirko Böhme is a qualified electrical engineer who, from 1995 onwards, has worked as a construction manager for industrial clients and wind power operators at various major construction sites around the world. Since 213, he has been working as a coordinator for various tasks including ground measurements, at DNV GL -Energy in Dresden. He is involved in the development of measurement tools and is responsible for performing high-quality ground measurements on customers' behalf. The preferred approach is the polarity reversal method, which has proven itself over many years. Other measurement tasks are associated with lightning protection, thermography, EMC, and the impact of high voltage levels. OMICRON electronics GmbH, 215 7

8 OMICRON is an international company serving the electrical power industry with innovative testing and diagnostic solutions. The application of OMICRON products allows users to assess the condition of the primary and secondary equipment on their systems with complete confidence. Services offered in the area of consulting, commissioning, testing, diagnosis and training make the product range complete. Customers in more than 14 countries rely on the company s ability to supply leadingedge technology of excellent quality. Service centers on all continents provide a broad base of knowledge and extraordinary customer support. All of this together with our strong network of sales partners is what has made our company a market leader in the electrical power industry. For more information, additional literature, and detailed contact information of our worldwide offices please visit our website. OMICRON

GroundRod AC Substation Earthing Tutorial

GroundRod AC Substation Earthing Tutorial 1 GroundRod AC Substation Earthing Tutorial 1. Functions of an earthing system The two primary functions of a safe earthing system are: To ensure that a person who is in the vicinity of earthed facilities

More information

Substation Grounding Study Specification

Substation Grounding Study Specification Substation Grounding Study Specification Introduction A grounding study is required for name of station, a / / kv substation located in name of location and connected to the following circuits: number

More information

ELECTRICAL ENGINEERING DESIGN CRITERIA APPENDIX F

ELECTRICAL ENGINEERING DESIGN CRITERIA APPENDIX F ELECTRICAL ENGINEERING DESIGN CRITERIA APPENDIX F TABLE OF CONTENTS Appendix F - Electrical Engineering Design Criteria F.1 Introduction...F-1 F.2 Codes and Standards...F-1 F.3 Switchyard and Transformers...F-1

More information

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.

More information

Video Camera Installation Guide

Video Camera Installation Guide Video Camera Installation Guide The intent of this guide is to provide the information needed to complete or modify a video camera installation to avoid lightning and induced power surge damage. This guide

More information

Digital Energy ITI. Instrument Transformer Basic Technical Information and Application

Digital Energy ITI. Instrument Transformer Basic Technical Information and Application g Digital Energy ITI Instrument Transformer Basic Technical Information and Application Table of Contents DEFINITIONS AND FUNCTIONS CONSTRUCTION FEATURES MAGNETIC CIRCUITS RATING AND RATIO CURRENT TRANSFORMER

More information

Coupling Effect in Substation Ground Measurements

Coupling Effect in Substation Ground Measurements SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 9, No. 3, October 2012, 315-324 UDK: 621.316.13.011.2 DOI: 10.2298/SJEE1203315F Coupling Effect in Substation Ground Measurements Alex Farber 1, Boris Katz

More information

Hyperlinks are Inactive

Hyperlinks are Inactive Prepared by: NIB/EOB PLANNING GUIDE FOR SINGLE CUSTOMER SUBSTATIONS SERVED FROM TRANSMISSION LINES 05503 Department: Electric T&D Section: T&D Engineering and Technical Support Approved by: G.O. Duru (GOD)

More information

CONSTRUCTION STANDARD ELECTRIC OPERATIONS ORGANIZATION

CONSTRUCTION STANDARD ELECTRIC OPERATIONS ORGANIZATION Page 1 of 11 ****This Standard Supercedes BECo CS2.13-2.3 & ComElectric OH Construction Manual, System Grounding Section, drawings CGND, GRDSUM, and C2**** 1.0 Bill of Materials GROUNDING AND BONDING POLE-MOUNTED

More information

Earth Ground Resistance

Earth Ground Resistance Principles, testing methods and applications Diagnose intermittent electrical problems Avoid unnecessary downtime Learn earth ground safety principles Earth Ground Resistance Why Ground, Why Test? Why

More information

Earthing Guidance Notes

Earthing Guidance Notes Central Networks Earthing Manual Section E2 Earthing Guidance Notes Version: 2 Date of Issue: September 2007 Author: Nigel Johnson Job Title: Earthing Specialist Approver: John Simpson Job Title: Head

More information

12 Appendix 12 Earth Electrodes And Earth Electrode

12 Appendix 12 Earth Electrodes And Earth Electrode 12 Appendix 12 Earth Electrodes And Earth Electrode Testing 12.1 Introduction This appendix provides guidance and background information an earth electrode testing and some limited information on earth

More information

www.klmtechgroup.com TABLE OF CONTENT

www.klmtechgroup.com TABLE OF CONTENT Page : 1 of 13 Project Engineering Standard www.klmtechgroup.com KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru Malaysia ELECTIRAL GROUNDING TABLE OF CONTENT

More information

CHECKING AND TESTING ELECTRICAL INSTALLING WORK

CHECKING AND TESTING ELECTRICAL INSTALLING WORK CHECKING AND TESTING ELECTRICAL INSTALLING WORK Department of Consumer and Employment Protection Energy Safety Preface It is a requirement of the Electricity (Licensing) Regulations 1991 that all electrical

More information

EARTHING AND BONDING AT SECONDARY SUBSTATIONS

EARTHING AND BONDING AT SECONDARY SUBSTATIONS DISTRIBUTION CONSTRUCTION MANUAL SECTION 4 - SUBSTATIONS ISSUE B SEPT 1996 4.4.4 EARTHING AND BONDING AT SECONDARY SUBSTATIONS 1 SCOPE This section of the Distribution Construction Manual lays down the

More information

EARTHING SYSTEM CALCULATION

EARTHING SYSTEM CALCULATION BAZIAN STEAL FACTORY S/S 132/11kV, 1x30/40MVA EARTHING SYSTEM CALCULATION Kurdistan Region Sulaimani May 2011 Bazian Steal Factory S/S 132/11kV, 1x30/40 MVA Contents: 1. Introduction... 3 2. List of references

More information

Equipment: Power Supply, DAI, Transformer (8341), Variable resistance (8311), Variable inductance (8321), Variable capacitance (8331)

Equipment: Power Supply, DAI, Transformer (8341), Variable resistance (8311), Variable inductance (8321), Variable capacitance (8331) Lab 5: Single-phase transformer operations. Objective: to examine the design of single-phase transformers; to study the voltage and current ratios of transformers; to study the voltage regulation of the

More information

Everything you need for protection scheme testing

Everything you need for protection scheme testing Power System Simulator for Testing Protection Relays and Schemes Everything you need for protection scheme testing The is the only instrument with the high power, flexibility and software to perform full

More information

Grounding of Electrical Systems NEW CODE: Grounding and Bonding

Grounding of Electrical Systems NEW CODE: Grounding and Bonding Grounding of Electrical Systems NEW CODE: Grounding and Bonding Presented By Scott Peele PE Grounding of Electrical Systems Outline Defining the Terms Why should I Ground? Types of Grounding Systems Separately

More information

Electrical Safety Tester Verification

Electrical Safety Tester Verification Ensuring Validity of Regulatory Tests Verification of electrical safety testing equipment is a procedure that is often overlooked by manufacturers. Running test verification is crucial to ensuring that

More information

Electric Field Mapping Lab 3. Precautions

Electric Field Mapping Lab 3. Precautions HB 09-25-07 Electric Field Mapping Lab 3 1 Electric Field Mapping Lab 3 Equipment mapping board, U-probe, resistive boards, templates, dc voltmeter (431B), 4 long leads, 16 V dc for wall strip Reading

More information

DET3 Contractor Series 3-Terminal Earth/Ground Resistance Testers

DET3 Contractor Series 3-Terminal Earth/Ground Resistance Testers 99 Washington Street Melrose, MA 02176 Phone 781-665-1400 Toll Free 1-800-517-8431 Visit us at www.testequipmentdepot.com DET3 Contractor Series 3-Terminal DET3 Contractor Series 2 and 3 point testing

More information

Current Probes, More Useful Than You Think

Current Probes, More Useful Than You Think Current Probes, More Useful Than You Think Training and design help in most areas of Electrical Engineering Copyright 1998 Institute of Electrical and Electronics Engineers. Reprinted from the IEEE 1998

More information

Physics 221 Experiment 5: Magnetic Fields

Physics 221 Experiment 5: Magnetic Fields Physics 221 Experiment 5: Magnetic Fields August 25, 2007 ntroduction This experiment will examine the properties of magnetic fields. Magnetic fields can be created in a variety of ways, and are also found

More information

Grounding Demystified

Grounding Demystified Grounding Demystified 3-1 Importance Of Grounding Techniques 45 40 35 30 25 20 15 10 5 0 Grounding 42% Case 22% Cable 18% Percent Used Filter 12% PCB 6% Grounding 42% Case Shield 22% Cable Shielding 18%

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the voltage at a point in space is zero, then the electric field must be A) zero. B) positive.

More information

Estimation of electrical losses in Network Rail Electrification Systems

Estimation of electrical losses in Network Rail Electrification Systems Estimation of electrical losses in Network Rail Electrification Systems Page 1 of 16 Contents 1. BACKGROUND...3 2. PURPOSE...3 3. SCOPE...3 4. DEFINITIONS & ABBREVIATIONS...4 5. NETWORK RAIL INFRASTRUCTURE

More information

Voltage Detection and Indication by Electric Field Measurement

Voltage Detection and Indication by Electric Field Measurement Voltage Detection and Indication by Electric Field Measurement William McNulty, P.E. Technical Director Voltage Detection and Indication by Electric Field Measurement William McNulty, P.E. HD Electric

More information

VOLTAGE REGULATOR AND PARALLEL OPERATION

VOLTAGE REGULATOR AND PARALLEL OPERATION VOLTAGE REGULATOR AND PARALLEL OPERATION Generator sets are operated in parallel to improve fuel economy and reliability of the power supply. Economy is improved with multiple paralleled generators by

More information

Power Voltage Transformers for Air Insulated Substations. THE PROVEN POWER.

Power Voltage Transformers for Air Insulated Substations. THE PROVEN POWER. Power Voltage Transformers for Air Insulated Substations THE PROVEN POWER. Introduction Trench Power Voltage Transformers (Power VTs) combine the attributes of an inductive voltage transformer with the

More information

FEASIBILITY OF ELECTRICAL SEPARATION OF PROXIMATE GROUNDING SYSTEMS AS A FUNCTION OF SOIL STRUCTURE

FEASIBILITY OF ELECTRICAL SEPARATION OF PROXIMATE GROUNDING SYSTEMS AS A FUNCTION OF SOIL STRUCTURE FEASIBILITY OF ELECTRICAL SEPARATION OF PROXIMATE GROUNDING SYSTEMS AS A FUNCTION OF SOIL STRUCTURE Sharon Tee and Farid P. Dawalibi Safe Engineering Services & technologies ltd. 1544 Viel, Montreal, Quebec,

More information

Inductors. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Inductors. Resources and methods for learning about these subjects (list a few here, in preparation for your research): Inductors This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Lightning Protection Introduction

Lightning Protection Introduction Lightning Protection Introduction Structural lightning protection design considerations BS 6651 (Protection of structures against lightning) clearly advises strict adherence to the provision of a conventional

More information

Lightning current simulation in the laboratory - parameters, procedures and test equipment -

Lightning current simulation in the laboratory - parameters, procedures and test equipment - Lightning current simulation in the laboratory - parameters, procedures and test equipment - Dipl.-Ing. J. Schönau, Dr.-Ing. M. Naß, CE-LAB GmbH Prof. Dr.-Ing. F. Berger, Ilmenau University of Technology

More information

AC and DC Drive System Installation Information

AC and DC Drive System Installation Information Purpose This document contains the Parker SSD Drives recommendations for installing drive systems. These instructions must be followed for safe and reliable operation. Instructions CODES AND REGULATIONS

More information

ISIO 200. Binary Input/Output (I/O) Terminal with IEC 61850 Interface

ISIO 200. Binary Input/Output (I/O) Terminal with IEC 61850 Interface ISIO 200 Binary Input/Output (I/O) Terminal with IEC 61850 Interface Compact and Easy ISIO 200 Put your Binary I/Os where you need them ISIO 200 is a simple and versatile binary I/O terminal with IEC 61850

More information

ELECTRICAL INSULATION TESTING OF HV EQUIPMENT UP TO 33kV

ELECTRICAL INSULATION TESTING OF HV EQUIPMENT UP TO 33kV 1. SCOPE This document details PowerSystems requirements for electrical testing of HV Equipment up to and including 33kV. 2. ISSUE RECORD This is a Reference document. The current version of Controlled

More information

Multi-Function Ground

Multi-Function Ground Multi-Function Ground Resistance SOIL RESISTIVITY TEster Model 6470-B Now measure ground resistance, soil resistivity and bonding resistance with one instrument! 2- and 4-Wire Bond Resistance/Continuity

More information

Complete Solar Photovoltaics Steven Magee. Health and Safety

Complete Solar Photovoltaics Steven Magee. Health and Safety Health and Safety Health and safety around solar photovoltaic systems is very important. In the DC circuit you will find up to 600 volts in residential and commercial systems. In utility systems you may

More information

Current Probes. User Manual

Current Probes. User Manual Current Probes User Manual ETS-Lindgren L.P. reserves the right to make changes to any product described herein in order to improve function, design, or for any other reason. Nothing contained herein shall

More information

UNDERSTANDING AND CONTROLLING COMMON-MODE EMISSIONS IN HIGH-POWER ELECTRONICS

UNDERSTANDING AND CONTROLLING COMMON-MODE EMISSIONS IN HIGH-POWER ELECTRONICS Page 1 UNDERSTANDING AND CONTROLLING COMMON-MODE EMISSIONS IN HIGH-POWER ELECTRONICS By Henry Ott Consultants Livingston, NJ 07039 (973) 992-1793 www.hottconsultants.com hott@ieee.org Page 2 THE BASIC

More information

A Practical Guide to Dielectric Testing

A Practical Guide to Dielectric Testing Chroma Systems Solutions, Inc. A Practical Guide to Dielectric Testing 19032 Series Electrical Safety Analyzer & 19050 Series Hipot Tester AC/DC/IR/SCAN Keywords: Dielectric tests, insulation resistance

More information

6/14/02 Chapter 14: Use of Electrical Test Equipment 1/20

6/14/02 Chapter 14: Use of Electrical Test Equipment 1/20 USE OF ELECTRICAL TEST EQUIPMENT Test equipment is necessary for determining proper set-up, adjustment, operation, and maintenance of electrical systems and control panels. The following is a general procedure

More information

ABB Drives. User s Manual. Pulse Encoder Interface Module RTAC-01

ABB Drives. User s Manual. Pulse Encoder Interface Module RTAC-01 ABB Drives User s Manual Pulse Encoder Interface Module RTAC-0 Pulse Encoder Interface Module RTAC-0 User s Manual 3AFE 64486853 REV A EN EFFECTIVE:.5.00 00 ABB Oy. All Rights Reserved. Safety instructions

More information

PART 1 - INTRODUCTION...

PART 1 - INTRODUCTION... Table of Contents PART 1 - INTRODUCTION... 3 1.1 General... 3 1.2 Sensor Features... 3 1.3 Sensor Specifications (CDE-45P)... 4 Figure 1-1 CDE-45P Sensor Dimensions (standard, convertible style)... 4 PART

More information

INTRODUCTION TO SYSTEM PROTECTION. Hands-On Relay School 2012

INTRODUCTION TO SYSTEM PROTECTION. Hands-On Relay School 2012 INTRODUCTION TO SYSTEM PROTECTION Hands-On Relay School 2012 CONGRATULATIONS On choosing the field of system protection. It is an exciting, challenging profession. System protection has changed considerably

More information

ElectroMagnetic Induction. AP Physics B

ElectroMagnetic Induction. AP Physics B ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday

More information

Insulation Resistance Testing of Low Voltage Cables in the Field

Insulation Resistance Testing of Low Voltage Cables in the Field Insulation Resistance Testing of Low Voltage Cables in the Field Table of Contents 1. Background...3 1.1. Before Making Measurements...3 1.2. How to Apply the Temperature Correction Factor...4 1.2.1. Calculation...4

More information

GLOLAB Two Wire Stepper Motor Positioner

GLOLAB Two Wire Stepper Motor Positioner Introduction A simple and inexpensive way to remotely rotate a display or object is with a positioner that uses a stepper motor to rotate it. The motor is driven by a circuit mounted near the motor and

More information

EMI in Electric Vehicles

EMI in Electric Vehicles EMI in Electric Vehicles S. Guttowski, S. Weber, E. Hoene, W. John, H. Reichl Fraunhofer Institute for Reliability and Microintegration Gustav-Meyer-Allee 25, 13355 Berlin, Germany Phone: ++49(0)3046403144,

More information

Strength and Durability for Life CORROSION CONTROL. The Effect of Overhead AC Power Lines Paralleling Ductile Iron Pipelines

Strength and Durability for Life CORROSION CONTROL. The Effect of Overhead AC Power Lines Paralleling Ductile Iron Pipelines Strength and Durability for Life CORROSION CONTROL The Effect of Overhead AC Power Lines Paralleling Ductile Iron Pipelines Last Revised: May 2016 Sharing of rights-of-way by AC power lines and buried

More information

SES Training & Certification Programs Welcome to the SES Grounding, EMI and Lightning Academy

SES Training & Certification Programs Welcome to the SES Grounding, EMI and Lightning Academy SES Training & Certification Programs Welcome to the SES Grounding, EMI and Lightning Academy A Center of Excellence, Where Experts are Created and Certified 1 SES: Training You and Your Staff to Carry

More information

Interfacing electrification and system reliability. Earthing of AC and DC railways 4,10,13

Interfacing electrification and system reliability. Earthing of AC and DC railways 4,10,13 Interfacing electrification and system reliability Roger White Professional Head of Electrification and Plant Rail Abstract Integration is the term given to ensuring that the different elements of an electrified

More information

Cathode Ray Tube. Introduction. Functional principle

Cathode Ray Tube. Introduction. Functional principle Introduction The Cathode Ray Tube or Braun s Tube was invented by the German physicist Karl Ferdinand Braun in 897 and is today used in computer monitors, TV sets and oscilloscope tubes. The path of the

More information

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator. PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

More information

Digital Ground Resistance Tester. Models 4620 & 4630. Digital Ground Resistance Tester

Digital Ground Resistance Tester. Models 4620 & 4630. Digital Ground Resistance Tester Digital Ground Resistance Tester Models 4620 & 4630 Digital Ground Resistance Tester Models 4620 and 4630 perform both ground resistance and soil resistivity tests. These testers measure from 0 to 2000Ω,

More information

Electricity. Confirming Coulomb s law. LD Physics Leaflets P3.1.2.2. 0909-Wie. Electrostatics Coulomb s law

Electricity. Confirming Coulomb s law. LD Physics Leaflets P3.1.2.2. 0909-Wie. Electrostatics Coulomb s law Electricity Electrostatics Coulomb s law LD Physics Leaflets Confirming Coulomb s law P3... Measuring with the force sensor and newton meter Objects of the experiments Measuring the force between two charged

More information

Earth Fault Detection Basics in Theory

Earth Fault Detection Basics in Theory Earth Fault Detection Basics in Theory Author: Dipl.-Ing. Ingo Kühnen Woodward Power Solutions Krefelder Weg 47 47906 Kempen, Germany Kempen, 16.04.2010 Earth_Fault_Detection_20100416.doc page 1 1. Star

More information

Unified requirements for systems with voltages above 1 kv up to 15 kv

Unified requirements for systems with voltages above 1 kv up to 15 kv (1991) (Rev.1 May 2001) (Rev.2 July 2003) (Rev.3 Feb 2015) Unified requirements for systems with voltages above 1 kv up to 15 kv 1. General 1.1 Field of application The following requirements apply to

More information

Current valve. for AC 24 V pulse/pause control of electrical loads up to 30 kw

Current valve. for AC 24 V pulse/pause control of electrical loads up to 30 kw 4 937 DESIO Current valve for AC 24 V pulse/pause control of electrical loads up to 30 kw SEA45.1 Use The current valve is used for the control of electric heating elements in heating, ventilation and

More information

1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

More information

EPM3. Phase Sequence and Motor Rotation Tester. Users Manual

EPM3. Phase Sequence and Motor Rotation Tester. Users Manual EPM3 Phase Sequence and Motor Rotation Tester Users Manual 1 L1 L2 L3 2 3 A B C CAT 600V 3-PHASE TESTER 5 TEST M1 M2 BATT M3 EPM3 MOTOR ROTATION TESTER EPM3 MOTOR ROTATION DETERMINED WHILE FACING MOTOR

More information

DET3 and 4 Contractor Series Earth/Ground Resistance Testers

DET3 and 4 Contractor Series Earth/Ground Resistance Testers DET3 and 4 Contractor Series 2, 3 and 4 point testing ART (Attached Rod Technique) testing capability and stakeless testing technique Choice of digital or analog display Warning indicators prevent test

More information

Section B: Electricity

Section B: Electricity Section B: Electricity We use mains electricity, supplied by power stations, for all kinds of appliances in our homes, so it is very important to know how to use it safely. In this chapter you will learn

More information

Ferrostat Speed Sensor Series DSF Explosion Proof Versions EEx

Ferrostat Speed Sensor Series DSF Explosion Proof Versions EEx Ferrostat Speed Sensor Series DSF Explosion Proof Versions EEx DSF..10.**.HV Ex ATEX Operating Instructions 374E-64368 Valid from lot nr. 0103 General Function Use in potentially explosive environment

More information

DET3 Contractor Series

DET3 Contractor Series DET3 Contractor Series 3-Terminal 2 and 3 point testing ART (Attached Rod Technique) testing capability User selectable test voltage (25/50 V) Choice of digital or analog display Warning indicators prevent

More information

Single and Three Phase Transformer Testing Using Static Motor Circuit Analysis Techniques

Single and Three Phase Transformer Testing Using Static Motor Circuit Analysis Techniques Single and Three Phase Transformer Testing Using Static Motor Circuit Analysis Techniques Howard W. Penrose, Ph.D On behalf of ALL-TEST Pro, LLC Old Saybrook, CT Introduction Field and shop testing of

More information

TAN δ (DELTA) CABLE TESTING OVERVIEW AND ANSWERS TO FREQUENTLY ASKED QUESTIONS. What Is Tan δ, Or Tan Delta?

TAN δ (DELTA) CABLE TESTING OVERVIEW AND ANSWERS TO FREQUENTLY ASKED QUESTIONS. What Is Tan δ, Or Tan Delta? TAN δ (DELTA) CABLE TESTING OVERVIEW AND ANSWERS TO FREQUENTLY ASKED QUESTIONS What Is Tan δ, Or Tan Delta? Tan Delta, also called Loss Angle or Dissipation Factor testing, is a diagnostic method of testing

More information

Product brochure Multi Functional Switchgear PASS M00 72.5 kv Flexible and compact switchgear solutions for windfarms

Product brochure Multi Functional Switchgear PASS M00 72.5 kv Flexible and compact switchgear solutions for windfarms Product brochure Multi Functional Switchgear PASS M00 72.5 kv Flexible and compact switchgear solutions for windfarms The future of Wind Farms As offshore wind farms move towards deploying higher capacity

More information

Electrical Grounding. Appendix C

Electrical Grounding. Appendix C Appendix C Electrical Grounding Low-Voltage Equipment Grounding The most frequently cited Office of Safety and Health Administration (OSHA) electrical violation is improper occupational grounding of equipment

More information

Douglas J. Reinemann, Ph.D. University of Wisconsin-Madison, Department of Agricultural Engineering Madison, Wisconsin. and

Douglas J. Reinemann, Ph.D. University of Wisconsin-Madison, Department of Agricultural Engineering Madison, Wisconsin. and Paper o. 953623 An ASAE Meeting Presentation ELECTRICAL SERVICE TO AGRICULTURAL BUILDIGS: FOUR- WIRE AD THREE-WIRE SYSTEMS by Mark A. Cook, Daniel M. Dasho P. E., and Richard Reines Public Service Commission

More information

Grounding & Bonding Why it is done And How to Install Properly

Grounding & Bonding Why it is done And How to Install Properly Grounding & Bonding Why it is done And How to Install Properly The technical information provided herein is to assist qualifi ed persons in planning and installing electric service to farms and residences.

More information

Rated Power(W) 8W 2. EG-LED0840-01 8W 3. EG-LED1027-01 10W

Rated Power(W) 8W 2. EG-LED0840-01 8W 3. EG-LED1027-01 10W 14713221 001 Seite 2 von 37 Page 2 of 37 Model List: No Model Rated Voltage(V) 1. EG-LED0827-01 Rated Power(W) 8W 2. EG-LED0840-01 8W 3. EG-LED1027-01 10W 4. EG-LED1040-01 AC 100-240V, 10W 5. EG-LED1027-02

More information

EMC STANDARDS STANDARDS AND STANDARD MAKING BODIES. International. International Electrotechnical Commission (IEC) http://www.iec.

EMC STANDARDS STANDARDS AND STANDARD MAKING BODIES. International. International Electrotechnical Commission (IEC) http://www.iec. EMC STANDARDS The EMC standards that a particular electronic product must meet depend on the product application (commercial or military) and the country in which the product is to be used. These EMC regulatory

More information

Assessment of Soil Resistivity on Grounding of Electrical Systems: A Case Study of North-East Zone, Nigeria

Assessment of Soil Resistivity on Grounding of Electrical Systems: A Case Study of North-East Zone, Nigeria Assessment of Soil Resistivity on Grounding of Electrical Systems: A Case Study of North-East Zone, Nigeria Abstract Gabriel A. Adegboyega and Kehinde O. Odeyemi Department of Electrical and Electronic

More information

ESP 120 M1, ESP 208 M1, ESP 240 M1, ESP 415 M1, ESP 277 M1, ESP 480 M1 and M1R variants. Installation instructions ESP M1/M1R mains protectors

ESP 120 M1, ESP 208 M1, ESP 240 M1, ESP 415 M1, ESP 277 M1, ESP 480 M1 and M1R variants. Installation instructions ESP M1/M1R mains protectors ESP 120 M1, ESP 208 M1, ESP 240 M1, ESP 415 M1, ESP 277 M1, ESP 480 M1 and M1R variants Installation instructions Contents Key points of installation Before installation Installation Installation check

More information

Current Transformers

Current Transformers Tyco Electronics Corporation Crompton Instruments 1610 Cobb International Parkway, Unit #4 Kennesaw, GA 30152 Tel. 770-425-8903 Fax. 770-423-7194 Current Transformers Current transformers (CT's) provide

More information

DOMESTIC ELECTRICAL INSTALLATION CERTIFICATE (Requirements for Electrical Installations BS 7671 IEE Wiring Regulations)

DOMESTIC ELECTRICAL INSTALLATION CERTIFICATE (Requirements for Electrical Installations BS 7671 IEE Wiring Regulations) DOMESTIC ELECTRICAL INSTALLATION CERTIFICATE (Requirements for Electrical Installations BS 7671 IEE Wiring Regulations) DETAILS OF THE CLEINT Client and address ADDRESS OF THE INSTALLATION Installation

More information

ACL 395 Resistivity Meter

ACL 395 Resistivity Meter ACL 395 Resistivity Meter OPERATION MANUAL Meter is warranted for one year from the date of purchase on parts and labor. Calibration is recommended every 12 months. 840 W. 49 th Place Page 1 of 13 info@aclstaticide.com

More information

Troubleshooting accelerometer installations

Troubleshooting accelerometer installations Troubleshooting accelerometer installations Accelerometer based monitoring systems can be tested to verify proper installation and operation. Testing ensures data integrity and can identify most problems.

More information

Lightning Arresters P30027 18 KVA P30038 10 KVA. Description & Installation

Lightning Arresters P30027 18 KVA P30038 10 KVA. Description & Installation Lightning Arresters P30027 18 KVA P30038 10 KVA Description & Installation Printed in USA 09/11 TO330 Rev. B Table of Contents Page 1.0 SCOPE 2 2.0 PRODUCT OVERVIEW 2 2.1 Intended Uses 2 2.2 Lightning

More information

NATIONAL CERTIFICATE (VOCATIONAL)

NATIONAL CERTIFICATE (VOCATIONAL) NATIONAL CERTIFICATE (VOCATIONAL) SUBJECT GUIDELINES ELECTRICAL PRINCIPLES AND PRACTICE NQF Level 4 September 2007 ELECTRICAL PRINCIPLES AND PRACTICE LEVEL 4 CONTENTS INTRODUCTION 1 DURATION AND TUITION

More information

1. Scope This specification is applied to ICR18650. 2. Product Specification Table 1 No. Item Rated Performance Remark

1. Scope This specification is applied to ICR18650. 2. Product Specification Table 1 No. Item Rated Performance Remark 1. Scope This specification is applied to ICR18650. 2. Product Specification Table 1 No. Item Rated Performance Remark 1 Rated Capacity Typical Minimum 2 Nominal Voltage 3.7V 3 Voltage at end of Discharge

More information

Charged cable event. 1 Goal of the ongoing investigation. 2 Energy sources for the CDE. Content

Charged cable event. 1 Goal of the ongoing investigation. 2 Energy sources for the CDE. Content Charged cable event David Pommerenke, david_pommerenke@hp.com, 916 785 4550 Last update: Feb.23, 2001 Content Goal Energy sources, which may lead to CDE. Complexity of the different discharge modes. Possible

More information

AN96-07. Surging Ideas TVS Diode Application Note PROTECTION PRODUCTS. TRANSIENT IMMUNITY STANDARDS: IEC 61000-4-x

AN96-07. Surging Ideas TVS Diode Application Note PROTECTION PRODUCTS. TRANSIENT IMMUNITY STANDARDS: IEC 61000-4-x TRANSIENT IMMUNITY STANDARDS: IEC 61000-4-x On January 1, 1996, exports into Europe began facing some tough transient immunity standards. The International Electrotechnical Commission (IEC), a worldwide

More information

MEDIUM AND HIGH VOLTAGE CAPACITORS, CAPACITOR BANKS AND SYSTEMS

MEDIUM AND HIGH VOLTAGE CAPACITORS, CAPACITOR BANKS AND SYSTEMS MEDIUM AND HIGH VOLTAGE CAPACITORS, CAPACITOR BANKS AND SYSTEMS Meher Capacitors offers reliable and innovative products and solutions in the fields of Reactive Power Compensation, Power Quality and Energy

More information

Best Methods for Safe Hipot Testing

Best Methods for Safe Hipot Testing Best Methods for Safe Hipot Testing When working with electrical safety test equipment, instruments that output potentially dangerous voltages and currents, it is always important to regular review and

More information

Fault location on power cables. Fault location on power cables

Fault location on power cables. Fault location on power cables Fault location on power cables Fault location on power cables Contents: 1. Introduction 2. Construction of power cables 3. Cable faults 01. Introduction Fault location on communication and power cables

More information

Arc Flash Mitigation. Remote Racking and Switching for Arc Flash danger mitigation in distribution class switchgear.

Arc Flash Mitigation. Remote Racking and Switching for Arc Flash danger mitigation in distribution class switchgear. Arc Flash Mitigation Remote Racking and Switching for Arc Flash danger mitigation in distribution class switchgear. Distance is Safety We will discuss through examples of actual occurrences and possible

More information

CHAPTER 5 PHOTOVOLTAIC SYSTEM DESIGN

CHAPTER 5 PHOTOVOLTAIC SYSTEM DESIGN CHAPTER 5 PHOTOVOLTAIC SYSTEM DESIGN 5.1 Introduction So far in the development of this research, the focus has been to estimate the available insolation at a particular location on the earth s surface

More information

The Charging System. Section 5. Charging System. Charging System. The charging system has two essential functions:

The Charging System. Section 5. Charging System. Charging System. The charging system has two essential functions: The Charging System Charging System The charging system has two essential functions: Generate electrical power to run the vehicle s electrical systems Generate current to recharge the vehicle s battery

More information

High-Voltage Circuit-Breakers 3AP1/2 72.5 kv up to 550 kv. Power Transmission and Distribution

High-Voltage Circuit-Breakers 3AP1/2 72.5 kv up to 550 kv. Power Transmission and Distribution High-Voltage Circuit-Breakers AP/ 7.5 kv up to 550 kv Power Transmission and Distribution The AP/ High-Voltage Circuit-Breakers Now Applicable for 550 kv Decades of our experience in high-voltage switching

More information

November 2014. Stray Voltage Test Procedure for Electrical Contractors

November 2014. Stray Voltage Test Procedure for Electrical Contractors Stray Voltage Test Procedure for Electrical Contractors 1 LIMITATION OF LIABILITY AND DISCLAIMER Any person who uses, relies on, or otherwise deals with this document and the information herein, does so

More information

Technical Article. EMC filters for medical devices

Technical Article. EMC filters for medical devices Technical Article EMC filters for medical devices September 2010 EMC filters for medical devices Schaffner, the market leader in EMC filters and power quality, has supplemented its proven IEC inlet filter

More information

AMFA-27 AMFA-29. Operator s Manual & Installation Instructions. Rev. 2.5

AMFA-27 AMFA-29. Operator s Manual & Installation Instructions. Rev. 2.5 AMFA-27 AMFA-29 Operator s Manual & Installation Instructions Rev. 2.5 Date: 17 July, 2010 Permanently-connected, utility Interactive, single-phase, inverters Model AMFA-27 WIND TURBINE INVERTER (240 VAC

More information

T 3000. Substation Maintenance and Commissioning Test Equipment

T 3000. Substation Maintenance and Commissioning Test Equipment T 3000 Substation Maintenance and Commissioning Test Equipment Multi function system for testing substation equipment such as: current, voltage and power transformers, all type of protection relays, energy

More information

Lab 3 - DC Circuits and Ohm s Law

Lab 3 - DC Circuits and Ohm s Law Lab 3 DC Circuits and Ohm s Law L3-1 Name Date Partners Lab 3 - DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in

More information

Application-oriented testing of line differential protection end to end in the field using the corresponding RelaySimTest template

Application-oriented testing of line differential protection end to end in the field using the corresponding RelaySimTest template Application Note Application-oriented testing of line differential protection end to end in the field using the corresponding RelaySimTest template Author Jens Baumeister jens.baumeister@omicron.at Date

More information

LIMITING SHORT-CIRCUIT CURRENTS IN MEDIUM-VOLTAGE APPLICATIONS

LIMITING SHORT-CIRCUIT CURRENTS IN MEDIUM-VOLTAGE APPLICATIONS LIMITING SHORT-CIRCUIT CURRENTS IN MEDIUM-VOLTAGE APPLICATIONS Terence Hazel Senior Member IEEE Schneider Electric 38050 Grenoble France Abstract The power requirements for large industrial sites is increasing.

More information

World Leader in HV Testing Technology

World Leader in HV Testing Technology World Leader in HV Testing Technology Cable Fault Locators w/tdr Oil/Fluid Dielectric Testers Very Low Frequency AC Technology W/TD & PD Diagnostics Portable AC Hipots ---------------------------------

More information