# THE ROOMMATES PROBLEM DISCUSSED

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 THE ROOMMATES PROBLEM DISCUSSED NATHAN SCHULZ Abstract. The stable roommates problem as originally posed by Gale and Shapley [1] in 1962 involves a single set of even cardinality 2n, each member of which ranks every other member in order of preference. A stable matching is then a partition of this single set into n pairs such that no two unmatched members both prefer each other to their partners under the matching. However, a simple counterexample quickly proves that a stable matching need not exist in the stable roommates problem. In 1984, Irving published an algorithm that determines in polynomial time if a stable matching is possible on a given set, and if so, finds such a matching. However, others have made efforts to redefine the concept of a stable matching, or even reframe the problem altogether to give it new real-world significance. The present paper describes both Irving s algorithm, and look at other reappraisals of this problem. Contents 1. Background 1 2. Irving s Method Pt. I 2 3. Irving s Method Pt. II 3 4. One Economist s Idea 5 References 6 1. Background In their 1962 paper College Admissions and the Stability of Marriage, David Gale and Lloyd Shapley propose the stable marriage problem [1]. The problem concerns n men and n women, each of whom is to marry one partner. Each man and woman ranks each woman and man, respectively, from 1 to n in order of preference. A matching is defined as a set of n disjoint pairs containing one woman and one man each. For convenience sake, we ll refer to the woman s partner in the matching as her husband and the man s partner in the matching his wife. A matching is stable when no woman x prefers a man y to her husband in the present matching where y also prefers x to his present wife. In the paper, Gale and Shapley furnished an algorithm that always provides a stable matching in polynomial time. In the same paper, Gale and Shapley propose the related stable problem (henceforth, simply referred to as the roommates problem ). This problem concerns 2n participants who each rank the other 2n 1 members in order of preference. A matching in this context is just a set of n disjoint pairs of participants. The two participants in a pair will henceforth be referred to as partners in the matching. Date: August 17,

2 2 NATHAN SCHULZ In this problem, a matching is stable when no participants x and y exist who prefer each other to their present partners. However: Proposition 1.1. There need not exist a stable matching in the roommates problem. This is demonstrated with an illustrative counterexample. Proof. Imagine there are four participants, α, β, γ, and δ, where the preference lists are given as: α :β, γ, δ β :γ, α, δ γ :α, β, δ δ :(Unimportant) Then whoever is paired in a room with δ prefers someone in the other room who also prefers them. Therefore, a stable matching cannot always be constructed in the problem. Since there need not exist a stable matching in the roommates problem, there cannot be an algorithm that always constructs a stable matching. This fact has led to variety of reappraisals of this problem. This paper looks at a variety of approaches to the problem, including: (1) Irving s algorithm, which determines in polynomial time if a stable matching is possible on a given set of participants, and if so, finds such a matching, (2) Morrill s approach, which works by redefining the concept of a stable matching, and 2. Irving s Method Pt. I Irving s algorithm breaks down into two distinct phases. The first phase consisting of a sequence of proposals not unlike the algorithms employed in stable marriage problems [2]. Algorithm 2.1 (Phase 1). (1) If x receives a proposal from y, then: (a) x rejects it at once if x already holds a better proposal; (b) x holds it for consideration otherwise, simultaneously rejecting any poorer proposal x currently hold. (2) An individual x proposes to the others in the order in which they appear in x s preference list, stopping when a promise of consideration is received; any subsequent rejection causes x to continue immediately with the sequence of proposals. When this first phase terminates, there are two possibilities: (1) every person holds a proposal (2) one person is rejected by everyone Lemma 2.2. If y rejects x in the proposal sequence described above, then x and y cannot be partners in a stable matching.

3 THE ROOMMATES PROBLEM DISCUSSED 3 Proof. Suppose that of all the rejections involving two participants who are partners in a stable matching, the rejection of x by y is chronologically first. Denote M a stable matching in which x and y are partners. For y to have rejected x, y must have already held or later received a better proposal, denoted by z. But if y prefers z to x, then z must prefer his own partner in M, denoted by w, to y. Therefore, z must have been rejected by w before z proposed to y. But this rejection must have come before y rejected x, which is a contradiction since the rejection of x by y is assumed to be the first. Corollary 2.3. If, at any stage of the proposal process, x proposes to y, then in a stable matching: (1) x cannot have a better partner than y (2) y cannot have a worse partner than x Proof. If x has proposed to y, x has been rejected by everyone higher on their preference list than y, and so by Lemma 2.2 may not have a better partner than y, proving (1). If y and z are partners in a stable matching, and y prefers x to z, then since x prefers y to x s own partner, stability is violated. So (2) is demonstrated by contradiction. An obvious consequence of Lemma 2.2 is that if the first phase of the algorithm terminates with one person x having been rejected by everyone else, then no stable matching exists, as x could have no possible partner. Corollary 2.4. If every person holds a proposal, then we reduce their preference lists as follows: If the first phase of the algorithm terminates with every person holding a proposal, then the preference list of possible partners for y, who holds a proposal from x, can be reduced by deleting from it (1) all those to whom y prefers x; (2) all those who hold a proposal from a person whom they prefer to y. In the resulting lists: (3) y is first on x s list and x is last on y s (4) in general, b appears on a s list iff a appears on b s. Proof. (1) and (2) follow from Corollary 2.3. (3) follows from (1) and (2), and (4) is self-evident. Lemma 2.5. If in the reduced preference lists, every list contains one person, then the lists specify a stable matching. Proof. This is a consequence of Corollary 2.4 part (4). Suppose x prefers y to the sole participant on x s list. Then x was rejected by y, meaning y had obtained a better proposal. The final proposal held by y is from the remaining participant on y s reduced preference list, meaning y prefers this participant to x. Therefore, the matching specified by the reduced preference lists is never unstable. 3. Irving s Method Pt. II In not every case where a stable matching exists are the reduced preferences listed created by the first phase sufficient to denote a matching. We must further reduce the preference lists, making use of an iterative process that will result in either one person running out of people to propose to (in which case no stable

4 4 NATHAN SCHULZ matching exists), or every preference list shrinking to a single person, in which case they specify a stable matching. A set of preference list is said to be completely reduced if: (1) they have been subjected to phase 1 reduction as described in Corollary 2.4, (2) they have been subjected to zero or more phase 2 reductions, as described below. The idea behind the reductions that characterize the second phase of Irving s algorithm is to recognize a cycle a 1,..., a r of distinct participants such where: (1) for i = 1,..., r 1, the second participant in a i s current reduced preference list is the first participant in a i+1 s; henceforth denoted by b i+1. (2) the second participant in a r s current reduced list is the first in a 1 s; henceforth denoted by b 1. We define a 1,..., a r an all-or-nothing cycle relative to the current reduced lists. To find an all-or-nothing cycle, let p 1 be an arbitrary participant whose current reduced list contains more than one participant. Generate the sequences by taking q i = second person in p i s list, and p i+1 = last person in q i s list. We then let a i = p s+i+1 (i = 1, 2,... ), where p s is the first element in the p sequence that is repeated, and define p 1, p 2,..., p s 1 as the cycle s tail. Algorithm 3.1 (Phase 2). The second phase reduction involves a set of reduced lists and a particular all-or-nothing cycle. This phase involves forcing each b 1 to reject the proposal held from a 1, forcing each a 1 to propose to b i+1, the second person in the reduced list. As a result, all successors of a 1 in b i+1 s reduced lists can be deleted (as in Corollary 2.4, and b i+1 can be eliminated from their lists. If a i achieves no better partner than b i+1, then for stability s sake, b i+1 can do no worse than a i. It follows that parts (3) and (4) of Corollary 2.4 apply also to these further reduced lists. The significance of a completely reduced set of preference lists is that if the original problem instance allows for a stable matching, then there is a stable matching in which every participant is partnered by someone on their reduced list. We say that such a matching is contained in the reduced lists. Lemma 3.2. Let a 1,..., a r be an all-or-nothing cycle, and denote b 1 the the first person in a 1 s reduced list. Then: (1) in a stable matching contained in these reduced lists, either a i and b i are partners for all values of i or for no value of i, (2) if there is such a stable matching in which a i and b i are partners, then there is another in which they are not. Proof. Considering subscripts (modulo r), suppose that for a fixed i, a i and b i are partners in a stable matching contained in the reduced lists. Since b i is second on a i 1 s it follows that a i 1 is at least present on b i s reduced list. Additionally, since a i is last on b i s reduced list, it follows that b i prefers a i 1 to a i. Then for stability, a i 1 must be partnered by someone he prefers to b i, and the only qualifying participant in a i 1 s list is b i 1. Repeating this argument shows that a i and b i must be partners for all values of i. We define A = {a 1,..., a r }, B = {b 1,..., b r }. If A union B is non-empty, say a j = b k, then it is impossible for all a i to have their first remaining preference, since b k has has last preference when a k has first. So,

5 THE ROOMMATES PROBLEM DISCUSSED 5 the fact that A union B is non-empty implies that no a i and b i can be partners, so we may as well assume A union B is non-empty. Suppose M is a stable matching in the completely reduced lists, in which a i and b i are partners for all i. Denote M the matching in which each a i is partnered by b i+1, and any person not in A intersect B has the same partner as in M. We claim M is stable. Each participant of B finds a better partner in M from their point of view than the one in M. The only individuals who do worse are the members of A, so any instability in M must involve some a i. If a i prefers a participant y over b i+1, then there are three cases: (1) a i and y were partners in M, in which case, y prefers the new partner, a i 1 to a i. (2) a i prefers y to b i, in which case y is not in a i s reduced list. (3) a i prefers b i to y, in which case y lies between b i and b i+1 in a i s original preference list, but is not in the reduced list. This means y must have obtained a proposal from someone better than a i, so x must prefer the partner in M to a i. Corollary 3.3. If the original problem instance allows for a stable matching, then there is a stable matching contained in a completely reduced set of preference lists. Corollary 3.4. If one or more among a reduced set of preference lists is empty, then the original problem instance admits no stable matching. The last lemma delineates the circumstances under which a stable matching can be created following Irving s method. Lemma 3.5. If in a completely reduced set of preference lists, every list contains just one person, then the lists specify a stable matching. Proof. This is as a consequence of Corollary 2.4 (4). Suppose that y prefers x to the participant left on y s list. Then, like in the case (2) in the second part of Lemma 3.2, we demonstrate that x must prefer the participant remaining on x s list. Therefore, no instability is admitted. 4. One Economist s Idea The paper The Roommates Problem Revisited, authored by economist Morrill in 2007 provides a new look at the roommates problem. In the paper he quickly acknowledges the real-life problem posed by the fact that a stable matching need not always exist in the roommates problem. Morrill addresses some practical concerns overlooked by the original definition of stability, stating: the traditional notion of stability ignores the key physical constraint that roommates require a room, and it is therefore too restrictive, [3]. According to Morrill, the best way to approach this problem on a practical level employs the concept of Pareto efficiency. Definition 4.1. In the context of the roommates problem, a Pareto improvement on a matching is a re-pairing of the inhabitants of two or more rooms that doesn t come at the expense of any participants involved. A matching is said to be Pareto efficient if no further Pareto improvements can be made. Proposition 4.2. For any set of participants there exists a Pareto efficient matching.

6 6 NATHAN SCHULZ Proof. Assign each participant a priority. Then, in order of priority, ask each participant who they would like to be paired with. Then pair those participants. Continue down the prioritized list until every participant is paired. It then is easy to show that this matching is Pareto efficient. The author then describes an algorithm whereby successive changes can be applied to any status quo matching to result in a Pareto efficient matching in O(n 3 ) time [3]. Though Proof 4 gives an easy method for obtaining a Pareto efficient matching, Morrill s method has its advantages. From a practical perspective, we notice differences in the proved method of re-matching everyone using a prioritized list versus the incremental changes of Morrill s algorithm. Morrill s approach upsets a given status quo less than the total re-matching of the method proven above. References [1] D. Gale and L.S. Shapley: College Admissions and the Stability of Marriage, American Mathematical Monthly 69, 9-14, [2] Robert W. Irving. An Efficient Algorithm for the Stable Roommates Problem. Academic Press Inc [3] Thayer Morrill. The Roommates Problem Revisited. University of Maryland

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 4. Stable Marriage - An Application of Proof Techniques to Algorithmic

CS 70-2 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 4 Stable Marriage - An Application of Proof Techniques to Algorithmic Analysis Consider a dating agency that must

### Two-Sided Matching Theory

Two-Sided Matching Theory M. Utku Ünver Boston College Introduction to the Theory of Two-Sided Matching To see which results are robust, we will look at some increasingly general models. Even before we

### The Student-Project Allocation Problem

The Student-Project Allocation Problem David J. Abraham, Robert W. Irving, and David F. Manlove Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK Email: {dabraham,rwi,davidm}@dcs.gla.ac.uk.

### Mechanism Design without Money I: House Allocation, Kidney Exchange, Stable Matching

Algorithmic Game Theory Summer 2015, Week 12 Mechanism Design without Money I: House Allocation, Kidney Exchange, Stable Matching ETH Zürich Peter Widmayer, Paul Dütting Looking at the past few lectures

### Two Algorithms for the Student-Project Allocation Problem

Two Algorithms for the Student-Project Allocation Problem David J. Abraham 1, Robert W. Irving 2, and David F. Manlove 2 1 Computer Science Department, Carnegie-Mellon University, 5000 Forbes Ave, Pittsburgh

### Math 421, Homework #5 Solutions

Math 421, Homework #5 Solutions (1) (8.3.6) Suppose that E R n and C is a subset of E. (a) Prove that if E is closed, then C is relatively closed in E if and only if C is a closed set (as defined in Definition

### Sets, Relations and Functions

Sets, Relations and Functions Eric Pacuit Department of Philosophy University of Maryland, College Park pacuit.org epacuit@umd.edu ugust 26, 2014 These notes provide a very brief background in discrete

### POWER SETS AND RELATIONS

POWER SETS AND RELATIONS L. MARIZZA A. BAILEY 1. The Power Set Now that we have defined sets as best we can, we can consider a sets of sets. If we were to assume nothing, except the existence of the empty

### MODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.

MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on

### Chapter 1. Sigma-Algebras. 1.1 Definition

Chapter 1 Sigma-Algebras 1.1 Definition Consider a set X. A σ algebra F of subsets of X is a collection F of subsets of X satisfying the following conditions: (a) F (b) if B F then its complement B c is

### each college c i C has a capacity q i - the maximum number of students it will admit

n colleges in a set C, m applicants in a set A, where m is much larger than n. each college c i C has a capacity q i - the maximum number of students it will admit each college c i has a strict order i

### Math 317 HW #7 Solutions

Math 17 HW #7 Solutions 1. Exercise..5. Decide which of the following sets are compact. For those that are not compact, show how Definition..1 breaks down. In other words, give an example of a sequence

### Partitioning edge-coloured complete graphs into monochromatic cycles and paths

arxiv:1205.5492v1 [math.co] 24 May 2012 Partitioning edge-coloured complete graphs into monochromatic cycles and paths Alexey Pokrovskiy Departement of Mathematics, London School of Economics and Political

### Determination of the normalization level of database schemas through equivalence classes of attributes

Computer Science Journal of Moldova, vol.17, no.2(50), 2009 Determination of the normalization level of database schemas through equivalence classes of attributes Cotelea Vitalie Abstract In this paper,

### Introduction Russell s Paradox Basic Set Theory Operations on Sets. 6. Sets. Terence Sim

6. Sets Terence Sim 6.1. Introduction A set is a Many that allows itself to be thought of as a One. Georg Cantor Reading Section 6.1 6.3 of Epp. Section 3.1 3.4 of Campbell. Familiar concepts Sets can

### 1 Plane and Planar Graphs. Definition 1 A graph G(V,E) is called plane if

Plane and Planar Graphs Definition A graph G(V,E) is called plane if V is a set of points in the plane; E is a set of curves in the plane such that. every curve contains at most two vertices and these

### Stable matching: Theory, evidence, and practical design

THE PRIZE IN ECONOMIC SCIENCES 2012 INFORMATION FOR THE PUBLIC Stable matching: Theory, evidence, and practical design This year s Prize to Lloyd Shapley and Alvin Roth extends from abstract theory developed

### Two Simple Variations of Top Trading Cycles

Economic Theory manuscript No. (will be inserted by the editor) Two Simple Variations of Top Trading Cycles Thayer Morrill May 2014 Abstract Top Trading Cycles is widely regarded as the preferred method

### More Mathematical Induction. October 27, 2016

More Mathematical Induction October 7, 016 In these slides... Review of ordinary induction. Remark about exponential and polynomial growth. Example a second proof that P(A) = A. Strong induction. Least

### Lecture 17 : Equivalence and Order Relations DRAFT

CS/Math 240: Introduction to Discrete Mathematics 3/31/2011 Lecture 17 : Equivalence and Order Relations Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last lecture we introduced the notion

### Online Appendix. A2 : Description of New York City High School Admissions

Online Appendix This appendix provides supplementary material for Strategy-proofness versus Efficiency in Matching with Indifferences: Redesigning the NYC High School Match. The numbering of sections parallels

### 1.1 A First Problem: Stable Matching

Matching Residents to Hospitals 1.1 First Problem: Stable Matching Goal. Given a set of preferences among hospitals and medical school students, design a self-reinforcing admissions process. Unstable pair:

### Dimitris Chatzidimitriou. Corelab NTUA. June 28, 2013

AN EFFICIENT ALGORITHM FOR THE OPTIMAL STABLE MARRIAGE PROBLEM Dimitris Chatzidimitriou Corelab NTUA June 28, 2013 OUTLINE 1 BASIC CONCEPTS 2 DEFINITIONS 3 ROTATIONS 4 THE ALGORITHM DIMITRIS CHATZIDIMITRIOU

### An Alternative Characterization of Top Trading Cycles

An Alternative Characterization of Top Trading Cycles Thayer Morrill December 2011 Abstract This paper introduces two new characterizations of the Top Trading Cycles algorithm. The key to our characterizations

### Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement

### SOLUTIONS TO ASSIGNMENT 1 MATH 576

SOLUTIONS TO ASSIGNMENT 1 MATH 576 SOLUTIONS BY OLIVIER MARTIN 13 #5. Let T be the topology generated by A on X. We want to show T = J B J where B is the set of all topologies J on X with A J. This amounts

### Gains from Trade. Christopher P. Chambers and Takashi Hayashi. March 25, 2013. Abstract

Gains from Trade Christopher P. Chambers Takashi Hayashi March 25, 2013 Abstract In a market design context, we ask whether there exists a system of transfers regulations whereby gains from trade can always

### Tiers, Preference Similarity, and the Limits on Stable Partners

Tiers, Preference Similarity, and the Limits on Stable Partners KANDORI, Michihiro, KOJIMA, Fuhito, and YASUDA, Yosuke February 7, 2010 Preliminary and incomplete. Do not circulate. Abstract We consider

### TOPOLOGY: THE JOURNEY INTO SEPARATION AXIOMS

TOPOLOGY: THE JOURNEY INTO SEPARATION AXIOMS VIPUL NAIK Abstract. In this journey, we are going to explore the so called separation axioms in greater detail. We shall try to understand how these axioms

### Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

### CARDINALITY, COUNTABLE AND UNCOUNTABLE SETS PART ONE

CARDINALITY, COUNTABLE AND UNCOUNTABLE SETS PART ONE With the notion of bijection at hand, it is easy to formalize the idea that two finite sets have the same number of elements: we just need to verify

### 1. R In this and the next section we are going to study the properties of sequences of real numbers.

+a 1. R In this and the next section we are going to study the properties of sequences of real numbers. Definition 1.1. (Sequence) A sequence is a function with domain N. Example 1.2. A sequence of real

### Math 3000 Running Glossary

Math 3000 Running Glossary Last Updated on: July 15, 2014 The definition of items marked with a must be known precisely. Chapter 1: 1. A set: A collection of objects called elements. 2. The empty set (

### MA651 Topology. Lecture 6. Separation Axioms.

MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples

### Subsets of Euclidean domains possessing a unique division algorithm

Subsets of Euclidean domains possessing a unique division algorithm Andrew D. Lewis 2009/03/16 Abstract Subsets of a Euclidean domain are characterised with the following objectives: (1) ensuring uniqueness

### CSL851: Algorithmic Graph Theory Semester I Lecture 1: July 24

CSL851: Algorithmic Graph Theory Semester I 2013-2014 Lecture 1: July 24 Lecturer: Naveen Garg Scribes: Suyash Roongta Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

### MAT2400 Analysis I. A brief introduction to proofs, sets, and functions

MAT2400 Analysis I A brief introduction to proofs, sets, and functions In Analysis I there is a lot of manipulations with sets and functions. It is probably also the first course where you have to take

### Alok Gupta. Dmitry Zhdanov

RESEARCH ARTICLE GROWTH AND SUSTAINABILITY OF MANAGED SECURITY SERVICES NETWORKS: AN ECONOMIC PERSPECTIVE Alok Gupta Department of Information and Decision Sciences, Carlson School of Management, University

### 136 CHAPTER 4. INDUCTION, GRAPHS AND TREES

136 TER 4. INDUCTION, GRHS ND TREES 4.3 Graphs In this chapter we introduce a fundamental structural idea of discrete mathematics, that of a graph. Many situations in the applications of discrete mathematics

### Lecture 16 : Relations and Functions DRAFT

CS/Math 240: Introduction to Discrete Mathematics 3/29/2011 Lecture 16 : Relations and Functions Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT In Lecture 3, we described a correspondence

### 1 if 1 x 0 1 if 0 x 1

Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

### This chapter describes set theory, a mathematical theory that underlies all of modern mathematics.

Appendix A Set Theory This chapter describes set theory, a mathematical theory that underlies all of modern mathematics. A.1 Basic Definitions Definition A.1.1. A set is an unordered collection of elements.

### Notes on Factoring. MA 206 Kurt Bryan

The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor

### Structure of Measurable Sets

Structure of Measurable Sets In these notes we discuss the structure of Lebesgue measurable subsets of R from several different points of view. Along the way, we will see several alternative characterizations

### 6.042/18.062J Mathematics for Computer Science September 28, 2006 Tom Leighton and Ronitt Rubinfeld. Graph Theory II

6.04/8.06J Mathematics for Computer Science September 8, 006 Tom Leighton and Ronitt Rubinfeld Lecture Notes Graph Theory II Matchings Today, we are going to talk about matching problems. Matching problems

### FIBRATION SEQUENCES AND PULLBACK SQUARES. Contents. 2. Connectivity and fiber sequences. 3

FIRTION SEQUENES ND PULLK SQURES RY MLKIEWIH bstract. We lay out some foundational facts about fibration sequences and pullback squares of topological spaces. We pay careful attention to connectivity ranges

### EMBEDDING COUNTABLE PARTIAL ORDERINGS IN THE DEGREES

EMBEDDING COUNTABLE PARTIAL ORDERINGS IN THE ENUMERATION DEGREES AND THE ω-enumeration DEGREES MARIYA I. SOSKOVA AND IVAN N. SOSKOV 1. Introduction One of the most basic measures of the complexity of a

### Chap2: The Real Number System (See Royden pp40)

Chap2: The Real Number System (See Royden pp40) 1 Open and Closed Sets of Real Numbers The simplest sets of real numbers are the intervals. We define the open interval (a, b) to be the set (a, b) = {x

### THE 0/1-BORSUK CONJECTURE IS GENERICALLY TRUE FOR EACH FIXED DIAMETER

THE 0/1-BORSUK CONJECTURE IS GENERICALLY TRUE FOR EACH FIXED DIAMETER JONATHAN P. MCCAMMOND AND GÜNTER ZIEGLER Abstract. In 1933 Karol Borsuk asked whether every compact subset of R d can be decomposed

### Exponential time algorithms for graph coloring

Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A k-labeling of vertices of a graph G(V, E) is a function V [k].

### Computer Science Department. Technion - IIT, Haifa, Israel. Itai and Rodeh [IR] have proved that for any 2-connected graph G and any vertex s G there

- 1 - THREE TREE-PATHS Avram Zehavi Alon Itai Computer Science Department Technion - IIT, Haifa, Israel Abstract Itai and Rodeh [IR] have proved that for any 2-connected graph G and any vertex s G there

### Matching Markets: Theory and Practice

Matching Markets: Theory and Practice Atila Abdulkadiroğlu Duke University Tayfun Sönmez Boston College 1 Introduction It has been almost half a century since David Gale and Lloyd Shapley published their

### Solutions to Homework 6 Mathematics 503 Foundations of Mathematics Spring 2014

Solutions to Homework 6 Mathematics 503 Foundations of Mathematics Spring 2014 3.4: 1. If m is any integer, then m(m + 1) = m 2 + m is the product of m and its successor. That it to say, m 2 + m is the

### Graphs without proper subgraphs of minimum degree 3 and short cycles

Graphs without proper subgraphs of minimum degree 3 and short cycles Lothar Narins, Alexey Pokrovskiy, Tibor Szabó Department of Mathematics, Freie Universität, Berlin, Germany. August 22, 2014 Abstract

### 2.3 Convex Constrained Optimization Problems

42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

### The Foundations: Logic and Proofs. Chapter 1, Part III: Proofs

The Foundations: Logic and Proofs Chapter 1, Part III: Proofs Rules of Inference Section 1.6 Section Summary Valid Arguments Inference Rules for Propositional Logic Using Rules of Inference to Build Arguments

### Discrete Mathematics Lecture 5. Harper Langston New York University

Discrete Mathematics Lecture 5 Harper Langston New York University Empty Set S = {x R, x 2 = -1} X = {1, 3}, Y = {2, 4}, C = X Y (X and Y are disjoint) Empty set has no elements Empty set is a subset of

### What s the Matter with Tie-breaking? Improving Efficiency in School Choice

What s the Matter with Tie-breaking? Improving Efficiency in School Choice By Aytek Erdil and Haluk Ergin Abstract In several school choice districts in the United States, the student proposing deferred

### Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs

CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like

### Online matching markets

Online matching markets Christian Helmers 19 May 2015 1 / 18 Online matching markets 2 / 18 Online matching markets 3 / 18 Introduction Digitization of matching markets Labor markets (odesk, mechanical

### Iterated Dynamic Belief Revision. Sonja Smets, University of Groningen. website: http://www.vub.ac.be/clwf/ss

LSE-Groningen Workshop I 1 Iterated Dynamic Belief Revision Sonja Smets, University of Groningen website: http://www.vub.ac.be/clwf/ss Joint work with Alexandru Baltag, COMLAB, Oxford University LSE-Groningen

### Re-Reforming the Bostonian System: A Novel Approach to the School Allocation Problem

Re-Reforming the Bostonian System: A Novel Approach to the School Allocation Problem José Alcalde 1 and Antonio Romero Medina 2 1 IUDESP and Dep. of Economics, University of Alicante, 03071 Alicante, Spain

### Hacking-proofness and Stability in a Model of Information Security Networks

Hacking-proofness and Stability in a Model of Information Security Networks Sunghoon Hong Preliminary draft, not for citation. March 1, 2008 Abstract We introduce a model of information security networks.

### Working Paper Series ISSN 1424-0459. Working Paper No. 238. Stability for Coalition Formation Games. Salvador Barberà and Anke Gerber

Institute for Empirical Research in Economics University of Zurich Working Paper Series ISSN 1424-0459 Working Paper No. 238 A Note on the Impossibility of a Satisfactory Concept of Stability for Coalition

### The Division Algorithm for Polynomials Handout Monday March 5, 2012

The Division Algorithm for Polynomials Handout Monday March 5, 0 Let F be a field (such as R, Q, C, or F p for some prime p. This will allow us to divide by any nonzero scalar. (For some of the following,

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22 RAVI VAKIL CONTENTS 1. Discrete valuation rings: Dimension 1 Noetherian regular local rings 1 Last day, we discussed the Zariski tangent space, and saw that it

### Finite Sets. Theorem 5.1. Two non-empty finite sets have the same cardinality if and only if they are equivalent.

MATH 337 Cardinality Dr. Neal, WKU We now shall prove that the rational numbers are a countable set while R is uncountable. This result shows that there are two different magnitudes of infinity. But we

### Making Efficient School Assignment Fairer

Making Efficient School Assignment Fairer Thayer Morrill November, 2013 Abstract Surprisingly, nearly every school district that utilizes a centralized assignment procedure makes a Pareto inefficient assignment.

### CS 2336 Discrete Mathematics

CS 2336 Discrete Mathematics Lecture 5 Proofs: Mathematical Induction 1 Outline What is a Mathematical Induction? Strong Induction Common Mistakes 2 Introduction What is the formula of the sum of the first

### Uncoordinated Two-Sided Matching Markets

Uncoordinated Two-Sided Matching Markets HEINER ACKERMANN RWTH Aachen University, Germany PAUL W. GOLDBERG University of Liverpool, U.K. VAHAB S. MIRROKNI Google Research, New York, NY HEIKO RÖGLIN Maastricht

### The Goldberg Rao Algorithm for the Maximum Flow Problem

The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }

### WEAK DOMINANCE: A MYSTERY CRACKED

WEAK DOMINANCE: A MYSTERY CRACKED JOHN HILLAS AND DOV SAMET Abstract. What strategy profiles can be played when it is common knowledge that weakly dominated strategies are not played? A comparison to the

### CS 341 Homework 9 Languages That Are and Are Not Regular

CS 341 Homework 9 Languages That Are and Are Not Regular 1. Show that the following are not regular. (a) L = {ww R : w {a, b}*} (b) L = {ww : w {a, b}*} (c) L = {ww' : w {a, b}*}, where w' stands for w

### Unraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets

Unraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets Nathaniel Hendren January, 2014 Abstract Both Akerlof (1970) and Rothschild and Stiglitz (1976) show that

### Arrow s Theorem on Fair Elections

Arrow s Theorem on Fair Elections JWR October 27, 2008 1 Introduction The fair way to decide an election between two candidates a and b is majority rule; if more than half the electorate prefer a to b,

### it is easy to see that α = a

21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

### Betweenness of Points

Math 444/445 Geometry for Teachers Summer 2008 Supplement : Rays, ngles, and etweenness This handout is meant to be read in place of Sections 5.6 5.7 in Venema s text [V]. You should read these pages after

### Dedekind s forgotten axiom and why we should teach it (and why we shouldn t teach mathematical induction in our calculus classes)

Dedekind s forgotten axiom and why we should teach it (and why we shouldn t teach mathematical induction in our calculus classes) by Jim Propp (UMass Lowell) March 14, 2010 1 / 29 Completeness Three common

### 4: SINGLE-PERIOD MARKET MODELS

4: SINGLE-PERIOD MARKET MODELS Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2015 B. Goldys and M. Rutkowski (USydney) Slides 4: Single-Period Market

### Section 3 Sequences and Limits

Section 3 Sequences and Limits Definition A sequence of real numbers is an infinite ordered list a, a 2, a 3, a 4,... where, for each n N, a n is a real number. We call a n the n-th term of the sequence.

### CONTRIBUTIONS TO ZERO SUM PROBLEMS

CONTRIBUTIONS TO ZERO SUM PROBLEMS S. D. ADHIKARI, Y. G. CHEN, J. B. FRIEDLANDER, S. V. KONYAGIN AND F. PAPPALARDI Abstract. A prototype of zero sum theorems, the well known theorem of Erdős, Ginzburg

### The Trip Scheduling Problem

The Trip Scheduling Problem Claudia Archetti Department of Quantitative Methods, University of Brescia Contrada Santa Chiara 50, 25122 Brescia, Italy Martin Savelsbergh School of Industrial and Systems

### Logic & Discrete Math in Software Engineering (CAS 701) Dr. Borzoo Bonakdarpour

Logic & Discrete Math in Software Engineering (CAS 701) Background Dr. Borzoo Bonakdarpour Department of Computing and Software McMaster University Dr. Borzoo Bonakdarpour Logic & Discrete Math in SE (CAS

### CSE 135: Introduction to Theory of Computation Decidability and Recognizability

CSE 135: Introduction to Theory of Computation Decidability and Recognizability Sungjin Im University of California, Merced 04-28, 30-2014 High-Level Descriptions of Computation Instead of giving a Turing

### Characterizations of generalized polygons and opposition in rank 2 twin buildings

J. geom. 00 (2001) 000 000 0047 2468/01/000000 00 \$ 1.50 + 0.20/0 Birkhäuser Verlag, Basel, 2001 Characterizations of generalized polygons and opposition in rank 2 twin buildings Peter Abramenko and Hendrik

### Working Paper Series

RGEA Universidade de Vigo http://webs.uvigo.es/rgea Working Paper Series A Market Game Approach to Differential Information Economies Guadalupe Fugarolas, Carlos Hervés-Beloso, Emma Moreno- García and

### A set is a Many that allows itself to be thought of as a One. (Georg Cantor)

Chapter 4 Set Theory A set is a Many that allows itself to be thought of as a One. (Georg Cantor) In the previous chapters, we have often encountered sets, for example, prime numbers form a set, domains

### 1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

### A simple criterion on degree sequences of graphs

Discrete Applied Mathematics 156 (2008) 3513 3517 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Note A simple criterion on degree

### Discrete Mathematics, Chapter 5: Induction and Recursion

Discrete Mathematics, Chapter 5: Induction and Recursion Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 5 1 / 20 Outline 1 Well-founded

### Matthias Beck Ross Geoghegan. The Art of Proof. Basic Training for Deeper Mathematics

Matthias Beck Ross Geoghegan The Art of Proof Basic Training for Deeper Mathematics ! "#\$\$%&#'!()*+!!,-''!.)-/%)/#0! 1)2#3\$4)0\$!-5!"#\$%)4#\$&*'!! 1)2#3\$4)0\$!-5!"#\$%)4#\$&*#6!7*&)0*)'! 7#0!83#0*&'*-!7\$#\$)!90&:)3'&\$;!

### Vector Spaces II: Finite Dimensional Linear Algebra 1

John Nachbar September 2, 2014 Vector Spaces II: Finite Dimensional Linear Algebra 1 1 Definitions and Basic Theorems. For basic properties and notation for R N, see the notes Vector Spaces I. Definition

### ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS

ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS DANIEL RABAYEV AND JACK SONN Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q p for

### P (A) = lim P (A) = N(A)/N,

1.1 Probability, Relative Frequency and Classical Definition. Probability is the study of random or non-deterministic experiments. Suppose an experiment can be repeated any number of times, so that we

### Chapter 4. Trees. 4.1 Basics

Chapter 4 Trees 4.1 Basics A tree is a connected graph with no cycles. A forest is a collection of trees. A vertex of degree one, particularly in a tree, is called a leaf. Trees arise in a variety of applications.

### INCIDENCE-BETWEENNESS GEOMETRY

INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full

### INTRODUCTORY SET THEORY

M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,

### Introduction to Finite Fields (cont.)

Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number