CIRCUIT DIAGRAMS AND COMPONENT DRAWINGS

Save this PDF as:

Size: px
Start display at page:

Transcription

1 CIRCUIT DIAGRAMS AND COMPONENT DRAWINGS Dr. Victor Giurgiutiu Page 70 1/17/01

2 BASIC MULTIMIETER OPERATION BASIC MULTIMETER INFORMATION Multimeter is a measuring instrument. It can be used to measure voltage, current and resistance. An analog meter (Figure a) moves a needle along a scale. The function of the meter can be changed by switching the dial. Analog multimeter shown in the figure is cheap but difficult for beginners to read accurately. Most modern multimeters are digital. Similar to analog ones, digital multimeter (Figure b) has a dial to select its function. However, instead of having to interpret the reading of an analog scale, the data is shown directly in digital format on the LCD display. In addition, the units are also shown. Multimeter will be used in several labs, and important for checking circuit when doing your final project. Digital multimeters will be provided by the lab. A check out form must be approved and signed by a TA or instructor of this class before you can get a multimeter in the lab. (a) (b) BASIC MEASUREMENT PROCEDURES 1. Before using the multimeter, estimate the value you will measure, make sure it is within the range that the multimeter can measure or withstand. 2. Choose to the function you want to use by switching the dial. Turn on the power. 3. When measuring voltage, connect the BLACK probe (COM) to the ground (0V), and the RED probe to the nod you want to check. When measuring resistor, first make sure the resistor is not connected to any other component or power supply, then connect the probes to the two ends of the resistor. 4. Two alligator clips are supplied with probes. For your safety, alligator clips MUST be used when measuring any voltage more than 36V. They can also be used to free your hands by clipping the probes onto the circuit. Put the alligator clips back in the box after each use. 5. Read the data on the LCD display, remember the units. 6. Turn off the power after you finish. MULTIMETER TROUBLESHOOTING 1. Is the BLACK probe in the COM plug? 2. Is the RED probe in the correct plug? 3. Is the function dial turned to the correct position? 4. Is the power of the multimeter on? Dr. Victor Giurgiutiu Page 71 1/17/01

3 BASIC OSCILLOSCOPE OPERATION BASIC MEASUREMENT PRINCIPLES The oscilloscope (O-scope) is a valuable tool for both diagnostic and measurement purposes. It displays a voltage vs. time plot. The voltage displayed is determined as the difference between the measured voltage and the reference voltage. Both the measured and the reference voltage are determined from the probe. Although there are many types of probes, they all have three basic components: a measured voltage lead, a reference voltage lead, and a connection to the oscilloscope. To measure a voltage, or potential difference, with the oscilloscope, one must do three things: 1) Establish a reference. This is done by attaching the reference lead of the probe to the desired potential. For our purposes we will always use ground (0V) for our reference. 2) Measure the voltage. This is done by placing the measuring lead of the probe to the potential to be measured. 3) Display the measurement properly and interpret the results. The first two aspects are relatively straightforward. They involve physical placement of the probe leads. The third aspect of oscilloscope use is critical; to be a useful tool, the oscilloscope must be configured such that the user knows the voltage vs. time profile. Vertical and horizontal position adjusters Trigger Signal display adjusters Time scale Channel 1 Channel 2 Voltage scale for channel 1 Voltage scale for channel 2 Probe adjuster External trigger In the EMCH367 lab, you will be using the analog Tektronix 2225 O-scope, which can display 2 channels, as indicated in the above figure. The voltage (vertical) scale for each channel can be set separately, using the appropriate knobs. You can display the channels separately or together, or perform basic arithmetic operations on the signals (addition, inversion). The time (horizontal) scale can display from.05µs to 0.5s per division, with 10 horizontal divisions. Results that the maximum wavelength able to be displayed is 10x0.5s=5s, corresponding to a minimum frequency of 0.2Hz. Dr. Victor Giurgiutiu Page 72 1/17/01

5 RESISTORS CHART TO READ RESISTORS R = (First Digit)(Second Digit) x (Multiplier) ± (Tolerance) R = (First Band)(Second Band) x (Third Band) ± (Fourth Band) Color 1 st Band 2 nd Band 3 rd Band Black (10 0 ) Brown (10 1 ) Red (10 2 ) Orange 3 3 1k (10 3 ) Yellow k (10 4 ) Green k (10 5 ) Blue 6 6 1M (10 6 ) Violet M (10 7 ) Gray M (10 8 ) White Fourth Band Represents Tolerance Silver 10% Gold 5% brown black red gold 1 0 x 100 = 1000 Ω = 1 kω ±5% A quick reference for retrieving the resistance of a particular resistor, based on the color code: RESISTORS AVAILABLE IN THE EMCH 367 LAB 10 Ω 22 Ω 47 Ω 56 Ω 100 Ω 200 Ω 220 Ω 470 Ω 680 Ω 10 Ω, 5 W 1 kω 1.8 kω 2.2 kω 4.7 kω 5.6 kω 6.8 kω 8.2 kω 10 kω 16 kω 22 kω 27 kω 56 kω 100 kω 220 kω 470 kω 680 kω 820 kω 1 ΜΩ 4.7 ΜΩ 10 ΜΩ A selection of variable resistors (potentiometers or pots ) is also available. Dr. Victor Giurgiutiu Page 74 1/17/01

6 EMITTER-DETECTOR Dr. Victor Giurgiutiu Page 75 1/17/01

7 OPEN COLLECTOR COMPARATOR Dr. Victor Giurgiutiu Page 76 1/17/01

8 OPEN COLLECTOR BUFFER Dr. Victor Giurgiutiu Page 77 1/17/01

9 OP AMP POWER TRANSISTOR Dr. Victor Giurgiutiu Page 78 1/17/01

10 PORT PROTECTION GENERIC INPUT TO MICROCONTROLLER PORTS Dr. Victor Giurgiutiu Page 79 1/17/01

11 PORT A PROTECTION OPTOISOLATOR (OPEN COLLECTOR) Dr. Victor Giurgiutiu Page 80 1/17/01

Electrical Measurements

Electrical Measurements Experimental Objective The objective of this experiment is to become familiar with some of the electrical instruments. You will gain experience by wiring a simple electrical circuit

Lab 3 - DC Circuits and Ohm s Law

Lab 3 DC Circuits and Ohm s Law L3-1 Name Date Partners Lab 3 - DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in

Your Multimeter. The Arduino Uno 10/1/2012. Using Your Arduino, Breadboard and Multimeter. EAS 199A Fall 2012. Work in teams of two!

Using Your Arduino, Breadboard and Multimeter Work in teams of two! EAS 199A Fall 2012 pincer clips good for working with breadboard wiring (push these onto probes) Your Multimeter probes leads Turn knob

Activity 1: Light Emitting Diodes (LEDs)

Activity 1: Light Emitting Diodes (LEDs) Time Required: 45 minutes Materials List Group Size: 2 Each pair needs: One each of the following: One Activity 1 bag containing: o Red LED o Yellow LED o Green

R A _ + Figure 2: DC circuit to verify Ohm s Law. R is the resistor, A is the Ammeter, and V is the Voltmeter. A R _ +

Physics 221 Experiment 3: Simple DC Circuits and Resistors October 1, 2008 ntroduction n this experiment, we will investigate Ohm s Law, and study how resistors behave in various combinations. Along the

DC Circuits (Combination of resistances)

Name: Partner: Partner: Partner: DC Circuits (Combination of resistances) EQUIPMENT NEEDED: Circuits Experiment Board One Dcell Battery Wire leads Multimeter 100, 330, 1k resistors Purpose The purpose

Lab #2: Parallel and Series Resistors

Fall 2013 EELE 250 Circuits, Devices, and Motors Lab #2: Parallel and Series Resistors Scope: Use a multimeter to measure resistance, DC voltage, and current Use the color code for resistors. Use the prototype-board

Circuits and Resistivity

Circuits and Resistivity Look for knowledge not in books but in things themselves. W. Gilbert OBJECTIVES To learn the use of several types of electrical measuring instruments in DC circuits. To observe

Lab 3 Ohm s Law and Resistors

` Lab 3 Ohm s Law and Resistors What You Need To Know: The Physics One of the things that students have a difficult time with when they first learn about circuits is the electronics lingo. The lingo and

series Connecting a voltage source across two resistors in parallel forces the voltage to be the same across both resistors.

I. Objective To discover how DC values are measured using various tools in the laboratory. This includes the basic design of multimeters and oscilloscopes, and how to model these circuits using Spice.

Altoids Tin Headphone Amplifier Lab Michigan State University AEE/IEEE Step 1: Required Parts Table 1 shows a complete listing of the parts required to complete this project. Figure 1 shows a picture of

Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament

Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament Name Partner Date Introduction Carbon resistors are the kind typically used in wiring circuits. They are made from a small cylinder of

Pulse Width Modulation (PWM) LED Dimmer Circuit. Using a 555 Timer Chip

Pulse Width Modulation (PWM) LED Dimmer Circuit Using a 555 Timer Chip Goals of Experiment Demonstrate the operation of a simple PWM circuit that can be used to adjust the intensity of a green LED by varying

RC Circuits and The Oscilloscope Physics Lab X

Objective RC Circuits and The Oscilloscope Physics Lab X In this series of experiments, the time constant of an RC circuit will be measured experimentally and compared with the theoretical expression for

The RC Circuit. Pre-lab questions. Introduction. The RC Circuit

The RC Circuit Pre-lab questions 1. What is the meaning of the time constant, RC? 2. Show that RC has units of time. 3. Why isn t the time constant defined to be the time it takes the capacitor to become

Basic Ohm s Law & Series and Parallel Circuits

2:256 Let there be no compulsion in religion: Truth stands out clear from Error: whoever rejects evil and believes in Allah hath grasped the most trustworthy hand-hold that never breaks. And Allah heareth

Series and Parallel Resistive Circuits Physics Lab VIII

Series and Parallel Resistive Circuits Physics Lab VIII Objective In the set of experiments, the theoretical expressions used to calculate the total resistance in a combination of resistors will be tested

Physics 2306 Experiment 7: Time-dependent Circuits, Part 1

Name ID number Date Lab CRN Lab partner Lab instructor Objectives Physics 2306 Experiment 7: Time-dependent Circuits, Part 1 To study the time dependent behavior of the voltage and current in circuits

PHYS 2426 Engineering Physics II (Revised July 7, 2011) AC CIRCUITS: RLC SERIES CIRCUIT

PHYS 2426 Engineering Physics II (Revised July 7, 2011) AC CIRCUITS: RLC SERIES CIRCUIT INTRODUCTION The objective of this experiment is to study the behavior of an RLC series circuit subject to an AC

Oscilloscope, Function Generator, and Voltage Division

1. Introduction Oscilloscope, Function Generator, and Voltage Division In this lab the student will learn to use the oscilloscope and function generator. The student will also verify the concept of voltage

RC Circuits. The purpose of this lab is to understand how capacitors charge and discharge.

Department of Physics and Geology Purpose Circuits Physics 2402 The purpose of this lab is to understand how capacitors charge and discharge. Materials Decade Resistance Box (CENCO), 0.1 µf, 0.5µF, and

Class #12: Experiment The Exponential Function in Circuits, Pt 1

Class #12: Experiment The Exponential Function in Circuits, Pt 1 Purpose: The objective of this experiment is to begin to become familiar with the properties and uses of the exponential function in circuits

Experiment: Series and Parallel Circuits

Phy203: General Physics Lab page 1 of 6 Experiment: Series and Parallel Circuits OBJECTVES MATERALS To study current flow and voltages in series and parallel circuits. To use Ohm s law to calculate equivalent

Background: Electric resistance, R, is defined by:

RESISTANCE & OHM S LAW (PART I and II) - 8 Objectives: To understand the relationship between applied voltage and current in a resistor and to verify Ohm s Law. To understand the relationship between applied

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law OBJECTIVES: To verify Ohm s law, the mathematical relationship among current, voltage or potential difference, and resistance, in a simple circuit.

EXPERIMENT #2: DC Circuits and Tools

Name/NetID: Teammate/NetID: EXPERIMENT #2: DC Circuits and Tools Laboratory Outline In today s lab we ll begin developing the fundamental knowledge and skills you ll need to conduct basic experiments.

DC and RC Circuits. Equivalent Resistance. So, if we use the above operational definition of R, we get for the resistance of the pair, R = R 1 + R 2.

DC and C Circuits Introduction This lab is intended to demonstrate simple concepts that you learned in 1402 and provide you some experience with simple electrical circuits and measurements of the properties

Lab 5 RC Circuits. What You Need To Know: Physics 226 Lab

Lab 5 R ircuits What You Need To Know: The Physics In the previous two labs you ve dealt strictly with resistors. In today s lab you ll be using a new circuit element called a capacitor. A capacitor consists

Electrical Resonance

Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION

`Ohm s Law III -- Resistors in Series and Parallel

`Ohm s Law III -- esistors in Series and Parallel by Dr. ames E. Parks Department of Physics and Astronomy 40 Nielsen Physics Building he University of ennessee Knoxville, ennessee 7996-00 Copyright August,

Lab E1: Introduction to Circuits

E1.1 Lab E1: Introduction to Circuits The purpose of the this lab is to introduce you to some basic instrumentation used in electrical circuits. You will learn to use a DC power supply, a digital multimeter

Physics 3330 Experiment #2 Fall 1999. DC techniques, dividers, and bridges R 2 =(1-S)R P R 1 =SR P. R P =10kΩ 10-turn pot.

Physics 3330 Experiment #2 Fall 1999 DC techniques, dividers, and bridges Purpose You will gain a familiarity with the circuit board and work with a variety of DC techniques, including voltage dividers,

MAE106 Laboratory Exercises Lab # 3 Open-loop control of a DC motor

MAE106 Laboratory Exercises Lab # 3 Open-loop control of a DC motor University of California, Irvine Department of Mechanical and Aerospace Engineering Goals To understand and gain insight about how a

Using an Oscilloscope

Using an Oscilloscope The oscilloscope is used to measure a voltage that changes in time. It has two probes, like a voltmeter. You put these probes on either side of the thing that you want to measure

Experiment 4 ~ Resistors in Series & Parallel

Experiment 4 ~ Resistors in Series & Parallel Objective: In this experiment you will set up three circuits: one with resistors in series, one with resistors in parallel, and one with some of each. You

Charge and Discharge of a Capacitor

Charge and Discharge of a Capacitor INTRODUCTION Capacitors 1 are devices that can store electric charge and energy. Capacitors have several uses, such as filters in DC power supplies and as energy storage

Robot Board Sub-System Testing. Abstract. Introduction and Theory. Equipment. Procedures. EE 101 Spring 2006 Date: Lab Section # Lab #6

EE 101 Spring 2006 Date: Lab Section # Lab #6 Name: Robot Board Sub-System Testing Partner: No Lab partners this time! Abstract The ECEbot robots have a printed circuit board (PCB) containing most of the

CHAPTER 11: Flip Flops

CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach

Kirchhoff s Voltage Law and RC Circuits

Kirchhoff s oltage Law and RC Circuits Apparatus 2 1.5 batteries 2 battery holders DC Power Supply 1 multimeter 1 capacitance meter 2 voltage probes 1 long bulb and 1 round bulb 2 sockets 1 set of alligator

very small Ohm s Law and DC Circuits Purpose: Students will become familiar with DC potentiometers circuits and Ohm s Law. Introduction: P31220 Lab

Ohm s Law and DC Circuits Purpose: Students will become familiar with DC potentiometers circuits and Ohm s Law. Introduction: Ohm s Law for electrical resistance, V = IR, states the relationship between

FREQUENCY RESPONSE OF AN AUDIO AMPLIFIER

2014 Amplifier - 1 FREQUENCY RESPONSE OF AN AUDIO AMPLIFIER The objectives of this experiment are: To understand the concept of HI-FI audio equipment To generate a frequency response curve for an audio

Lab 3 Rectifier Circuits

ECET 242 Electronic Circuits Lab 3 Rectifier Circuits Page 1 of 5 Name: Objective: Students successfully completing this lab exercise will accomplish the following objectives: 1. Learn how to construct

Series & parallel circuit measurements Part I

Series parallel calculations sheet #1 Complete these problems below using your calculator. Both partners need to work the problems and agree on the answers. Record your answers below and analyze the work

Experiment1: Introduction to laboratory equipment and basic components.

Experiment1: Introduction to laboratory equipment and basic components. 1 OBJECTIVES. This experiment will provide exposure to the various test equipment to be used in subsequent experiments. A primary

Luminous Chessboard ECE445 SENIOR DESIGN PROPOSAL. Spring, 2013 TA: MUSTAFA MUKADAM QIANLIANG LIU, KE MA

Spring, 2013 Luminous Chessboard ECE445 SENIOR DESIGN PROPOSAL TA: MUSTAFA MUKADAM QIANLIANG LIU, KE MA UNIVERSITY OF ILLINOIS AT URBANA - CHAMPAIGN ECE Table of Contents Introduction... 3 Title... 3 Objective...

Electrical Circuits. Ammeter Light Bulb Ohmmeter. Power Supply Resistor Voltmeter. Symbols for Electrical Components.

Physical Science 101 Electrical Circuits Name Partner s Name Purpose To learn how to measure resistance, voltage, and current using a multimeter. To become familiar with the basic components of simple

SainSmart DDS Series User Manual (Software)

SainSmart DDS Series User Manual (Software) For Oscilloscope, Signal Generator and Logic Analyzer Updated software and user manual can be downloaded from http://www.sainsmart.com/tools-equipments/oscilloscope-dso/sainsmart-dds.html

Resistors in Series and Parallel

Resistors in Series and Parallel INTRODUCTION Direct current (DC) circuits are characterized by the quantities current, voltage and resistance. Current is the rate of flow of charge. The SI unit is the

Digital to Analog Conversion Using Pulse Width Modulation

Digital to Analog Conversion Using Pulse Width Modulation Samer El-Haj-Mahmoud Electronics Engineering Technology Program Texas A&M University Instructor s Portion Summary The purpose of this lab is to

Lab #4 Thevenin s Theorem

In this experiment you will become familiar with one of the most important theorems in circuit analysis, Thevenin s Theorem. Thevenin s Theorem can be used for two purposes: 1. To calculate the current

MATERIALS. Multisim screen shots sent to TA.

Page 1/8 Revision 0 9-Jun-10 OBJECTIVES Learn new Multisim components and instruments. Conduct a Multisim transient analysis. Gain proficiency in the function generator and oscilloscope. MATERIALS Multisim

PH 210 Electronics Laboratory I Instruction Manual

PH 210 Electronics Laboratory I Instruction Manual Index Page No General Instructions 2 Experiment 1 Common Emitter (CE) Amplifier 4 Experiment 2 Multistage amplifier: Cascade of two CE stages 7 Experiment

Electronic Trainer. Combined Series and Parallel Circuits

Electronic Trainer Combined Series and Parallel Circuits In this lab you will work with a circuit combining series and parallel elements. You will use six resistors to create a circuit with two parallel

Fundamentals of Signature Analysis

Fundamentals of Signature Analysis An In-depth Overview of Power-off Testing Using Analog Signature Analysis www.huntron.com 1 www.huntron.com 2 Table of Contents SECTION 1. INTRODUCTION... 7 PURPOSE...

An introduction to electronic components that you will need to build a motor speed controller.

An introduction to electronic components that you will need to build a motor speed controller. Resistors A resistor impedes the flow of electricity through a circuit. Resistors have a set value. Since

Designing a Poor Man s Square Wave Signal Generator. EE-100 Lab: Designing a Poor Man s Square Wave Signal Generator - Theory

EE-100 Lab: - Theory 1. Objective The purpose of this laboratory is to introduce nonlinear circuit measurement and analysis. Your measurements will focus mainly on limiters and clamping amplifiers. During

RC CIRCUITS. Phys 31220 Fall 2012. Introduction:

Phys 31220 Fall 2012 RC CIRCUITS Introduction: In this experiment the rates at which capacitors in series with resistors can be charged and discharged are measured directly with a picoscope (scope) and

Capacitors & RC Circuits

Capacitors & C Circuits Name: EQUIPMENT NEEDED: Circuits Experiment Board One D-cell Battery Wire leads Multimeter Capacitors(100 F, 330 F) esistors(1k, 4.7k ) Logger Pro Software, ULI Purpose The purpose

Series & Parallel Circuits Challenge

Name: Part One: Series & Parallel Circuits Challenge 1. Build a circuit using two batteries and two light bulbs in a way to illuminate the two light bulbs so that if either light bulb is disconnected,

Building the AMP Amplifier

Building the AMP Amplifier Introduction For about 80 years it has been possible to amplify voltage differences and to increase the associated power, first with vacuum tubes using electrons from a hot filament;

Chapter 3. Simulation of Non-Ideal Components in LTSpice

Chapter 3 Simulation of Non-Ideal Components in LTSpice 27 CHAPTER 3. SIMULATION OF NON-IDEAL COMPONENTS IN LTSPICE 3.1 Pre-Lab The answers to the following questions are due at the beginning of the lab.

The Oscilloscope, the Signal Generator and Your Filter s Test Setup SGM 5/29/2013

The Oscilloscope, the Signal Generator and Your Filter s Test Setup SGM 5/29/2013 1. Oscilloscope A multimeter is an appropriate device to measure DC voltages, however, when a signal alternates at relatively

Annex: VISIR Remote Laboratory

Open Learning Approach with Remote Experiments 518987-LLP-1-2011-1-ES-KA3-KA3MP Multilateral Projects UNIVERSITY OF DEUSTO Annex: VISIR Remote Laboratory OLAREX project report Olga Dziabenko, Unai Hernandez

Kirchhoff s Laws Physics Lab IX

Kirchhoff s Laws Physics Lab IX Objective In the set of experiments, the theoretical relationships between the voltages and the currents in circuits containing several batteries and resistors in a network,

Maximum value. resistance. 1. Connect the Current Probe to Channel 1 and the Differential Voltage Probe to Channel 2 of the interface.

Series and Parallel Circuits Computer 23 Components in an electrical circuit are in series when they are connected one after the other, so that the same current flows through both of them. Components are

Digital Multimeter Guide Mastech M9803R

Mastech M9803R Version 2008-Jan-1 Dept. of Electrical & Computer Engineering Portland State University Copyright 2008 Portland State University 1 Basic Information This guide provides basic instructions

Beginners Guide to the TDS 210 and TDS 220 Oscilloscopes

Beginners Guide to the TDS 210 and TDS 220 Oscilloscopes By David S. Lay P. Eng Foreword This guide contains information to help you become familiar with using digital oscilloscopes. You should work through

Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2009 Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil OBJECTIVES 1. To learn how to visualize magnetic field lines

Notes. Astable and Monostable Multivibrator Trainer NV6507. Operating Manual Ver 1.1

Notes Astable and Monostable Multivibrator Trainer Operating Manual Ver 1.1 Nvis Technologies 20 141-B, Electronic Complex, Pardeshipura, Indore- 452 010 India Tel.: 91-731- 4211500 Email: info@nvistech.com

Using Ohm s Law to Build a Voltage Divider

Using Ohm s Law to Build a Voltage Provided by TryEngineering - Lesson Focus Students will design, build, and characterize one of the basic circuits of electrical engineering, the voltage divider. These

Electrical Fundamentals Module 3: Parallel Circuits

Electrical Fundamentals Module 3: Parallel Circuits PREPARED BY IAT Curriculum Unit August 2008 Institute of Applied Technology, 2008 ATE310- Electrical Fundamentals 2 Module 3 Parallel Circuits Module

Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2006 Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil OBJECTIVES 1. To learn how to visualize magnetic field lines

Digital Fundamentals

Digital Fundamentals Tenth Edition Floyd Chapter 1 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. All Rights Reserved Analog Quantities Most natural quantities that we see

Photovoltaic Cell: Converting Light to Electricity

Photovoltaic Cell: Converting Light to Electricity Outcomes: 1. Understand that a photovoltaic cell produces DC voltage when light shines on its surface. 2. Understand that the electrical voltage produced

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common

1. Learn about the 555 timer integrated circuit and applications 2. Apply the 555 timer to build an infrared (IR) transmitter and receiver

Electronics Exercise 2: The 555 Timer and its Applications Mechatronics Instructional Laboratory Woodruff School of Mechanical Engineering Georgia Institute of Technology Lab Director: I. Charles Ume,

Electricity & Electronics 5: Alternating Current and Voltage

Electricity & Electronics 5: lternating Current and Voltage lternating Current and Voltage IM This unit looks at several aspects of alternating current and voltage including measurement of frequency and

Teacher s Guide - Activity P50: RC Circuit (Power Output, Voltage Sensor)

Teacher s Guide - Activity P50: RC Circuit (Power Output, Voltage Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Circuits P50 RC Circuit.DS (See end of activity) (See end of activity)

Discharge of a Capacitor

Discharge of a Capacitor THEORY The charge Q on a capacitor s plate is proportional to the potential difference V across the capacitor. We express this with Q = C V (1) where C is a proportionality constant

Lab 11: Magnetic Fields Name:

Lab 11: Magnetic Fields Name: Group Members: Date: TA s Name: Objectives: To measure and understand the magnetic field of a bar magnet. To measure and understand the magnetic field of an electromagnet,

Step Response of RC Circuits

Step Response of RC Circuits 1. OBJECTIVES...2 2. REFERENCE...2 3. CIRCUITS...2 4. COMPONENTS AND SPECIFICATIONS...3 QUANTITY...3 DESCRIPTION...3 COMMENTS...3 5. DISCUSSION...3 5.1 SOURCE RESISTANCE...3

Table of Contents. The Basics of Electricity 2. Using a Digital Multimeter 4. Testing Voltage 8. Testing Current 10. Testing Resistance 12

Table of Contents The Basics of Electricity 2 Using a Digital Multimeter 4 IDEAL Digital Multimeters An Introduction The Basics of Digital Multimeters is designed to give you a fundamental knowledge of

Current and Power Waveform Measurement Technique

Current and Power Waveform Measurement Technique Ron Pugh ronee@telus.net March 1, 2009 1 Introduction In measurement and debugging of power electronics circuits, it is essential to be able to view the

AS Systems & Control Study Notes Part 2: Electronic Materials. E.Clarvis Conductors. Materials

Part 1 Learning Objectives Know the properties of Semiconductors. Know the properties and functions of: Resistors s Materials There are three main types of materials used in electronic and electrical systems:

ECEN 1400, Introduction to Analog and Digital Electronics

ECEN 1400, Introduction to Analog and Digital Electronics Lab 4: Power supply 1 INTRODUCTION This lab will span two lab periods. In this lab, you will create the power supply that transforms the AC wall

Name Date Day/Time of Lab Partner(s) Lab TA

Name Date Day/Time of Lab Partner(s) Lab TA Objectives LAB 7: AC CIRCUITS To understand the behavior of resistors, capacitors, and inductors in AC Circuits To understand the physical basis of frequency-dependent

DET Practical Electronics (Intermediate 1)

DET Practical Electronics (Intermediate 1) 731 August 2000 HIGHER STILL DET Practical Electronics (Intermediate 1) Support Materials CONTENTS Section 1 Learning about Resistors Section 2 Learning about

DC Motor with Shaft Encoder

Learning Objectives DC Motor with Shaft Encoder By the end of this laboratory experiment, the experimenter should be able to: Explain how an encoder operates and how it can be use determine rotational

LMU-5000. Hardware and Installation Guide

LMU-5000 Hardware and Installation Guide Plan The Installation Verify Power, Ground and Ignition. Be sure to check each source (power, ground and ignition) to ensure that the proper signaling exists. This

EE101 Labs and ECEbot Assembly/Testing Instructions

EE101 Labs and ECEbot Assembly/Testing Instructions by Montana State University Department of Electrical and Computer Engineering A Montana Space Grant Consortium Project December 3, 2008 Beginning in

The OP AMP -, Figure 1

The OP AMP Amplifiers, in general, taking as input, one or more electrical signals, and produce as output, one or more variations of these signals. The most common use of an amplifier is to accept a small

22.302 Experiment 5. Strain Gage Measurements

22.302 Experiment 5 Strain Gage Measurements Introduction The design of components for many engineering systems is based on the application of theoretical models. The accuracy of these models can be verified

Points Position Indicator (PPI1) for Points Motors with Common Ground

Points Position Indicator (PPI1) for Points Motors with Common Ground Monitors Points Action and Operates Leds on a Control Panel Monitors the brief positive operating voltage across points motors when

Lab 5 Operational Amplifiers

Lab 5 Operational Amplifiers By: Gary A. Ybarra Christopher E. Cramer Duke University Department of Electrical and Computer Engineering Durham, NC. Purpose The purpose of this lab is to examine the properties

Physics 120 Lab 6: Field Effect Transistors - Ohmic region

Physics 120 Lab 6: Field Effect Transistors - Ohmic region The FET can be used in two extreme ways. One is as a voltage controlled resistance, in the so called "Ohmic" region, for which V DS < V GS - V

Lab 1: The Digital Oscilloscope

PHYSICS 220 Physical Electronics Lab 1: The Digital Oscilloscope Object: To become familiar with the oscilloscope, a ubiquitous instrument for observing and measuring electronic signals. Apparatus: Tektronix

Experiment 8 : Pulse Width Modulation

Name/NetID: Teammate/NetID: Experiment 8 : Pulse Width Modulation Laboratory Outline In experiment 5 we learned how to control the speed of a DC motor using a variable resistor. This week, we will learn