# Some Optimization Fundamentals

Save this PDF as:

Size: px
Start display at page:

Download "Some Optimization Fundamentals"

## Transcription

1 ISyE 3133B Engineering Optimization Some Optimization Fundamentals Shabbir Ahmed Homepage:

2 Basic Building Blocks min or max s.t. objective as a function of the decision variables constraints on the decision variables The functions defining the objective 1 and constraints also involve parameters or data, which need to be quantified before the model can be solved. Variable-type or Domain constraints specify the type of values the decision variables can take. Main constraints specify limits on and interactions between the decision variables. 1 We will be primarily concerned with optimization problems involving a single objective function.

3 The Generic Optimization Model min or max f(x 1, x 2,..., x n ) s.t. g i (x 1, x 2,..., x n ) = b i i = 1,..., m x j is continuous or discrete j = 1,..., n. The tractability of the above optimization model largely depends on the structure of the functions f, g 1,..., g m that define the objective and the constraints.

4 X = The Generic Optimization Model Let x = (x 1, x 2,..., x n ) be the n 1 vector of decision variables, and X R n be the set of feasible solutions defined by the constraints, i.e., { x R n : g i (x 1, x 2,..., x n ) Then a generic optimization model is = b i i = 1,..., m } x j is continuous or discrete j = 1,..., n. min f(x) s.t. x X. Note: max f(x) min f(x), therefore it is sufficient to study the problem in minimization form.

5 Linear Programs A function f(x 1, x 2,..., x n ) is linear if it is a constant-weighted sum of the variables, i.e., n f(x 1, x 2,..., x n ) = a j x j j=1 for some constant (fixed) weights a 1, a 2,..., a n. If all the functions f, g 1,..., g m defining the objective and constraints of an optimization are linear, and all the decision variables are allowed to take continuous (fractional or whole) values, the optimization problem is a linear program.

6 Classification Functions Variables Type All linear All continuous Linear Program (LP) One or more nonlinear All continuous Non-linear Program (NLP) All linear All discrete Pure Integer Linear Program All linear Discrete & continuous Mixed Integer Linear Program (MILP) One or more nonlinear All discrete Pure Integer Non-linear Program One or more nonlinear Discrete & continuous Mixed Integer Non-linear Program (MINLP)

7 Graphing Optimization Models An example LP:

8 Graphing Optimization Models An example LP:

9 Graphing Optimization Models An example LP:

10 Graphing Optimization Models An example LP:

11 Graphing Optimization Models An example LP:

12 Graphing Optimization Models An example LP:

13 Graphing Optimization Models An example LP:

14 Graphing Optimization Models An example LP:

15 Graphing Optimization Models An example LP:

16 Graphing Optimization Models An example LP:

17 Graphing Optimization Models An example NLP:

18 Graphing Optimization Models An example NLP:

19 Visualizing Nonlinear Objectives Contour Maps

20 Graphing Optimization Models An example NLP:

21 Graphing Optimization Models An example NLP:

22 Graphing Optimization Models An example NLP:

23 Graphing Optimization Models An example IP:

24 Graphing Optimization Models An example IP:

25 Graphing Optimization Models An example IP:

26 Possible Outcomes Infeasible Unbounded

27 Possible Outcomes Unique Optimal solution Multiple Optimal solutions

28 Possible Outcomes No Optimal solution No Optimal solution ( ] [ ]

29 When is an optimal solution guaranteed to exist? We need to discuss some properties of functions and sets. A set is closed if it includes all its boundary points. Closed Not Closed

30 When is an optimal solution guaranteed to exist? A set is bounded if it can be enclosed in a large enough sphere. Bounded Not Bounded

31 When is an optimal solution guaranteed to exist? A function is continuous if it does not have any jumps. Continuous Not continuous Any polynomial function (e.g. linear)

32 Conditions guaranteeing the existence of an optimal solution 1. The set of feasible solutions is non-empty. 2. The set of feasible solutions is bounded. 3. The set of feasible solutions is closed. 4. The objective function is continuous. The above conditions are only sufficient but not necessary, i.e., an optimization problem not satisfying one or more of the above may still have an optimal solution.

33 Local and Global Optimal Solutions A solution x i is a feasible solution of problem P if x i X. A solution x i is a global optimal solution of problem P if x i is feasible and f(x i ) f(x) for all x X. A solution x i is a local optimal solution of problem P if x i is feasible and f(x i ) f(x) for all x X within a small positive distance from x i (neighborhood of x i ). For a given positive number ɛ > 0, the ɛ-neighborhood of x i is N ɛ (x i ) = {x x x i ɛ}.

34 Local and Global Optimal Solutions (contd.) Thus, a solution x i is a local optimal solution of problem P if x i is feasible and if there is an ɛ > 0 such that f(x i ) f(x) for all x X N ɛ (x i ). Any global optimal solution is also a local optimal solution, but not vice versa.

35 Examples [ ] [ ] [ ] = Local Optimal solution = Global Optimal solution

36 Example = Local Optimal solution = Global Optimal solution

37 Convexity The line segment between the two points x 1 and x 2 consists of all points of the form x 1 + λ(x 2 x 1 ) or (1 λ)x 1 + λx 2 with 0 λ 1. A set X is convex if for any x 1, x 2 X we have that (1 λ)x 1 +λx 2 X for 0 λ 1. A function f is convex if for any two points x 1 and x 2, we have f((1 λ)x 1 + λx 2 ) (1 λ)f(x 1 ) + λf(x 2 ) for 0 λ 1. An optimization problem P where f is a convex function and X is a convex set is called a convex program. E.g. A linear program is a convex program.

38 Convex Programs For a convex program, every local optimal solution is also globally optimal. Most often, finding a local optimal solution is easy but finding a global optimal solution is hard. Convex programs are easier than non-convex ones.

39 Bounds Let v = min{f(x) : x X}. Here v = + if the problem is infeasible, and v = if it is unbounded. Often it is easier to obtain a lower bound on v. Such a bound helps provide a quality certificate for a given feasible solution. Let ˆx X be a feasible solution and let LB be a known lower bound on v then LB v f(ˆx) (Note that a feasible solution provides an upper bound on v ) Then the Optimality Gap of the solution ˆx is f(ˆx) v f(ˆx) LB i.e. we can get an estimate of the optimality gap

40 Relaxations Given an optimization problem (P ) : v = min{f(x) : x X} the problem (R) : v R = min{g(x) : x Y } is a Relaxation of (P) if g(x) f(x) x X and/or X Y Clearly v R v, i.e. relaxations give lower bounds Relaxations are often easier to solve Typically relaxations are obtained by dropping constraints

### Discrete Optimization

Discrete Optimization [Chen, Batson, Dang: Applied integer Programming] Chapter 3 and 4.1-4.3 by Johan Högdahl and Victoria Svedberg Seminar 2, 2015-03-31 Todays presentation Chapter 3 Transforms using

More information

### 2.3 Convex Constrained Optimization Problems

42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

More information

### Introduction and message of the book

1 Introduction and message of the book 1.1 Why polynomial optimization? Consider the global optimization problem: P : for some feasible set f := inf x { f(x) : x K } (1.1) K := { x R n : g j (x) 0, j =

More information

### 24. The Branch and Bound Method

24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no

More information

### Lecture 11: 0-1 Quadratic Program and Lower Bounds

Lecture : - Quadratic Program and Lower Bounds (3 units) Outline Problem formulations Reformulation: Linearization & continuous relaxation Branch & Bound Method framework Simple bounds, LP bound and semidefinite

More information

### Optimization Modeling for Mining Engineers

Optimization Modeling for Mining Engineers Alexandra M. Newman Division of Economics and Business Slide 1 Colorado School of Mines Seminar Outline Linear Programming Integer Linear Programming Slide 2

More information

### Optimization in R n Introduction

Optimization in R n Introduction Rudi Pendavingh Eindhoven Technical University Optimization in R n, lecture Rudi Pendavingh (TUE) Optimization in R n Introduction ORN / 4 Some optimization problems designing

More information

### No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

More information

### Approximation Algorithms: LP Relaxation, Rounding, and Randomized Rounding Techniques. My T. Thai

Approximation Algorithms: LP Relaxation, Rounding, and Randomized Rounding Techniques My T. Thai 1 Overview An overview of LP relaxation and rounding method is as follows: 1. Formulate an optimization

More information

### Solving Integer Programming with Branch-and-Bound Technique

Solving Integer Programming with Branch-and-Bound Technique This is the divide and conquer method. We divide a large problem into a few smaller ones. (This is the branch part.) The conquering part is done

More information

### Geometry of Linear Programming

Chapter 2 Geometry of Linear Programming The intent of this chapter is to provide a geometric interpretation of linear programming problems. To conceive fundamental concepts and validity of different algorithms

More information

### Tutorial: Operations Research in Constraint Programming

Tutorial: Operations Research in Constraint Programming John Hooker Carnegie Mellon University May 2009 Revised June 2009 May 2009 Slide 1 Motivation Benders decomposition allows us to apply CP and OR

More information

### Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725

Duality in General Programs Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: duality in linear programs Given c R n, A R m n, b R m, G R r n, h R r : min x R n c T x max u R m, v R r b T

More information

### LAGRANGIAN RELAXATION TECHNIQUES FOR LARGE SCALE OPTIMIZATION

LAGRANGIAN RELAXATION TECHNIQUES FOR LARGE SCALE OPTIMIZATION Kartik Sivaramakrishnan Department of Mathematics NC State University kksivara@ncsu.edu http://www4.ncsu.edu/ kksivara SIAM/MGSA Brown Bag

More information

### Definition of a Linear Program

Definition of a Linear Program Definition: A function f(x 1, x,..., x n ) of x 1, x,..., x n is a linear function if and only if for some set of constants c 1, c,..., c n, f(x 1, x,..., x n ) = c 1 x 1

More information

### SBB: A New Solver for Mixed Integer Nonlinear Programming

SBB: A New Solver for Mixed Integer Nonlinear Programming Michael R. Bussieck GAMS Development Corp. Arne S. Drud ARKI Consulting & Development A/S OR2001, Duisburg Overview! SBB = Simple Branch & Bound!

More information

### Some representability and duality results for convex mixed-integer programs.

Some representability and duality results for convex mixed-integer programs. Santanu S. Dey Joint work with Diego Morán and Juan Pablo Vielma December 17, 2012. Introduction About Motivation Mixed integer

More information

### 5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition

More information

### Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method

Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming

More information

### Stanford University CS261: Optimization Handout 6 Luca Trevisan January 20, In which we introduce the theory of duality in linear programming.

Stanford University CS261: Optimization Handout 6 Luca Trevisan January 20, 2011 Lecture 6 In which we introduce the theory of duality in linear programming 1 The Dual of Linear Program Suppose that we

More information

### The Simplex Method. yyye

Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #05 1 The Simplex Method Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/

More information

### Numerisches Rechnen. (für Informatiker) M. Grepl J. Berger & J.T. Frings. Institut für Geometrie und Praktische Mathematik RWTH Aachen

(für Informatiker) M. Grepl J. Berger & J.T. Frings Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2010/11 Problem Statement Unconstrained Optimality Conditions Constrained

More information

### Introduction to Support Vector Machines. Colin Campbell, Bristol University

Introduction to Support Vector Machines Colin Campbell, Bristol University 1 Outline of talk. Part 1. An Introduction to SVMs 1.1. SVMs for binary classification. 1.2. Soft margins and multi-class classification.

More information

### Proximal mapping via network optimization

L. Vandenberghe EE236C (Spring 23-4) Proximal mapping via network optimization minimum cut and maximum flow problems parametric minimum cut problem application to proximal mapping Introduction this lecture:

More information

### 1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some

Section 3.1: First Derivative Test Definition. Let f be a function with domain D. 1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some open interval containing c. The number

More information

### Chapter 13: Binary and Mixed-Integer Programming

Chapter 3: Binary and Mixed-Integer Programming The general branch and bound approach described in the previous chapter can be customized for special situations. This chapter addresses two special situations:

More information

### Dantzig-Wolfe bound and Dantzig-Wolfe cookbook

Dantzig-Wolfe bound and Dantzig-Wolfe cookbook thst@man.dtu.dk DTU-Management Technical University of Denmark 1 Outline LP strength of the Dantzig-Wolfe The exercise from last week... The Dantzig-Wolfe

More information

### is redundant. If you satisfy the other four constraints, then you automatically satisfy x 1 0. (In fact, if the first two constraints hold, then x 1 m

Linear Programming Notes II: Graphical Solutions 1 Graphing Linear Inequalities in the Plane You can solve linear programming problems involving just two variables by drawing a picture. The method works

More information

### 3y 1 + 5y 2. y 1 + y 2 20 y 1 0, y 2 0.

1 Linear Programming A linear programming problem is the problem of maximizing (or minimizing) a linear function subject to linear constraints. The constraints may be equalities or inequalities. 1.1 Example

More information

### Integer programming solution methods - introduction

Integer programming solution methods - introduction J E Beasley Capital budgeting There are four possible projects, which each run for 3 years and have the following characteristics. Capital requirements

More information

### Convex Programming Tools for Disjunctive Programs

Convex Programming Tools for Disjunctive Programs João Soares, Departamento de Matemática, Universidade de Coimbra, Portugal Abstract A Disjunctive Program (DP) is a mathematical program whose feasible

More information

### Lecture 1: Linear Programming Models. Readings: Chapter 1; Chapter 2, Sections 1&2

Lecture 1: Linear Programming Models Readings: Chapter 1; Chapter 2, Sections 1&2 1 Optimization Problems Managers, planners, scientists, etc., are repeatedly faced with complex and dynamic systems which

More information

### Lecture 3: Linear Programming Relaxations and Rounding

Lecture 3: Linear Programming Relaxations and Rounding 1 Approximation Algorithms and Linear Relaxations For the time being, suppose we have a minimization problem. Many times, the problem at hand can

More information

### Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.

Linear Programming Widget Factory Example Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory:, Vertices, Existence of Solutions. Equivalent formulations.

More information

### International Doctoral School Algorithmic Decision Theory: MCDA and MOO

International Doctoral School Algorithmic Decision Theory: MCDA and MOO Lecture 2: Multiobjective Linear Programming Department of Engineering Science, The University of Auckland, New Zealand Laboratoire

More information

### A NEW LOOK AT CONVEX ANALYSIS AND OPTIMIZATION

1 A NEW LOOK AT CONVEX ANALYSIS AND OPTIMIZATION Dimitri Bertsekas M.I.T. FEBRUARY 2003 2 OUTLINE Convexity issues in optimization Historical remarks Our treatment of the subject Three unifying lines of

More information

### Mathematics Notes for Class 12 chapter 12. Linear Programming

1 P a g e Mathematics Notes for Class 12 chapter 12. Linear Programming Linear Programming It is an important optimization (maximization or minimization) technique used in decision making is business and

More information

### Mathematical finance and linear programming (optimization)

Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may

More information

### Arrangements And Duality

Arrangements And Duality 3.1 Introduction 3 Point configurations are tbe most basic structure we study in computational geometry. But what about configurations of more complicated shapes? For example,

More information

### 1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.

Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S

More information

### Establishing a mathematical model (Ch. 2): 1. Define the problem, gathering data;

Establishing a mathematical model (Ch. ): 1. Define the problem, gathering data;. Formulate the model; 3. Derive solutions;. Test the solution; 5. Apply. Linear Programming: Introduction (Ch. 3). An example

More information

### SOLVING LINEAR SYSTEM OF INEQUALITIES WITH APPLICATION TO LINEAR PROGRAMS

SOLVING LINEAR SYSTEM OF INEQUALITIES WITH APPLICATION TO LINEAR PROGRAMS Hossein Arsham, University of Baltimore, (410) 837-5268, harsham@ubalt.edu Veena Adlakha, University of Baltimore, (410) 837-4969,

More information

### Branch and Cut for TSP

Branch and Cut for TSP jla,jc@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark 1 Branch-and-Cut for TSP Branch-and-Cut is a general technique applicable e.g. to solve symmetric

More information

### Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams

Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams André Ciré University of Toronto John Hooker Carnegie Mellon University INFORMS 2014 Home Health Care Home health care delivery

More information

### 5.1 Bipartite Matching

CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson

More information

### Università degli Studi di Bologna. On Interval-subgradient and No-good Cuts

Università degli Studi di Bologna Dipartimento di Elettronica Informatica e Sistemistica viale Risorgimento, 2 40136 - Bologna (Italy) phone : + 39-051-2093001 fax : + 39-051-2093073 On Interval-subgradient

More information

### Solving Mixed Integer Linear Programs Using Branch and Cut Algorithm

1 Solving Mixed Integer Linear Programs Using Branch and Cut Algorithm by Shon Albert A Project Submitted to the Graduate Faculty of North Carolina State University in Partial Fulfillment of the Requirements

More information

### Model Predictive Control Lecture 5

Model Predictive Control Lecture 5 Klaus Trangbæk ktr@es.aau.dk Automation & Control Aalborg University Denmark. http://www.es.aau.dk/staff/ktr/mpckursus/mpckursus.html mpc5 p. 1 Exercise from last time

More information

### Integer Programming: Algorithms - 3

Week 9 Integer Programming: Algorithms - 3 OPR 992 Applied Mathematical Programming OPR 992 - Applied Mathematical Programming - p. 1/12 Dantzig-Wolfe Reformulation Example Strength of the Linear Programming

More information

### x a x 2 (1 + x 2 ) n.

Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number

More information

### Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach

MASTER S THESIS Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach PAULINE ALDENVIK MIRJAM SCHIERSCHER Department of Mathematical

More information

### Chapter 5. Linear Inequalities and Linear Programming. Linear Programming in Two Dimensions: A Geometric Approach

Chapter 5 Linear Programming in Two Dimensions: A Geometric Approach Linear Inequalities and Linear Programming Section 3 Linear Programming gin Two Dimensions: A Geometric Approach In this section, we

More information

### max cx s.t. Ax c where the matrix A, cost vector c and right hand side b are given and x is a vector of variables. For this example we have x

Linear Programming Linear programming refers to problems stated as maximization or minimization of a linear function subject to constraints that are linear equalities and inequalities. Although the study

More information

### Linear Programming: Theory and Applications

Linear Programming: Theory and Applications Catherine Lewis May 11, 2008 1 Contents 1 Introduction to Linear Programming 3 1.1 What is a linear program?...................... 3 1.2 Assumptions.............................

More information

### IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2

IEOR 4404 Homework # Intro OR: Deterministic Models February 14, 011 Prof. Jay Sethuraman Page 1 of 5 Homework #.1 (a) What is the optimal solution of this problem? Let us consider that x 1, x and x 3

More information

### k=1 k2, and therefore f(m + 1) = f(m) + (m + 1) 2 =

Math 104: Introduction to Analysis SOLUTIONS Alexander Givental HOMEWORK 1 1.1. Prove that 1 2 +2 2 + +n 2 = 1 n(n+1)(2n+1) for all n N. 6 Put f(n) = n(n + 1)(2n + 1)/6. Then f(1) = 1, i.e the theorem

More information

### Algebra II Pacing Guide First Nine Weeks

First Nine Weeks SOL Topic Blocks.4 Place the following sets of numbers in a hierarchy of subsets: complex, pure imaginary, real, rational, irrational, integers, whole and natural. 7. Recognize that the

More information

### ME128 Computer-Aided Mechanical Design Course Notes Introduction to Design Optimization

ME128 Computer-ided Mechanical Design Course Notes Introduction to Design Optimization 2. OPTIMIZTION Design optimization is rooted as a basic problem for design engineers. It is, of course, a rare situation

More information

### Module1. x 1000. y 800.

Module1 1 Welcome to the first module of the course. It is indeed an exciting event to share with you the subject that has lot to offer both from theoretical side and practical aspects. To begin with,

More information

### Minimum Makespan Scheduling

Minimum Makespan Scheduling Minimum makespan scheduling: Definition and variants Factor 2 algorithm for identical machines PTAS for identical machines Factor 2 algorithm for unrelated machines Martin Zachariasen,

More information

### Integrating Benders decomposition within Constraint Programming

Integrating Benders decomposition within Constraint Programming Hadrien Cambazard, Narendra Jussien email: {hcambaza,jussien}@emn.fr École des Mines de Nantes, LINA CNRS FRE 2729 4 rue Alfred Kastler BP

More information

### Two-Stage Stochastic Linear Programs

Two-Stage Stochastic Linear Programs Operations Research Anthony Papavasiliou 1 / 27 Two-Stage Stochastic Linear Programs 1 Short Reviews Probability Spaces and Random Variables Convex Analysis 2 Deterministic

More information

### A progressive method to solve large-scale AC Optimal Power Flow with discrete variables and control of the feasibility

A progressive method to solve large-scale AC Optimal Power Flow with discrete variables and control of the feasibility Manuel Ruiz, Jean Maeght, Alexandre Marié, Patrick Panciatici and Arnaud Renaud manuel.ruiz@artelys.com

More information

### NONLINEAR AND DYNAMIC OPTIMIZATION From Theory to Practice

NONLINEAR AND DYNAMIC OPTIMIZATION From Theory to Practice IC-32: Winter Semester 2006/2007 Benoît C. CHACHUAT Laboratoire d Automatique, École Polytechnique Fédérale de Lausanne CONTENTS 1 Nonlinear

More information

### Algorithm Design and Analysis

Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;

More information

### LINEAR PROGRAMMING: MODEL FORMULATION AND 2-1

LINEAR PROGRAMMING: MODEL FORMULATION AND GRAPHICAL SOLUTION 2-1 Chapter Topics Model Formulation A Maximization Model Example Graphical Solutions of Linear Programming Models A Minimization Model Example

More information

### Solving convex MINLP problems with AIMMS

Solving convex MINLP problems with AIMMS By Marcel Hunting Paragon Decision Technology BV An AIMMS White Paper August, 2012 Abstract This document describes the Quesada and Grossman algorithm that is implemented

More information

### Support Vector Machines Explained

March 1, 2009 Support Vector Machines Explained Tristan Fletcher www.cs.ucl.ac.uk/staff/t.fletcher/ Introduction This document has been written in an attempt to make the Support Vector Machines (SVM),

More information

### 3. Linear Programming and Polyhedral Combinatorics

Massachusetts Institute of Technology Handout 6 18.433: Combinatorial Optimization February 20th, 2009 Michel X. Goemans 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the

More information

### Linear Programming: Introduction

Linear Programming: Introduction Frédéric Giroire F. Giroire LP - Introduction 1/28 Course Schedule Session 1: Introduction to optimization. Modelling and Solving simple problems. Modelling combinatorial

More information

### Solving polynomial least squares problems via semidefinite programming relaxations

Solving polynomial least squares problems via semidefinite programming relaxations Sunyoung Kim and Masakazu Kojima August 2007, revised in November, 2007 Abstract. A polynomial optimization problem whose

More information

### CONSTRAINED NONLINEAR PROGRAMMING

149 CONSTRAINED NONLINEAR PROGRAMMING We now turn to methods for general constrained nonlinear programming. These may be broadly classified into two categories: 1. TRANSFORMATION METHODS: In this approach

More information

### Resource Allocation and Scheduling

Lesson 3: Resource Allocation and Scheduling DEIS, University of Bologna Outline Main Objective: joint resource allocation and scheduling problems In particular, an overview of: Part 1: Introduction and

More information

### Chap 4 The Simplex Method

The Essence of the Simplex Method Recall the Wyndor problem Max Z = 3x 1 + 5x 2 S.T. x 1 4 2x 2 12 3x 1 + 2x 2 18 x 1, x 2 0 Chap 4 The Simplex Method 8 corner point solutions. 5 out of them are CPF solutions.

More information

### constraint. Let us penalize ourselves for making the constraint too big. We end up with a

Chapter 4 Constrained Optimization 4.1 Equality Constraints (Lagrangians) Suppose we have a problem: Maximize 5, (x 1, 2) 2, 2(x 2, 1) 2 subject to x 1 +4x 2 =3 If we ignore the constraint, we get the

More information

### Duality of linear conic problems

Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least

More information

### 1 Polyhedra and Linear Programming

CS 598CSC: Combinatorial Optimization Lecture date: January 21, 2009 Instructor: Chandra Chekuri Scribe: Sungjin Im 1 Polyhedra and Linear Programming In this lecture, we will cover some basic material

More information

### Integer factorization is in P

Integer factorization is in P Yuly Shipilevsky Toronto, Ontario, Canada E-mail address: yulysh2000@yahoo.ca Abstract A polynomial-time algorithm for integer factorization, wherein integer factorization

More information

### A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem

A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem John Karlof and Peter Hocking Mathematics and Statistics Department University of North Carolina Wilmington Wilmington,

More information

### Linear Programming is the branch of applied mathematics that deals with solving

Chapter 2 LINEAR PROGRAMMING PROBLEMS 2.1 Introduction Linear Programming is the branch of applied mathematics that deals with solving optimization problems of a particular functional form. A linear programming

More information

### Applied Optimization: Formulation and Algorithms for Engineering Systems Slides

Applied Optimization: Formulation and Algorithms for Engineering Systems Slides Ross Baldick Department of Electrical and Computer Engineering The University of Texas at Austin Austin, TX 78712 Copyright

More information

### 1 if 1 x 0 1 if 0 x 1

Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

### Optimization of Design. Lecturer:Dung-An Wang Lecture 12

Optimization of Design Lecturer:Dung-An Wang Lecture 12 Lecture outline Reading: Ch12 of text Today s lecture 2 Constrained nonlinear programming problem Find x=(x1,..., xn), a design variable vector of

More information

### Chapter 3 LINEAR PROGRAMMING GRAPHICAL SOLUTION 3.1 SOLUTION METHODS 3.2 TERMINOLOGY

Chapter 3 LINEAR PROGRAMMING GRAPHICAL SOLUTION 3.1 SOLUTION METHODS Once the problem is formulated by setting appropriate objective function and constraints, the next step is to solve it. Solving LPP

More information

### Inverse Optimization by James Orlin

Inverse Optimization by James Orlin based on research that is joint with Ravi Ahuja Jeopardy 000 -- the Math Programming Edition The category is linear objective functions The answer: When you maximize

More information

### Nonlinear Optimization: Algorithms 3: Interior-point methods

Nonlinear Optimization: Algorithms 3: Interior-point methods INSEAD, Spring 2006 Jean-Philippe Vert Ecole des Mines de Paris Jean-Philippe.Vert@mines.org Nonlinear optimization c 2006 Jean-Philippe Vert,

More information

### Piecewise Linear Relaxation Techniques for Solution of Nonconvex. Nonlinear Programming Problems

Piecewise Linear Relaxation Techniques for Solution of Nonconvex Nonlinear Programming Problems Pradeep K. Polisetty and Edward P. Gatzke Department of Chemical Engineering University of South Carolina

More information

### Study Guide 2 Solutions MATH 111

Study Guide 2 Solutions MATH 111 Having read through the sample test, I wanted to warn everyone, that I might consider asking questions involving inequalities, the absolute value function (as in the suggested

More information

### Identify examples of field properties: commutative, associative, identity, inverse, and distributive.

Topic: Expressions and Operations ALGEBRA II - STANDARD AII.1 The student will identify field properties, axioms of equality and inequality, and properties of order that are valid for the set of real numbers

More information

### Lecture 6: Logistic Regression

Lecture 6: CS 194-10, Fall 2011 Laurent El Ghaoui EECS Department UC Berkeley September 13, 2011 Outline Outline Classification task Data : X = [x 1,..., x m]: a n m matrix of data points in R n. y { 1,

More information

### Week 5 Integral Polyhedra

Week 5 Integral Polyhedra We have seen some examples 1 of linear programming formulation that are integral, meaning that every basic feasible solution is an integral vector. This week we develop a theory

More information

### Using the Simplex Method in Mixed Integer Linear Programming

Integer Using the Simplex Method in Mixed Integer UTFSM Nancy, 17 december 2015 Using the Simplex Method in Mixed Integer Outline Mathematical Programming Integer 1 Mathematical Programming Optimisation

More information

### Module 3 Lecture Notes 2. Graphical Method

Optimization Methods: Linear Programming- Graphical Method Module Lecture Notes Graphical Method Graphical method to solve Linear Programming problem (LPP) helps to visualize the procedure explicitly.

More information

### Graphical method. plane. (for max) and down (for min) until it touches the set of feasible solutions. Graphical method

The graphical method of solving linear programming problems can be applied to models with two decision variables. This method consists of two steps (see also the first lecture): 1 Draw the set of feasible

More information

### Lecture notes 1: Introduction to linear and (mixed) integer programs

Lecture notes 1: Introduction to linear and (mixed) integer programs Vincent Conitzer 1 An example We will start with a simple example. Suppose we are in the business of selling reproductions of two different

More information

### Introduction to Process Optimization

Chapter 1 Introduction to Process Optimization Most things can be improved, so engineers and scientists optimize. While designing systems and products requires a deep understanding of influences that achieve

More information

### On the effect of forwarding table size on SDN network utilization

IBM Haifa Research Lab On the effect of forwarding table size on SDN network utilization Rami Cohen IBM Haifa Research Lab Liane Lewin Eytan Yahoo Research, Haifa Seffi Naor CS Technion, Israel Danny Raz

More information

### Scheduling a sequence of tasks with general completion costs

Scheduling a sequence of tasks with general completion costs Francis Sourd CNRS-LIP6 4, place Jussieu 75252 Paris Cedex 05, France Francis.Sourd@lip6.fr Abstract Scheduling a sequence of tasks in the acceptation

More information

### The degree of a polynomial function is equal to the highest exponent found on the independent variables.

DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

More information

### Linear Programming I

Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

More information