Quantitative & Qualitative HPLC

Size: px
Start display at page:

Download "Quantitative & Qualitative HPLC"

Transcription

1 Quantitative & Qualitative HPLC i Wherever you see this symbol, it is important to access the on-line course as there is interactive material that cannot be fully shown in this reference manual.

2 Contents 1 Page 1 Aims and Objectives 2 2 Qualitative Analysis Overview 3 3 Peak Identification and Assignment 4 4 Sample Spiking 5 5 Spectral Peak Identification Peak Purity Spectral Characterization 8 6 Quantitative Analysis Overview 9 7 Chromatographic Requirements 10 8 Peak Integration Events Integration Events 12 9 Peak Height or Peak Area Principles of Quantitative Analysis Area%/Height% (Normalization) External Standard Quantitation Calibration Curve Statistical Information External Standard Multi-Level Calibration Calibration Curve Information External Standard Multi-Level Calibration Curve - Typical Calculation Internal Standard Analysis Multi-Level Calibration Curve 30-31

3 1. Aims and Objectives 2 Aims To define Quantitative HPLC and explain the information that can be derived from this type of HPLC analysis To examine the use of Peak Height or Area in quantitative calculations and to investigate Integration of chromatographic peaks To explain the use of Calibration and Calibration curves in Quantitative HPLC To outline the principles of Single and Multi-level calibration in Quantitative analysis To investigate practical uses of External Standard, Internal Standard and Normalization methods of Quantitative analysis To outline example calculations for the various Quantitative methods Objectives At the end of this Section you should be able to: To define Qualitative HPLC and explain the information that can be derived from this type of HPLC analysis To define and explain the principles of peak identification and analyte characterization from a practical perspective

4 2. Qualitative Analysis Overview 3 The aim of qualitative analysis is to answer the question What is in the sample? Figure 1: Options for qualitative HPLC analysis. Two discrete situations exist for qualitative analysis: the sample components are known and peaks within the chromatogram need to be assigned to the known components the sample is a complete unknown which you are attempting to characterize In the former case, it might be possible to inject standards of the pure compound, and assign the peaks in the chromatogram based on the retention time of the standard. Having a selective detector, such as diode-array UV or Fluorescence detector, which assists in identification by producing spectra or a specific response, can assist in peak assignment. In the second case, it may be necessary to employ detectors that can be used to aid in identification, such as mass spectrometers. It may also be necessary to collect the eluent fraction containing the peak of interest for off-line characterisation using Infra-red or Nuclear Magnetic Resonance Spectroscopy (NMR).

5 3. Peak Identification and Assignment 4 Perhaps the most straightforward way to assign peaks within the chromatogram of a sample solution is to inject standard solutions under identical analytical conditions. By comparing the retention factor (k) and response of the peak in the chromatogram of the standard solution, with the sample chromatogram, peaks may be tentatively assigned. It is important that the concentration of the standard solution is matched to the sample solution as closely as possible. This avoids peak mis-assignment due to peak shape effects. Figure 2: Using reference standards for peak identification. For more rigorous peak assignment it is important that the analysis is also carried out under orthogonal (different) conditions. The analysis is carried out in the reversed phase using a different column and mobile phase, and the retention factor and response compared again. If a match is found, then the confidence in the peak identification is increased.

6 4. Sample Spiking 5 The technique of spiking a sample involves the addition of a known reference material to a sample matrix, in order to confirm the identity of one of the sample component peaks. Figure 3: Use of sample spiking to increase confidence in peak identification. In this case, one of the peaks in the sample is suspected to be insulin. The sample is spiked with insulin at approximately the same concentration as the sample components. If any of the peaks within the chromatogram gets larger, then that peak may be insulin. If a new chromatographic peak is seen, or if any of the peaks develops a shoulder, then it is unlikely that any of the peaks in the chromatogram is due to insulin within the sample.

7 5. Spectral Peak Identification 6 The identification and assignment of peaks within sample chromatograms using retention time alone can be unreliable. The use of selective detectors and spectrometers can greatly increase the confidence in the peak assignment. Detector systems such as Diode Array UV Spectrometers or Mass Spectrometers are able to record unique spectra for each peak within the sample chromatogram. The spectra may be recorded in real time as the eluent can be directly introduced into the detector system. Figure 4: The use of spectral detectors to assist with peak identification. It is usual that the spectrum obtained from the unknown peak is compared with a spectrum from either a standard solution of pure reference standard run alongside the sample, or with spectra from a library held within the chromatographic data system. There are many ways to compare spectra, and many algorithms exist for producing a Match between the recorded spectra and the sample spectrum. These statistical methods of comparison give a quantitative measure of confidence in the peak assignment. Mass spectra and higher order (derivative) UV spectra can also be used to check for peak purity' whether the peak is due to a single component or is an amalgamation of two or more peaks.

8 5.1. Peak Purity 7 Peak purity can be established by taking the ratio of two signals (wavelengths) across the peak(s) of interest. If the peak is pure, then the ratio of the two signals should be constant across the peak. If the peak is impure, then the ratio between the two signals (wavelengths) will change across the peak as the spectral differences caused by the interfering peak change the signal ratio. Figure 5: Peak purity determined from the ratio between two signals.

9 5.2. Spectral Characterization 8 Mass Spectrometric detectors can be configured to produce fragmentation patterns that can be assigned to analyte moieties, so building up a picture of the analyte molecule. The spectral peaks and patterns combined with the molecular (pseudomolecular) weight acquired can be used to characterise the analyte molecule. Figure 6: Determination of peak purity using spectral detectors.

10 9 6. Quantitative Analysis Overview After the peaks have been integrated and identified, the next step in the analysis is quantification. Quantification uses peak areas or heights to determine the concentration of a compound in the sample. Figure 7: Quantitative analysis in HPLC. A quantitative analysis involves many steps that are briefly summarised as follows: Know the compound you are analyzing Establish a method for analyzing samples containing this compound Analyze a sample or samples (the Standard) containing a known concentration or concentrations of the compound to obtain the response due to that concentration (called Calibration ) You may analyze a number of these samples with different concentrations of the compounds of interest if your detector has a non-linear response (referred to as multi-level calibration ), or if a wide concentration range is to be measured in the samples analyze the sample containing an unknown concentration of the compound to obtain the response due to the unknown concentration Compare the response of the unknown concentration to the response of the known (standard) concentration to determine how much of the compound is present To obtain a valid comparison for the unknown sample response to that of the known standard, the data must be acquired and processed under identical conditions.

11 7. Chromatographic Requirements 10 A requirement for quantitative analysis is that the peaks to be quantified are known (i.e. characterised), so that standard solutions may be prepared for instrument response calibration. There are notable exceptions to these requirements, for example, impurity and degradation product analysis in Pharmaceutical Stability Studies. In this case, surrogate standards must be used which are representative of the general compound class more on this later. The accuracy of the quantitation is strongly influenced by the resolution of the peaks and the state of the baseline surrounding the peaks of interest. Well separated peaks can be easily and reproducibly integrated because other peaks do not influence the height and area. Peaks eluting on sloping or noisy baselines can be difficult to integrate reproducibly. Peak symmetry is also a performance characteristic for a good quantitative result. Peaks with symmetry values exceeding three cannot be properly or reproducibly integrated. Peak shoulders or tailing / fronting may be a result of two improperly separated compounds, and shouldered peaks are difficult to integrate reproducibly. Improve chromatography prior to quantitative analysis if possible. Figure 8: Chromatographic requirements for robust quantitative analysis in HPLC.

12 8. Peak Integration 11 Chromatographic peak integration defines an operation in which the area under the chromatographic peak is measured. The measurement is based on the integral technique of splitting the peak into a large number of rectangles, which are then summed to provide an estimate of the total area under the peak a measure of the cumulative absorbance versus time signal. Two events need to be defined in order for the data system to carry out the calculation, these are the peak start and the peak end these will be determined using threshold and peak width settings in the data system. The method of determination has to be reproducible for rugged integration. The baseline is then drawn between the peak start and end points created by the data system. Figure 9: Methods of integration and key integration events. Several other integration events exist to give ruggedness and flexibility to peak integration, however these are manufacturer dependant and outside the scope of this discussion. It is important to note that peak height measures the distance between the peak apex to the intersection with the integrated peak baseline.

13 8.1 Integration Events 12 Figure 10: Peak integration.

14 9. Peak Height or Peak Area 13 For most HPLC analyses, peak areas are used for quantitative calculations, although, in most cases, equivalent results may be achieved with peak height. Peak area is especially useful because HPLC peaks may be tailed. In this case, because peak heights may vary (although area will remain constant), area vales are more repeatable. There are however, instances when peak height calculations may be better. For trace analysis, when the peak of interest is very small, use peak height for calculations, this reduces the error sustained in small changes in peak start and end time variation. The figure shown below illustrates the fact that areas of a chromatographic peak will change if the flow rate changes. Be aware that poorly maintained pump systems will have an unstable flow rate resulting in a loss of peak area precision (reproducibility). For this reason, always perform routine maintenance on the pump seals, check valves and filters. Make certain that the pump has been primed and dissolved gasses removed. Figure 11: Quantitative analysis can be carried out using either peak height or peak area measurements. Both peak height and area measurements will be irreproducible if injection volume varies therefore it is important to also ensure the injection or autosampler system is also well maintained, paying particular attention to the needle and injection valve.

15 10. Principles of Quantitative Analysis 14 Although there are many different types of detector used for quantitative HPLC analysis, the quantitative premise remains constant. Each detector will produce a response that depends upon the AMOUNT of analyte to which it is responding. The magnitude of the response may be dependent on the analyte itself as well as the matrix from which it comes and therefore standards are usually employed to calibrate the instrument response. There are some general requirements that must be met before a quantitative analysis can be undertaken, and these include: The identity of the component to be analyzed should be known The best possible separation of the component should be achieved Standards of known purity should be available (otherwise accuracy may be compromised) Sample preparation and the quality of the separation (governed by the stationary phase) should be reproducible If internal standards are not used, then mobile phase flow rate and injection volume should be reproducible Figure 12: Primary methodologies for quantitative analysis. Of course, quantitative analysis may be possible without meeting all of the above conditions; however, in such cases lower accuracy or precision must be expected. The analytical approach (method) and mathematical model used to calculate the quantity of an analyte can vary and is of great importance.

16 11. Area %/ Height % (Normalization) 15 The Area% calculation procedure reports the area of each peak in the chromatogram as a percentage of the total area of all peaks. Area% does not require prior calibration and does not depend upon the amount of sample injected within the limits of the detector. No response factors are used. If all components respond equally in the detector and are eluted, then Area% provides a suitable approximation of the relative amounts of components. Figure 13: Area or height % quantitation. It is very important to note restrictions associated with this quantitative methodology which may reduce the accuracy or precision: The method assumes equal detector response for all analytes The method assumes that all components in the sample are seen in the chromatogram (i.e. they all elute from the column and produce a response in the detector) Peaks in the chromatogram due to analytical artefacts (solvents, carry-over etc.), may interfere with quantitation Area% is used routinely where qualitative results are of interest and to produce information used to create the calibration table required for other calibration procedures. The Height% calculation procedure reports the height of each peak in the run as a percentage of the total height of all peaks in the run.

17 12. External Standard Quantitation 16 The external standard (ESTD) quantitation procedure is the basic quantification procedure in which both calibration and unknown samples are analysed under the same conditions. The results (usually peak height or peak area measured using a data system) from the unknown sample are then related to those of a calibration sample, using a calibration curve, to calculate the amount in the unknown. The ESTD procedure uses absolute response factors. The response factor is normally calculated as amount / area of the analyte in the calibration sample. The response factors are obtained from a calibration and then stored. Response factors are normally viewed as a single point calibration curve, using the origin to determine the second point for the regression line this approach is often called Single Point Calibration. In subsequent sample analyses, component amounts are calculated by applying the response factor to the measured sample area, or by interpolating the result from the calibration curve as shown. i Figure 14: Principle of external standard calibration. One precaution that must be observed in this type of calculation is that the sample injection size must be reproducible from run to run, since there is no (internal) standard in the sample to correct

18 17 for variations in injection size or sample preparation. The method type also assumes a linear detector response and that samples do not contain a wide range of analyte concentrations. Example calculation: An injection containing benzene at a concentration of 2,000 µg/ml is made and results in a peak area of 100,000. The response factor for benzene: An injection of the sample with the unknown concentration of benzene has a peak area of 57,000. The amount of benzene present in the sample:

19 13. Calibration Curve 18 A calibration curve is a graphical representation of the amount and response data for a single analyte (compound) obtained from one or more calibration samples. The curve is usually constructed by injecting an aliquot of the calibration (standard) solution of known concentration and measuring the peak area obtained. Peak height is sometimes used but only in exceptional circumstances. Figure 15: Construction of a calibration curve for quantitative analysis in HPLC.

20 19 A line of best fit (regression line) is used to join the points of the curve obtained. When only one calibration sample is used (i.e. at a single concentration), the origin (X0:Y0) is used as a second point to enable a regression line to be drawn (you can t draw a line through a single point what would the slope be??). With multi-level calibration (using several calibration samples at different analyte concentrations), the origin may be included, excluded or forced depending upon the calibration model and application specifics. The line of best fit is usually given a correlation coefficient which is the square root of the regression coefficient and gives a measure of how well the data points fit a straight line. Of course, the instrument response may be exponential or second (or higher) order polynomial however these relationships are often more difficult to model and wherever possible a linear calibration relationship is preferred Statistical Information Figure 16: Statistical information of the nature of a regression line.

21 20 Figure 17: Lines of best fit. The intercept of the regression equation indicates systematic error a large positive or negative value may indicate an inherent error within the sample preparation or analysis The slope of the line indicates the analytical sensitivity. The regression coefficient is a statistical measure for goodness of fit to a straight line; calculated using the residuals (error) of each data point, an r value of +1 indicates a straight line with positive slope. Some typical r values are shown it is important to always plot data to check the fit. As can be seen from the examples r values can be misleading! Workers sometimes use an r 2 value which is statistically more rigorous.

22 14. External Standard Multi-Level Calibration 21 Multilevel calibration can be used when it is not sufficiently accurate to assume that a component shows a linear response or to confirm linearity of the calibration range. Each calibration level corresponds to a calibration sample with a particular concentration of components. Calibration samples should be prepared so that the concentration of each component varies across the range of concentrations expected in the unknown samples. In this way, it is possible to allow for a change in detector response with concentration and calculate response factors accordingly. Figure 18: Principle of external standard analysis with multi-level calibration.

23 Example calculation: 22 An injection containing benzene at a concentration of 2,000 µg/ml is made and results in a peak area of 100,000. The response factor for benzene: An injection of the sample with the unknown concentration of benzene has a peak area of 57,000. The amount of benzene present in the sample: This multilevel calibration curve has three levels and shows a linear fit through the origin. This method of linear fit through the origin is similar to the single level calibration method. The detector response to concentration is assumed to be linear. The difference between the two calibration types is that, with multi-level calibration, the slope of the detector response can be determined by a best fit through a number of points, one for each level, and the regression coefficients used to substantiate the assumption of linearity. Unknowns are determined in the same way as the single level calibration model the difference is now that the method may be used to determine analyte concentrations over a wider range as the detector response has been calibrated with greater rigor. Most data systems will allow the input of calculation variables to allow a final result to be automatically calculated and printed.

24 14.1. Calibration Curve Information 23 i Figure 19: Important Parameters in Multi-Level Calibration LOD (Limit of detection) The minimum amount of analyte that can be reliably detected. The limit of detection, expressed as the concentration, cl, or the quantity, ql, is derived from the smallest measure, xl, that can be detected with reasonable certainty for a given analytical procedure. The value of xl is given by the equation: Where: xbi - is the mean of the blank measures sbi is the standard deviation of the blank measures k is a numerical factor chosen according to the confidence level desired A sample that contains a complex matrix (e.g. environmental, biological sample) may show response from the matrix. To determine the response a matrix sample without the compounds of interest should be analysed under same condition. The so-called blank chromatogram is treated as a starting point for the determination of LoD. The LoD is often defined as a ratio of S/N or peak area measurement precision. Examples of defining criteria are S/N ratio > 3 - peak height is compared to the noise height of the blank chromatogram to define the signal to noise ratio. Many modern data systems are capable of automatically providing a very accurate signal to noise ratio. LOQ (Limit of quantitation) - Lowest concentration of an analyte in a defined matrix where positive identification and quantitative measurement can be achieved using a specified method. The term limit of quantitation is preferred to limit of determination to differentiate it from LOD. LOQ has been defined as 3 times the LOD (Keith, 1991) or as 50% above the lowest calibration level used to validate the method (US-EPA, 1986).

25 24 The LoQ is often defined as a ratio of S/N or peak area measurement precision and has much less stringent requirements than for limit of detection. Examples of defining criteria are S/N ratio > 20, or peak area precision better than 10%. The peak height is compared to the noise height of the blank chromatogram to define the signal to noise ratio. Many modern data systems are capable of automatically providing a very accurate signal to noise ratio. Linear range - Concentration range over which the intensity of the signal obtained is directly proportional to the concentration of the species producing the signal. The linear range of a chromatographic detector represents the range of concentrations or mass flows of a substance in the mobile phase at the detector over which the sensitivity of the detector is constant within a specified variation, usually ±5 percent. The linear range of a detector may be presented as the plot of peak area (height) against concentration or mass flow-rate of the test substance in the column effluent at the detector. This plot may be either linear or log/log. The upper limit of linearity is that concentration (mass flowrate) at which the deviation from an ideal linearity plot is greater than the specified percentage deviation (± x % window). Numerically, the linear range can be expressed as the ratio of the upper limit of linearity obtained from the linearity plot and the minimum detectability, both measured for the same substance. Figure 20: Linear and dynamic range of calibration curves. Slope the slope of the calibration line is often used to determine the sensitivity of the analytical method. Intercept the intercept indicates the degree of systematic error within the method and is the direct result of background response. Many workers often include the results of a blank analysis (i.e. where no analyte is added and x=0) as a point in the calibration curve from which the regression line and regression co-efficient are calculated.

26 External Standard Multi-Level Calibration Curve - Typical Calculation Figure 21: Multi-level calibration curve. Typical Calculation From the calibration curve, a regression analysis will yield an equation which describes the line of best fit through the data points, with the form: Where: y = the peak area m = the slope of the regression line c = the intercept of the regression line with the y-axis Dilution factors (D) and multipliers (M) may be used to calculate the final analyte concentration, if required, and are typically used to correct for known purity of the standard used, analyte dilutions etc.

27 26 Therefore, for a regression equation obtained from a multi-level calibration, such as that shown, the equation of the best fit line is: If a sample peak area of 327 units is obtained, the absolute amount of sample is calculated as follows (solve for x = interpolated amount): If the sample had been diluted from 10 ml to 25 ml during sample preparation then a dilution factor (D) should be used. This is calculated as follows: If a standard purity of 98.6% had previously been determined, then a multiplier (M) would be required. Therefore, the final amount of sample would be:

28 16. Internal Standard Analysis 27 The ISTD procedure eliminates the disadvantages of the ESTD method by adding a known amount of a component that serves as a normalizing factor. This component, the internal standard, is added to both calibration and unknown samples and compensates for losses during sample preparation or variability during the analytical determination. Figure 22: General quantitative principle of internal standard analysis. The compound used as an internal standard should be similar to the calibrated compound (analyte), chemically and in retention time, but it must be chromatographically distinguishable. If the ISTD procedure is used for calibrations with a non-linear characteristic, care must be taken that errors resulting from the calculation principle do not cause systematic error. In multi-level calibrations, the amount of the ISTD compound should be kept constant, i.e. the same for all levels. The internal standard is usually added at a concentration of approximately one third to one half of the expected MAXIMUM analyte concentration. This is especially important when using MS detectors to ensure the internal standard does not interfere with the ionisation of the analyte molecule. For internal standard analysis, the amount of the component of interest is related to the amount of the internal standard component by the ratio of the responses of the two peaks. This is normally achieved by plotting the response ratio against the concentration ratio as shown next.

29 Single level calibration: 28 Where: is = internal standard sc = specific compound of interest Where: is = internal standard sc = specific compound of interest IRF = internal response factor Prepare a sample containing 2,000 µg/ml of toluene (the internal standard) and 1,000 µg/ml benzene (the analyte). Then inject the sample. The resulting peak areas are 120,000 for toluene and 67,000 for benzene. The internal response factor for benzene is calculated as follows: Inject the sample containing 2,000 µg/ml of toluene and an unknown amount of benzene using the same chromatographic conditions. The resulting areas are 122,000 for toluene and 43,000 for benzene. The amount of benzene present in the sample can be calculated as follows: Internal standards are usually well characterised compounds which are not present in the sample and is added in a known (constant) concentration to standard and sample solutions (or matrices) usually at the beginning of the analytical process to compensate for losses and variability throughout the sample preparation and analytical processes.

30 Good internal standards: 29 elute near to, but are well resolved from, the analyte of interest are chemically and physically similar to the analyte are not present in the original sample mixture are unreactive towards any of the sample components are available in highly pure form are added in the concentration range of the expected MAXIMUM analyte concentration It is often fairly difficult to fulfil all of these requirements for HPLC analysis. Often for MS detection, the internal standard will be an isotopically labelled version of the analyte, which can be spectrally rather than chromatographically resolved (i.e. the labelled version has a different mass than that analyte). Care must be taken when using this approach to avoid ion-suppression effects, which can serious affect the reproducibility of the analysis.

31 17. Multi-Level Calibration Curve 30 Figure 23: Multi-level calibration curve. Remember that we are now dealing with a calibration curve built with RESPONSE RATIO and AMOUNT RATIO as shown. From the calibration curve, a regression analysis will yield an equation which describes the best fit of the line through the data points, with the form: Where: y = RESPONSE RATIO for the sample m = the slope of the regression line c = intercept of the regression line with the y-axis The final calculation of the amount of an unknown is carried out as follows: Therefore, for a regression equation obtained from a multi-level calibration, such as that shown, the equation of the best fit line is: If a sample peak area of 3,000 units and an internal standard peak of 2,800 units is obtained, the absolute amount of sample is calculated as follows: Solve for x (interpolated amount).

32 REMEMBER 31 Therefore, the equation of the regression line becomes Therefore the final amount, based on an internal standard mount of units being added to the sample solution would be: Multipliers (M) and dilution factors (D) may also be included in the final calculation of the amount of the sample, however, theses have been omitted here for clarity, but were included in the external multi-level calibration curve (page 15).

Quantitative work in HPLC

Quantitative work in HPLC Quantitative work in HPLC Dr. Shulamit Levin Medtechnica www.forumsci.co.il/hplc Dr. Shulamit Levin, Medtechnica 1 Quantitative work in HPLC Dr. Shulamit Levin Medtechnica Data Handling Analytical Chemistry

More information

Analytical Method Validation for Assay, Related substances & Dissolution. N A Y A N K S H A T R I 1 8 / 0 1 /

Analytical Method Validation for Assay, Related substances & Dissolution. N A Y A N K S H A T R I 1 8 / 0 1 / Analytical Method Validation for Assay, Related substances & Dissolution. N A Y A N K S H A T R I 1 8 / 0 1 / 2 0 1 3 Definitions The objective of validation of an analytical procedure is to demonstrate

More information

2008 USPC Official 12/1/07-4/30/08 General Chapters: <1225> VALIDATION OF C...Page 1 of 10

2008 USPC Official 12/1/07-4/30/08 General Chapters: <1225> VALIDATION OF C...Page 1 of 10 2008 USPC Official 12/1/07-4/30/08 General Chapters: VALIDATION OF C...Page 1 of 10 1225 VALIDATION OF COMPENDIAL PROCEDURES Test procedures for assessment of the quality levels of pharmaceutical

More information

Guidance for Industry

Guidance for Industry Guidance for Industry Q2B Validation of Analytical Procedures: Methodology November 1996 ICH Guidance for Industry Q2B Validation of Analytical Procedures: Methodology Additional copies are available from:

More information

Analytical Method Validation

Analytical Method Validation Analytical Method Validation A. Es-haghi Ph.D. Dept. of Physico chemistry vaccine and serum research institute a.eshaghi@rvsri.ir http://www.rvsri.ir/ Introduction Test procedures for assessment of the

More information

VALIDATION OF ANALYTICAL PROCEDURES: TEXT AND METHODOLOGY Q2(R1)

VALIDATION OF ANALYTICAL PROCEDURES: TEXT AND METHODOLOGY Q2(R1) INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE ICH HARMONISED TRIPARTITE GUIDELINE VALIDATION OF ANALYTICAL PROCEDURES: TEXT AND METHODOLOGY

More information

Step-by-Step Analytical Methods Validation and Protocol in the Quality System Compliance Industry

Step-by-Step Analytical Methods Validation and Protocol in the Quality System Compliance Industry Step-by-Step Analytical Methods Validation and Protocol in the Quality System Compliance Industry BY GHULAM A. SHABIR Introduction Methods Validation: Establishing documented evidence that provides a high

More information

Introduction to method validation

Introduction to method validation Introduction to method validation Introduction to method validation What is method validation? Method validation provides documented objective evidence that a method measures what it is intended to measure,

More information

ICH Topic Q 2 (R1) Validation of Analytical Procedures: Text and Methodology. Step 5

ICH Topic Q 2 (R1) Validation of Analytical Procedures: Text and Methodology. Step 5 European Medicines Agency June 1995 CPMP/ICH/381/95 ICH Topic Q 2 (R1) Validation of Analytical Procedures: Text and Methodology Step 5 NOTE FOR GUIDANCE ON VALIDATION OF ANALYTICAL PROCEDURES: TEXT AND

More information

GUIDELINES FOR THE VALIDATION OF ANALYTICAL METHODS FOR ACTIVE CONSTITUENT, AGRICULTURAL AND VETERINARY CHEMICAL PRODUCTS.

GUIDELINES FOR THE VALIDATION OF ANALYTICAL METHODS FOR ACTIVE CONSTITUENT, AGRICULTURAL AND VETERINARY CHEMICAL PRODUCTS. GUIDELINES FOR THE VALIDATION OF ANALYTICAL METHODS FOR ACTIVE CONSTITUENT, AGRICULTURAL AND VETERINARY CHEMICAL PRODUCTS October 2004 APVMA PO Box E240 KINGSTON 2604 AUSTRALIA http://www.apvma.gov.au

More information

Draft 30 April 2013 INTRODUCTION

Draft 30 April 2013 INTRODUCTION DRAFT GUIDANCE DOCUMENT ON SINGLE LABORATORY VALIDATION OF QUANTITATIVE ANALYTICAL METHODS IN SUPPORT OF PRE- AND POST- REGISTRATION DATA REQUIREMENTS FOR PLANT PROTECTION AND BIOCIDAL PRODUCTS INTRODUCTION

More information

Pesticide Analysis by Mass Spectrometry

Pesticide Analysis by Mass Spectrometry Pesticide Analysis by Mass Spectrometry Purpose: The purpose of this assignment is to introduce concepts of mass spectrometry (MS) as they pertain to the qualitative and quantitative analysis of organochlorine

More information

2013 Laboratory Conference: Unraveling the Mystery of Pharmaceutical Laboratory Science Mission Impossible Low Level Detection Challenges

2013 Laboratory Conference: Unraveling the Mystery of Pharmaceutical Laboratory Science Mission Impossible Low Level Detection Challenges 2013 Laboratory Conference: Unraveling the Mystery of Pharmaceutical Laboratory Science Mission Impossible Low Level Detection Challenges Jerry Dalfors JD Technologies Jdalfors@aol.com 888-884-7828 Limit

More information

Enhancing GCMS analysis of trace compounds using a new dynamic baseline compensation algorithm to reduce background interference

Enhancing GCMS analysis of trace compounds using a new dynamic baseline compensation algorithm to reduce background interference Enhancing GCMS analysis of trace compounds using a new dynamic baseline compensation algorithm to reduce background interference Abstract The advantages of mass spectrometry (MS) in combination with gas

More information

A Practical Approach to Validation of HPLC Methods Under Current Good Manufacturing Practices

A Practical Approach to Validation of HPLC Methods Under Current Good Manufacturing Practices A Practical Approach to Validation of HPLC Methods Under Current Good Manufacturing Practices Introduction Analytical methods validation is an important regulatory requirement in pharmaceutical analysis.

More information

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR THE ESTIMATION OF BENFOTIAMINE IN BULK AND DOSAGE FORM

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR THE ESTIMATION OF BENFOTIAMINE IN BULK AND DOSAGE FORM INTERNATIONAL JOURNAL OF PHARMACEUTICAL, CHEMICAL AND BIOLOGICAL SCIENCES Available online at www.ijpcbs.com Research Article DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR THE ESTIMATION OF BENFOTIAMINE

More information

1.1 This test method covers the qualitative and quantitative determination of the content of benzene and toluene in hydrocarbon wax.

1.1 This test method covers the qualitative and quantitative determination of the content of benzene and toluene in hydrocarbon wax. Standard Method for Analysis of Benzene and Toluene Content in Hydrocarbon Waxes by Headspace Gas Chromatography EWF METHOD 002/03 (Version 1 Reviewed 2015) 1 Scope 1.1 This test method covers the qualitative

More information

Interpretation of Experimental Data

Interpretation of Experimental Data Lab References When evaluating experimental data it is important to recognize what the data you are collecting is telling you, as well as the strengths and limitations of each method you are using. Additionally,

More information

Validation and Calibration. Definitions and Terminology

Validation and Calibration. Definitions and Terminology Validation and Calibration Definitions and Terminology ACCEPTANCE CRITERIA: The specifications and acceptance/rejection criteria, such as acceptable quality level and unacceptable quality level, with an

More information

Alignment and Preprocessing for Data Analysis

Alignment and Preprocessing for Data Analysis Alignment and Preprocessing for Data Analysis Preprocessing tools for chromatography Basics of alignment GC FID (D) data and issues PCA F Ratios GC MS (D) data and issues PCA F Ratios PARAFAC Piecewise

More information

Experiment 4 Analysis by Gas Chromatography

Experiment 4 Analysis by Gas Chromatography Experiment 4 Analysis by Gas Chromatography In this experiment we will study the method of gas chromatography. Gas chromatography (GC) is one of the most important analytical tools that the chemist has.

More information

HPLC Analysis of Acetaminophen Tablets with Waters Alliance and Agilent Supplies

HPLC Analysis of Acetaminophen Tablets with Waters Alliance and Agilent Supplies HPLC Analysis of Acetaminophen Tablets with Waters Alliance and Agilent Supplies Application Note Small Molecule Pharmaceuticals Authors Jignesh Shah, Tiantian Li, and Anil Sharma Agilent Technologies,

More information

Signal, Noise, and Detection Limits in Mass Spectrometry

Signal, Noise, and Detection Limits in Mass Spectrometry Signal, Noise, and Detection Limits in Mass Spectrometry Technical Note Chemical Analysis Group Authors Greg Wells, Harry Prest, and Charles William Russ IV, Agilent Technologies, Inc. 2850 Centerville

More information

Enhanced Diode Array Detector Sensitivity and Automated Peak Purity Control

Enhanced Diode Array Detector Sensitivity and Automated Peak Purity Control Enhanced Diode Array Detector Sensitivity and Automated Peak Purity Control Technical Note Introduction The most widely used detection technique for HPLC analysis is UV absorption. Over the decades, single

More information

ANALYTICAL METHODS INTERNATIONAL QUALITY SYSTEMS

ANALYTICAL METHODS INTERNATIONAL QUALITY SYSTEMS VALIDATION OF ANALYTICAL METHODS 1 GERT BEUVING INTERNATIONAL PHARMACEUTICAL OPERATIONS TASKS: - Internal auditing - Auditing of suppliers and contract manufacturers - Preparing for and guiding of external

More information

TARGETLYNX APPLICATION MANAGER

TARGETLYNX APPLICATION MANAGER TARGETLYNX APPLICATION MANAGER OVERVIEW INTRODUCTION Environmental, human health, legal, and financial implications of quantitative MS analyses has lead to regulatory requirements for confirmatory and

More information

Fundamentals of modern UV-visible spectroscopy. Presentation Materials

Fundamentals of modern UV-visible spectroscopy. Presentation Materials Fundamentals of modern UV-visible spectroscopy Presentation Materials The Electromagnetic Spectrum E = hν ν = c / λ 1 Electronic Transitions in Formaldehyde 2 Electronic Transitions and Spectra of Atoms

More information

Sample Analysis Design Step 2 Calibration/Standard Preparation Choice of calibration method dependent upon several factors:

Sample Analysis Design Step 2 Calibration/Standard Preparation Choice of calibration method dependent upon several factors: Step 2 Calibration/Standard Preparation Choice of calibration method dependent upon several factors: 1. potential matrix effects 2. number of samples 3. consistency of matrix across samples Step 2 Calibration/Standard

More information

PRINSIP FISIOLOGIS BERBAGAI MACAM ESAI HORMON

PRINSIP FISIOLOGIS BERBAGAI MACAM ESAI HORMON PRINSIP FISIOLOGIS BERBAGAI MACAM ESAI HORMON Kuliah 4 Rahmatina B. Herman Bagian Fisiologi Fakultas Kedokteran Universitas Andalas Hormones 1. Hormones are chemical messengers that enter the blood, which

More information

CHEM 142 Experiment: Quantitative Analysis of Blue Dye in Commercial Drinks Using Visible Spectroscopy

CHEM 142 Experiment: Quantitative Analysis of Blue Dye in Commercial Drinks Using Visible Spectroscopy CHEM 142 Experiment: Quantitative Analysis of Blue Dye in Commercial Drinks Using Visible Spectroscopy Introduction: Spectroscopy is a technique that uses the interaction of energy with a sample to perform

More information

Reversed Phase High Presssure Liquid Chromatograhphic Technique for Determination of Sodium Alginate from Oral Suspension

Reversed Phase High Presssure Liquid Chromatograhphic Technique for Determination of Sodium Alginate from Oral Suspension International Journal of PharmTech Research CODEN (USA): IJPRIF ISSN : 0974-4304 Vol.2, No.2, pp 1634-1638, April-June 2010 Reversed Phase High Presssure Liquid Chromatograhphic Technique for Determination

More information

Analysis of Riboflavin in a Vitamin Pill by Fluorescence Spectroscopy

Analysis of Riboflavin in a Vitamin Pill by Fluorescence Spectroscopy Analysis of Riboflavin in a Vitamin Pill by Fluorescence Spectroscopy Objectives In this lab, you will use fluorescence spectroscopy to determine the mass of riboflavin in a vitamin pill. Riboflavin fluorescence

More information

Signal to Noise Instrumental Excel Assignment

Signal to Noise Instrumental Excel Assignment Signal to Noise Instrumental Excel Assignment Instrumental methods, as all techniques involved in physical measurements, are limited by both the precision and accuracy. The precision and accuracy of a

More information

LIQUID CHROMATOGRAPHY HOW MUCH ASPIRIN, ACETAMINOPHEN, AND CAFFEINE ARE IN YOUR PAIN RELIEVER? USING HPLC TO QUANTITATE SUBSTANCES (Revised: 1-13-93)

LIQUID CHROMATOGRAPHY HOW MUCH ASPIRIN, ACETAMINOPHEN, AND CAFFEINE ARE IN YOUR PAIN RELIEVER? USING HPLC TO QUANTITATE SUBSTANCES (Revised: 1-13-93) INTRODUCTION HOW MUCH ASPIRIN, ACETAMINOPHEN, AND CAFFEINE ARE IN YOUR PAIN RELIEVER? USING HPLC TO QUANTITATE SUBSTANCES (Revised: 1-13-93) Headache, sore muscles, arthritis pain... How do you spell relief?

More information

Daniel M. Mueller, Katharina M. Rentsch Institut für Klinische Chemie, Universitätsspital Zürich, CH-8091 Zürich, Schweiz

Daniel M. Mueller, Katharina M. Rentsch Institut für Klinische Chemie, Universitätsspital Zürich, CH-8091 Zürich, Schweiz Toxichem Krimtech 211;78(Special Issue):324 Online extraction LC-MS n method for the detection of drugs in urine, serum and heparinized plasma Daniel M. Mueller, Katharina M. Rentsch Institut für Klinische

More information

Mass Spectrometry Signal Calibration for Protein Quantitation

Mass Spectrometry Signal Calibration for Protein Quantitation Cambridge Isotope Laboratories, Inc. www.isotope.com Proteomics Mass Spectrometry Signal Calibration for Protein Quantitation Michael J. MacCoss, PhD Associate Professor of Genome Sciences University of

More information

The Theory of HPLC. Gradient HPLC

The Theory of HPLC. Gradient HPLC The Theory of HPLC Gradient HPLC i Wherever you see this symbol, it is important to access the on-line course as there is interactive material that cannot be fully shown in this reference manual. Aims

More information

Applying Statistics Recommended by Regulatory Documents

Applying Statistics Recommended by Regulatory Documents Applying Statistics Recommended by Regulatory Documents Steven Walfish President, Statistical Outsourcing Services steven@statisticaloutsourcingservices.com 301-325 325-31293129 About the Speaker Mr. Steven

More information

TROUBLESHOOTING GUIDE HPLC

TROUBLESHOOTING GUIDE HPLC TROUBLESHOOTING GUIDE HPLC Before starting any troubleshooting, whether it is related to instruments or columns, it is essential that safe laboratory practices be observed. The chemical and physical properties

More information

A VALIDATED RP-HPLC METHOD FOR ESTIMATION OF REGORAFENIB IN BULK AND TABLET DOSAGE FORM

A VALIDATED RP-HPLC METHOD FOR ESTIMATION OF REGORAFENIB IN BULK AND TABLET DOSAGE FORM A VALIDATED RP-HPLC METHOD FOR ESTIMATION OF REGORAFENIB IN BULK AND TABLET DOSAGE FORM ABSTRACT A simple, selective, linear and accurate isocratic RP-HPLC method has been developed for the estimation

More information

Standard Test Method for Analysis of Hydrocarbon Waxes by Gas Chromatography EWF METHOD 001/03

Standard Test Method for Analysis of Hydrocarbon Waxes by Gas Chromatography EWF METHOD 001/03 1. Scope Standard Test Method for Analysis of Hydrocarbon Waxes by Gas Chromatography EWF METHOD 001/03 (Version 1 Reviewed 2015) 1. 1 This test method provides for the determination of the carbon number

More information

STANDARD OPERATING PROCEDURES

STANDARD OPERATING PROCEDURES PAGE: 1 of 33 CONTENTS 1.0 SCOPE AND APPLICATION 2.0 METHOD SUMMARY 3.0 SAMPLE PRESERVATION, CONTAINERS, HANDLING, AND STORAGE 4.0 INTERFERENCES AND POTENTIAL PROBLEMS 5.0 EQUIPMENT/APPARATUS 6.0 REAGENTS

More information

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs Spectroscopy Biogeochemical Methods OCN 633 Rebecca Briggs Definitions of Spectrometry Defined by the method used to prepare the sample 1. Optical spectrometry Elements are converted to gaseous atoms or

More information

Overview. Triple quadrupole (MS/MS) systems provide in comparison to single quadrupole (MS) systems: Introduction

Overview. Triple quadrupole (MS/MS) systems provide in comparison to single quadrupole (MS) systems: Introduction Advantages of Using Triple Quadrupole over Single Quadrupole Mass Spectrometry to Quantify and Identify the Presence of Pesticides in Water and Soil Samples André Schreiber AB SCIEX Concord, Ontario (Canada)

More information

The term chromatography applies to the separation of chemical constituents

The term chromatography applies to the separation of chemical constituents Chem 112: Gas Chromatography Page 103 Determination of Alcohols by Gas Chromatography John Schaumloffel, SUC-Oneonta Chemistry Department Introduction The term chromatography applies to the separation

More information

Analytical chemistry year 12

Analytical chemistry year 12 Analytical chemistry year 12 1) Consider the molecule on the right. a) How many sets of peaks are present in the 1 H NMR spectrum? 3 b) How many sets of peaks are present in the 13 C NMR spectrum? 4 c)

More information

Analysis of Testosterone in Serum using LC/Triple Quadrupole MS/MS

Analysis of Testosterone in Serum using LC/Triple Quadrupole MS/MS Analysis of Testosterone in Serum using LC/Triple Quadrupole MS/MS Application Note Authors M.P. George Agilent Technologies, Inc. Santa Clara, CA USA Andre Szczesniewski Agilent Technologies, Inc. Schaumburg,

More information

Sample Analysis Design Isotope Dilution

Sample Analysis Design Isotope Dilution Isotope Dilution Most accurate and precise calibration method available Requires analyte with two stable isotopes Monoisotopic elements cannot be determined via isotope dilution Spike natural sample with

More information

INTRODUCTION. The principles of which are to:

INTRODUCTION. The principles of which are to: Taking the Pain Out of Chromatographic Peak Integration Shaun Quinn, 1 Peter Sauter, 1 Andreas Brunner, 1 Shawn Anderson, 2 Fraser McLeod 1 1 Dionex Corporation, Germering, Germany; 2 Dionex Corporation,

More information

Analysis of Riboflavin in a Vitamin Pill by Fluorescence Spectroscopy**

Analysis of Riboflavin in a Vitamin Pill by Fluorescence Spectroscopy** Analysis of Riboflavin in a Vitamin Pill by Fluorescence Spectroscopy** Objectives In this lab, you will use fluorescence spectroscopy to determine the mass and percentage of riboflavin in a vitamin pill.

More information

A4, Empower3 Processing Tips and Tricks

A4, Empower3 Processing Tips and Tricks A4, Empower3 Processing Tips and Tricks Rune Buhl Frederiksen, Manager, Waters Educational Services 2012 Waters Corporation 1 Content Basic Chromatography Workflow Processing Workflow Integration Theory

More information

Background Information

Background Information 1 Gas Chromatography/Mass Spectroscopy (GC/MS/MS) Background Information Instructions for the Operation of the Varian CP-3800 Gas Chromatograph/ Varian Saturn 2200 GC/MS/MS See the Cary Eclipse Software

More information

The Determination of Low Levels of Benzene, Toluene, Ethylbenzene, Xylenes and Styrene in Olive Oil Using a Turbomatrix HS and a Clarus SQ 8 GC/MS

The Determination of Low Levels of Benzene, Toluene, Ethylbenzene, Xylenes and Styrene in Olive Oil Using a Turbomatrix HS and a Clarus SQ 8 GC/MS application Note Gas Chromatography/ Mass Spectrometry Author A. Tipler, Senior Scientist PerkinElmer, Inc. Shelton, CT 06484 USA The Determination of Low Levels of Benzene, Toluene, Ethylbenzene, Xylenes

More information

Uses of Derivative Spectroscopy

Uses of Derivative Spectroscopy Uses of Derivative Spectroscopy Application Note UV-Visible Spectroscopy Anthony J. Owen Derivative spectroscopy uses first or higher derivatives of absorbance with respect to wavelength for qualitative

More information

LC-MS/MS for Chromatographers

LC-MS/MS for Chromatographers LC-MS/MS for Chromatographers An introduction to the use of LC-MS/MS, with an emphasis on the analysis of drugs in biological matrices LC-MS/MS for Chromatographers An introduction to the use of LC-MS/MS,

More information

Determining total sugar content in maple syrup to meet FDA nutrition labeling requirements

Determining total sugar content in maple syrup to meet FDA nutrition labeling requirements Agilent Application Solution Determining total sugar content in maple syrup to meet FDA nutrition labeling requirements Application Note Food Safety Author Syed Salman Lateef Agilent Technologies, Inc

More information

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions.

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. Outcomes After completing this experiment, the student should be able to: 1. Prepare

More information

(3)

(3) 1. Organic compounds are often identified by using more than one analytical technique. Some of these techniques were used to identify the compounds in the following reactions. C 3 H 7 Br C 3 H 8 O C 3

More information

Evaluating System Suitability CE, GC, LC and A/D ChemStation Revisions: A.03.0x- A.08.0x

Evaluating System Suitability CE, GC, LC and A/D ChemStation Revisions: A.03.0x- A.08.0x CE, GC, LC and A/D ChemStation Revisions: A.03.0x- A.08.0x This document is believed to be accurate and up-to-date. However, Agilent Technologies, Inc. cannot assume responsibility for the use of this

More information

XLR-11. [1-(5-fluoropentyl)-1H-indol-3-yl](2,2,3,3- tetramethylcyclopropyl)methanone. 5-Fluoro-UR-144. DEA Reference Material Collection.

XLR-11. [1-(5-fluoropentyl)-1H-indol-3-yl](2,2,3,3- tetramethylcyclopropyl)methanone. 5-Fluoro-UR-144. DEA Reference Material Collection. 1. GENERAL INFORMATION IUPAC Name: CAS #: 1364933-54-9 [1-(5-fluoropentyl)-1H-indol-3-yl](2,2,3,3- tetramethylcyclopropyl)methanone Synonyms: Source: Appearance: 5-Fluoro-UR-144 DEA Reference Material

More information

Enhancement of Linearity and Response in Charged Aerosol Detection

Enhancement of Linearity and Response in Charged Aerosol Detection Enhancement of Linearity and Response in Charged Aerosol Detection Christopher Crafts, Marc Plante, Bruce Bailey, Ian Acworth, Thermo Fisher Scientific, Chelmsford, MA, USA Overview Purpose: This work

More information

A commitment to quality and continuous improvement

A commitment to quality and continuous improvement Guidance for the Validation of Analytical Methodology and Calibration of Equipment used for Testing of Illicit Drugs in Seized Materials and Biological Specimens A commitment to quality and continuous

More information

Analytical Test Method Validation Report Template

Analytical Test Method Validation Report Template Analytical Test Method Validation Report Template 1. Purpose The purpose of this Validation Summary Report is to summarize the finding of the validation of test method Determination of, following Validation

More information

New Dynamic MRM Mode Improves Data Quality and Triple Quad Quantification in Complex Analyses

New Dynamic MRM Mode Improves Data Quality and Triple Quad Quantification in Complex Analyses New Dynamic MRM Mode Improves Data Quality and Triple Quad Quantification in Complex Analyses Technical Overview Authors Abstract Peter Stone, Thomas Glauner, Frank Kuhlmann, Tim Schlabach and Ken Miller

More information

AMD Analysis & Technology AG

AMD Analysis & Technology AG AMD Analysis & Technology AG Application Note 120419 Author: Karl-Heinz Maurer APCI-MS Trace Analysis of volatile organic compounds in ambient air A) Introduction Trace analysis of volatile organic compounds

More information

Analysis of residual moisture in a lyophilized pharmaceutical product by near-infrared spectroscopy

Analysis of residual moisture in a lyophilized pharmaceutical product by near-infrared spectroscopy /1 e Branch Pharmaceutical Keywords Near-infrared spectroscopy, lyophilized pharmaceuticals, water determination, Karl Fischer titration, loss on drying (LOD) Summary This Application Bulletin describes

More information

Performance and advantages of qnmr measurements

Performance and advantages of qnmr measurements Return to Web Version This is the first of a series of articles related to the launch of new organic CRMs certified by quantitative NMR under double accreditation. In this issue, we focus on CRMs intended

More information

Millennium/Empower Advance Training for Teva. Dr. Shulamit Levin Reviewing Data

Millennium/Empower Advance Training for Teva. Dr. Shulamit Levin Reviewing Data Millennium/Empower Advance Training for Teva Dr. Shulamit Levin levins@medtechnica.co.il Reviewing Data 1 Review Multiple Channels The list of channels is in the 2D channels view 2 The results of the integration

More information

Interpretation of Organic Data. Roy-Keith Smith, PhD January, 2000

Interpretation of Organic Data. Roy-Keith Smith, PhD January, 2000 Roy-Keith Smith, PhD January, 2000 Page ii Figures Tables Introduction/Preface 1. Separation and Sample Preparation Analyte isolation and concentration Resolution Matrix interferences 2. Detection 3. Compound

More information

Gas Chromatography. Let s begin with an example problem: SPME head space analysis of pesticides in tea and follow-up analysis by high speed GC.

Gas Chromatography. Let s begin with an example problem: SPME head space analysis of pesticides in tea and follow-up analysis by high speed GC. Gas Chromatography Let s begin with an example problem: SPME head space analysis of pesticides in tea and follow-up analysis by high speed GC. Samples in 10mL sealed glass vials were placed in the MPS-2

More information

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law Purpose To become familiar with using a spectrophotometer and gain an understanding of Beer s law and it s relationship to solution concentration. Introduction Scientists use many methods to determine

More information

VISIBLE SPECTROSCOPY

VISIBLE SPECTROSCOPY VISIBLE SPECTROSCOPY Visible spectroscopy is the study of the interaction of radiation from the visible part (λ = 380-720 nm) of the electromagnetic spectrum with a chemical species. Quantifying the interaction

More information

Highly Selective Analysis of Steroid Biomarkers using SelexION Ion Mobility Technology

Highly Selective Analysis of Steroid Biomarkers using SelexION Ion Mobility Technology Highly Selective Analysis of Steroid Biomarkers using SelexION Ion Mobility Technology Hua-Fen Liu, Witold Woroniecki, Doina Caraiman, and Yves LeBlanc AB SCIEX, Foster City, USA One of the most challenging

More information

GC METHODS FOR QUANTITATIVE DETERMINATION OF BENZENE IN GASOLINE

GC METHODS FOR QUANTITATIVE DETERMINATION OF BENZENE IN GASOLINE ACTA CHROMATOGRAPHICA, NO. 13, 2003 GC METHODS FOR QUANTITATIVE DETERMINATION OF BENZENE IN GASOLINE A. Pavlova and R. Ivanova Refining and Petrochemistry Institute, Analytical Department, Lukoil-Neftochim-Bourgas

More information

Determination of Acrylamide in Food Simulants

Determination of Acrylamide in Food Simulants Determination of Acrylamide in Food Simulants WARNING: Acrylamide monomer is toxic and readily absorbed through the skin. The monomer should be handled in a fume cupboard using gloves. 1 SCOPE This method

More information

Using a Spectrophotometer

Using a Spectrophotometer Introduction: Spectrophotometry Using a Spectrophotometer Many kinds of molecules interact with or absorb specific types of radiant energy in a predictable fashion. For example, when while light illuminates

More information

Chemistry 321, Experiment 8: Quantitation of caffeine from a beverage using gas chromatography

Chemistry 321, Experiment 8: Quantitation of caffeine from a beverage using gas chromatography Chemistry 321, Experiment 8: Quantitation of caffeine from a beverage using gas chromatography INTRODUCTION The analysis of soft drinks for caffeine was able to be performed using UV-Vis. The complex sample

More information

Spectrophotometry. Theory

Spectrophotometry. Theory is any technique that uses light to measure chemical concentrations. Theory When a sample absorbs electromagnetic radiation it undergoes a change in energy. The interaction happens between the sample and

More information

Detailed simulation of mass spectra for quadrupole mass spectrometer systems

Detailed simulation of mass spectra for quadrupole mass spectrometer systems Detailed simulation of mass spectra for quadrupole mass spectrometer systems J. R. Gibson, a) S. Taylor, and J. H. Leck Department of Electrical Engineering and Electronics, The University of Liverpool,

More information

AP Physics 1 and 2 Lab Investigations

AP Physics 1 and 2 Lab Investigations AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks

More information

Appendix 5 Overview of requirements in English

Appendix 5 Overview of requirements in English Appendix 5 Overview of requirements in English This document is a translation of Appendix 4 (Bilag 4) section 2. This translation is meant as a service for the bidder and in case of any differences between

More information

Application Note. Determination of Nitrite and Nitrate in Fruit Juices by UV Detection. Summary. Introduction. Experimental Sample Preparation

Application Note. Determination of Nitrite and Nitrate in Fruit Juices by UV Detection. Summary. Introduction. Experimental Sample Preparation Application Note Determination of Nitrite and Nitrate in Fruit Juices by UV Detection Category Food Matrix Fruit Juice Method HPLC Keywords Ion pair chromatography, fruit juice, inorganic anions AZURA

More information

[Research article] RP-HPLC Assay Method Validation for the estimation of new Antiretroviral drug Lamivudine in Bulk and Tablet dosage form

[Research article] RP-HPLC Assay Method Validation for the estimation of new Antiretroviral drug Lamivudine in Bulk and Tablet dosage form 12 IJPAR Volume 1 Issue 1 Dec_ 2012 Available Online at: www.ijpar.com [Research article] RP-HPLC Assay Method Validation for the estimation of new Antiretroviral drug in Bulk and Tablet dosage form *

More information

Austin Peay State University Department of Chemistry CHEM The Use of the Spectrophotometer and Beer's Law

Austin Peay State University Department of Chemistry CHEM The Use of the Spectrophotometer and Beer's Law Caution Potassium permanganate solution is a skin irritant and may stain skin and clothing. Purpose To become familiar with using a spectrophotometer and gain an understanding of Beer s law and its relationship

More information

Strategies for Developing Optimal Synchronous SIM-Scan Acquisition Methods AutoSIM/Scan Setup and Rapid SIM. Technical Overview.

Strategies for Developing Optimal Synchronous SIM-Scan Acquisition Methods AutoSIM/Scan Setup and Rapid SIM. Technical Overview. Strategies for Developing Optimal Synchronous SIM-Scan Acquisition Methods AutoSIM/Scan Setup and Rapid SIM Technical Overview Introduction The 5975A and B series mass selective detectors (MSDs) provide

More information

INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND BIO-SCIENCE

INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND BIO-SCIENCE Rajgor VM,, 2014; Volume 3(3): 188-197 INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND BIO-SCIENCE ANALYTICAL METHOD DEVELOPEMENT AND VALIDATION FOR THE SIMULTANEOUS ESTIMATION OF MEMANTINE HCL AND

More information

Size Exclusion Chromatography (SEC) Separations Module

Size Exclusion Chromatography (SEC) Separations Module Size Exclusion Chromatography (SEC) Separations Module Goal: This module is designed to provide theory and practical use of size exclusion chromatography (SEC) for separation of proteins. In-Class Questions:

More information

EnviroLab Forms Production Quick Reference Guide

EnviroLab Forms Production Quick Reference Guide EnviroLab Forms Production Quick Reference Guide This quick reference guide describes the Production Mode tasks assigned to the roles of Manager, Supervisor, Technician, and QAQC. Contents Production Mode

More information

Development of validated RP- HPLC method for estimation of rivaroxaban in pharmaceutical formulation

Development of validated RP- HPLC method for estimation of rivaroxaban in pharmaceutical formulation IJPAR Vol.4 Issue 4 Oct Dec - 2015 Journal Home page: ISSN: 2320-2831 Research Article Open Access Development of validated RP- HPLC method for estimation of rivaroxaban in pharmaceutical formulation V.

More information

Whiskey Analysis with Gas Chromatography

Whiskey Analysis with Gas Chromatography UC Berkeley College of Chemistry Chemistry 105 Instrumental Methods in Analytical Chemistry Whiskey Analysis with Gas Chromatography Author: Jonathan Melville Graduate Student Instructor: Daniel Mortensen

More information

H A + B u x. Contributions to Band Broadening as described in Van Deemter Equation

H A + B u x. Contributions to Band Broadening as described in Van Deemter Equation Chem 2001 Summer 2004 Why Do Bands Spread? A band of solute invariably spreads as it travels through the column and emerges at the detector with a standard deviation, σ. Plate height (H) is proportional

More information

Practice Problem Set 7 Applications of UV-Vis Absorption Spectroscopy

Practice Problem Set 7 Applications of UV-Vis Absorption Spectroscopy Practice Problem Set 7 Applications of UV-Vis Absorption Spectroscopy 1. π π Transition is the most concenient and useful transition in UV-Vis Spectroscopy. Why? In σ σ* transitions The high energy required

More information

Intelligent use of Relative Response Factors in Gas Chromatography-Flame Ionisation Detection

Intelligent use of Relative Response Factors in Gas Chromatography-Flame Ionisation Detection 52 May/June 2012 Intelligent use of Relative Response Factors in Gas Chromatography-Flame Ionisation Detection by Karen Rome and Allyson McIntyre, AstraZeneca, Macclesfield, SK10 2NA, UK Quantitative analysis

More information

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number 1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression

More information

Content Sheet 7-1: Overview of Quality Control for Quantitative Tests

Content Sheet 7-1: Overview of Quality Control for Quantitative Tests Content Sheet 7-1: Overview of Quality Control for Quantitative Tests Role in quality management system Quality Control (QC) is a component of process control, and is a major element of the quality management

More information

DYNAMIC LIGHT SCATTERING COMMON TERMS DEFINED

DYNAMIC LIGHT SCATTERING COMMON TERMS DEFINED DYNAMIC LIGHT SCATTERING COMMON TERMS DEFINED Abstract: There are a number of sources of information that give a mathematical description of the terms used in light scattering. However, these will not

More information

Ecology Quality Assurance Glossary

Ecology Quality Assurance Glossary Ecology Quality Assurance Glossary Edited by William Kammin, Ecology Quality Assurance Officer Accreditation - A certification process for laboratories, designed to evaluate and document a lab s ability

More information

DETERMINING CAFFEINE CONCENTRATIONS IN SOFT DRINKS (Revised: )

DETERMINING CAFFEINE CONCENTRATIONS IN SOFT DRINKS (Revised: ) INTRODUCTION DETERMINING CAFFEINE CONCENTRATIONS IN SOFT DRINKS (Revised: 5-18-93) Chromatography is a separation technique that was first used by the Russian botanist Mikhal Tsvet. Around the turn of

More information

STRUCTURE OF CHEMICAL COMPOUNDS, METHODS OF ANALYSIS AND PROCESS CONTROL

STRUCTURE OF CHEMICAL COMPOUNDS, METHODS OF ANALYSIS AND PROCESS CONTROL Pharmaceutical Chemistry Journal Vol. 38, No. 4, 004 STRUCTURE OF CHEMICAL COMPOUNDS, METHODS OF ANALYSIS AND PROCESS CONTROL VALIDATION OF HPLC TECHNIQUES FOR PHARMACEUTICAL ANALYSIS N. A. Épshtein 1

More information

QUANTITATIVE INFRARED SPECTROSCOPY. Willard et. al. Instrumental Methods of Analysis, 7th edition, Wadsworth Publishing Co., Belmont, CA 1988, Ch 11.

QUANTITATIVE INFRARED SPECTROSCOPY. Willard et. al. Instrumental Methods of Analysis, 7th edition, Wadsworth Publishing Co., Belmont, CA 1988, Ch 11. QUANTITATIVE INFRARED SPECTROSCOPY Objective: The objectives of this experiment are: (1) to learn proper sample handling procedures for acquiring infrared spectra. (2) to determine the percentage composition

More information