Investigating Electrical Energy Workshop. QUT Extreme Engineering

Save this PDF as:

Size: px
Start display at page:

Transcription

1 Investigating Electrical Energy Workshop QUT Extreme Engineering

2 Investigating Electrical Energy Introduction This workshop is designed for grades 6-7, to give them some hands-on experience in building and testing electrical circuits. A clip circuit kit is used, so no soldering or playing with exposed wires is required. The activities are preceded by a PowerPoint presentation to introduce the topic, in preparation for the activities. In this booklet, some background information on electricity and circuits is provided, followed by the content of the QUT Extreme Engineering school workshop. Glossary Battery Circuit Charge Conductor Current Electricity Insulator Parallel circuit Series circuit Switch Terminal (battery) Voltage A chemical factory that stores chemical potential energy A complete or continuous loop which conducts electricity and has an energy source, like a battery A physical property of particles A material that allows electricity to flow along it easily The flow of charge through a conductor A form of energy resulting from charged particles A material that does not allow electricity to flow along it easily A circuit in which there is more than one path for the electricity to flow along A circuit in which there is only one path for the electricity to flow along A device that completes or breaks a circuit, to control the flow of electricity in a circuit The positive and negative ends of a battery to which the conductor (wire) is connected. The difference in electrical charge between two points in a circuit The difference between voltage and current Voltage can be thought of as the ability to cause current to flow in a conductor. A good analogy is to think of a tap voltage is like the tap water pressure, current is like the flow rate of water, and the tap is like the switch. The greater the voltage in a circuit, the greater the current will be. 2

3 Investigating Electrical Energy Background information Science of Electricity Basics Everything Is Made of Atoms In order to understand electricity, we need to know something about atoms. Everything in the universe is made of atoms every star, every tree, every animal. The human body is made of atoms. Air and water are, too. Atoms are the building blocks of the universe. Atoms are so small that millions of them would fit on the head of a pin. Atoms Are Made of Even Smaller Particles The centre of an atom is called the nucleus. It is made of particles called protons and neutrons. The protons and neutrons are very small, but electrons are much, much smaller. Electrons spin around the nucleus in shells a great distance from the nucleus. If the nucleus were the size of a tennis ball, the atom would be the size of the Empire State Building. Atoms are mostly empty space. If you could see an atom, it would look a little like a tiny center of balls surrounded by giant invisible bubbles (or shells). The electrons would be on the surface of the bubbles, constantly spinning and moving to stay as far away from each other as possible. Electrons are held in their shells by an electrical force. The protons and electrons of an atom are attracted to each other. They both carry an electrical charge. Protons have a positive charge (+) and electrons have a negative charge (-). The positive charge of the protons is equal to the negative charge of the electrons. Opposite charges attract each other. An atom is in balance when it has an equal number of protons and electrons. The neutrons carry no charge and their number can vary. The number of protons in an atom determines the kind of atom, or element, it is. An element is a substance consisting of one type of atom (the Periodic Table shows all the known elements), all with the same number of protons. Every atom of hydrogen, for example, has one proton, and every atom of carbon has six protons. The number of protons determines which element it is. 3

4 Investigating Electrical Energy Electricity Is the Movement of Electrons Between Atoms Electrons usually remain a constant distance from the nucleus in precise shells. The shell closest to the nucleus can hold two electrons. The next shell can hold up to eight. The outer shells can hold even more. Some atoms with many protons can have as many as seven shells with electrons in them. The electrons in the shells closest to the nucleus have a strong force of attraction to the protons. Sometimes, the electrons in an atom's outermost shells do not. These electrons can be pushed out of their orbits. Applying a force can make them move from one atom to another. These moving electrons are electricity. Static Electricity Exists in Nature Lightning is a form of electricity. It is electrons moving from one cloud to another or jumping from a cloud to the ground. Have you ever felt a shock when you touched an object after walking across a carpet? A stream of electrons jumped to you from that object. This is called static electricity. Have you ever made your hair stand straight up by rubbing a balloon on it? If so, you rubbed some electrons off the balloon. The electrons moved into your hair from the balloon. They tried to get far away from each other by moving to the ends of your hair. They pushed against each other and made your hair move they repelled each other. Just as opposite charges attract each other, like charges repel each other. Magnets and Electricity The spinning of the electrons around the nucleus of an atom creates a tiny magnetic field. Most objects are not magnetic because their electrons spin in different, random directions, and cancel out each other. Magnets are different; the molecules in magnets are arranged so that their electrons spin in the same direction. This arrangement of atoms creates two poles in a magnet, a North-seeking pole and a South-seeking pole. 4

5 Investigating Electrical Energy Magnetic Field Around a Bar Magnet Source: National Energy Education Development Project (Public Domain) Magnets Have Magnetic Fields The magnetic force in a magnet flows from the North pole to the South pole. This creates a magnetic field around a magnet. Have you ever held two magnets close to each other? They don't act like most objects. If you try to push the South poles together, they repel each other. Two North poles also repel each other. Turn one magnet around, and the North (N) and the South (S) poles are attracted to each other. Just like protons and electrons opposites attract. Magnetic Fields Can Be Used To Make Electricity Properties of magnets can be used to make electricity. Moving magnetic fields can pull and push electrons. Metals such as copper have electrons that are loosely held. So electrons in copper wires can easily be pushed from their shells by moving magnets. By using moving magnets and copper wire together, electric generators create electricity. Electric generators essentially convert kinetic energy (the energy of motion) into electrical energy. 5

6 Investigating Electrical Energy Batteries, Circuits, & Transformers Batteries Produce Electricity Source: National Energy Education Development Project (Public Domain) A battery produces electricity using two different metals in a chemical solution. A chemical reaction between the metals and the chemicals frees more electrons in one metal than in the other. One end of the battery is attached to one of the metals; the other end is attached to the other metal. The end that frees more electrons develops a positive charge and the other end develops a negative charge. If a wire is attached from one end of the battery to the other, electrons flow through the wire to balance the electrical charge. A load is a device that does work or performs a job. If a load such as a light bulb is placed along the wire, the electricity can do work as it flows through the wire. Electrons flow from the negative end of the battery through the wire to the light bulb. The electricity flows through the wire in the light bulb and back to the positive end of the battery. Electricity Travels in Circuits Electricity travels in closed loops, or circuits. It must have a complete path before the electrons can move. If a circuit is open, the electrons cannot flow. When we flip on a light switch, we close a circuit. The electricity flows from an electric wire, through the light bulb, and back out another wire. When we flip the switch off, we open the circuit. No electricity flows to the light. When we turn a light switch on, electricity flows through a tiny wire in the bulb. The wire gets very hot. It makes the gas in the bulb glow. When the bulb burns out, the tiny wire has broken. The path through the bulb is gone. When we turn on the TV, electricity flows through wires inside the TV set, producing pictures and sound. Sometimes electricity runs motors in washers or mixers. Electricity does a lot of work for us many times each day. 6

7 Investigating Electrical Energy Source: National Energy Education Development Project (Public Domain) Transformers Help To Move Electricity Efficiently Over Long Distances To solve the problem of sending electricity over long distances, William Stanley developed a device called a transformer. The transformer allowed electricity to be efficiently transmitted over long distances. This increased delivery range made it possible to supply electricity to homes and businesses located far from the electric generating plant. The electricity produced by a generator travels along cables to a transformer, which changes electricity from low voltage to high voltage. Electricity can be moved long distances more efficiently using high voltage. Transmission lines are used to carry the electricity to a substation. Substations have transformers that change the high voltage electricity into lower voltage electricity. From the substation, distribution lines carry the electricity to homes, offices, and factories, which require low voltage electricity. Measuring Electricity Electricity Is Measured in Watts and Kilowatts Electricity is measured in units of power called watts. It was named to honour James Watt, the inventor of the steam engine. One watt is a very small amount of power. It would require nearly 750 watts to equal one horsepower. A kilowatt is the same as 1,000 watts. Electricity Use Over Time Is Measured in Kilowatthours A kilowatthour (kwh) is equal to the energy of 1,000 watts working for one hour. The amount of electricity a power plant generates or a customer uses over a period of time is measured in kilowatthours (kwh). Kilowatthours are determined by multiplying the number of kilowatts required by the number of hours of use. For example, if you use a 40-watt light bulb for 5 hours, you have used 200 watthours, or 0.2 kilowatthours, of electrical energy. 7

8 Investigating Electrical Energy How Electricity is Generated Turbine Generator Source: adapted from Energy For Keeps (Public Domain) A generator is a device that converts mechanical energy into electrical energy. The process is based on the relationship between magnetism and electricity. In 1831, scientist Michael Faraday discovered that when a magnet is moved inside a coil of wire, electrical current flows in the wire. A typical generator at a power plant uses an electromagnet a magnet produced by electricity not a traditional magnet. The generator has a series of insulated coils of wire that form a stationary cylinder. This cylinder surrounds a rotary electromagnetic shaft. When the electromagnetic shaft rotates, it induces a small electric current in each section of the wire coil. Each section of the wire becomes a small, separate electric conductor. The small currents of individual sections are added together to form one large current. This current is the electric power that is transmitted from the power company to the consumer. An electric utility power station uses either a turbine, engine, water wheel, or other similar machine to drive an electric generator a device that converts mechanical or chemical energy to electricity. Steam turbines, internal-combustion engines, gas combustion turbines, water turbines, and wind turbines are the most common methods to generate electricity. Steam turbine power plants powered by coal and nuclear energy produce about 70% of the electricity used in the United States. These plants are about 35% efficient. That means that for every 100 units of primary heat energy that go into a plant, only 35 units are converted to useable electrical energy. 8

9 Investigating Electrical Energy QUT Extreme Engineering workshop activities There are four activities in this workshop, to explore the basics of electrical circuits. The first three are run simultaneously, and the fourth is done as an extension or challenge activity. The activities are: 1. Series and parallel circuits Students build a series circuit and parallel circuit and explore the differences between the two 2. Batteries in series, and batteries in parallel Students observe circuits which have already been built, and use a multimeter to measure voltage at certain points in the circuit to understand how the arrangement of batteries affects the voltage 3. Conductivity testing Students build a simple circuit to test some supplied materials to see if they are conductors or insulators, and they can test some materials of their own 4. Build your own circuit Students are given a choice of circuits to build, which are more complex than the previous 3 and involve different electrical components Students are provided with worksheets to fill out during the workshop. It is designed to reiterate what they have learnt, and to build a little further on that knowledge. The questions refer to the activities, requiring them to record their observations, and then to formulate possible explanations for these observations. The activity instructions and worksheet are provided in the next section of this booklet. 9

10 Activity 1 Activity 1: Series circuit vs Parallel circuit Series circuit Parallel circuit For this activity, you will be setting up both circuits A and B on one large base. Use the picture above to assemble the circuits. If you need more detailed instructions, turn this page over! 10

11 Activity 1 1A Series circuit Components needed 2 x 2.5v lamp holder [#18] 2 x AA 1.5v batteries 2 x bulb 1 x press switch [#14] 1 x battery unit [#19] 2 x two-snap connector [#2] Instructions: 1. Connect the battery holder onto the base (positive terminal at the top) 2. Connect the bulb holders onto the base, to the left of the battery holder, as shown 3. Connect the bulb holders to the battery holder using the two-snap connectors 4. Connect the bulb holders together with the press switch as shown 5. Press the switch to see your circuit work! 6. Unscrew one of the bulbs and press the switch to see what happens 1B Parallel circuit Components needed 2 x 2.5v lamp holder [#18] 1 x press switch [#14] 2 x bulb 2 x one-snap connector [#1] 1 x battery unit [#19] 3 x three-snap connector [#3] 2 x AA 1.5v batteries Instructions: 1. Connect the battery holder onto the base (positive terminal at the top) 2. Connect the bulb holders onto the base, to the left of the battery holder, as shown 3. Place the two one-snap connectors onto the battery terminal connectors 4. Connect the bulb holders and the batter holder using the three-snap connecters, as shown 5. Connect the right bulb holder and battery holder with the press switch 6. Press the switch to see your circuit work! 7. Unscrew one of the bulbs and press the switch to see what happens 11

12 Activity 2 Activity 2: Batteries in series vs. Batteries in parallel A B C D Batteries in Series E F A E C Batteries in Parallel B F D For this activity, you will be measuring the voltage of the circuits at different points, as marked on the pictures. To do this, use the multimeters provided they have 2 probes, which you will need to place on the two points of measurement. Write the measurements on your worksheets. Measure and record the voltage at these points on each circuit: A & B C & D A & D E & F 12

13 Activity 3 Activity 3: Conductivity testing Components needed 1 x lamp holder [#18] 2 x AA 1.5v batteries 1 x bulb 1 x two-snap connector [#2] 1 x battery unit [#19] Conductors and insulators Instructions: 1. Place the battery holder onto the base, as shown 2. Place the bulb above the battery holder 3. Connect the bulb and battery holder using the two-snap connector 4. Connect the bulb and battery holders with the materials provided to determine if they are conductors or insulators Remember: materials that allow electricity to pass through are conductors, How do you know if the material you are testing is conducting electricity? The bulb will light up when you touch it to the circuit! Materials that do not allow electricity to pass through are insulators How do you know if the material you are testing is conducting electricity? The bulb will NOT light up when you touch it to the circuit! 5. Try some of your own items to see if they conduct or insulate. 13

15 Activity 4 - Make your own electronic game sounds 15

16 Make your own Morse Code signaller Activity 4 - Make your own Morse Code signaller Components Required: 4 x 2 snap connectors 1 x 3 Snap Connector 1 x battery unit 2 x AA batteries Group Instructions: Nominate one person from your group to collect your components from the supply table. Take this sheet to the supply table and your teacher or a presenter will help you to select the components you need. 1 x LED (#17) 1 x Press Switch (#14) 16

17 Activity 4 - Make your own Morse Code signaller 17

19 Activity 4 Make your own sound effects circuit 19

20 Worksheet Investigating Electrical Energy 1. Series vs. Parallel Are the bulbs brighter in the series circuit or in the parallel circuit? Why do you think this is? What happens in the series circuit when you unscrew one bulb? What about the parallel circuit? 2. Voltage - batteries in series vs. batteries in parallel Why did the LED light up in the parallel circuit when the switch was open? Switch Draw the path of the current in the diagram Battery LED Battery when the switch is left open (off). Series Parallel How many batteries are in the circuit? How many volts did you measure between these points? A and B (one battery unit) C and D (other battery unit) A and D (both battery units) E and F (LED) 20

21 3. Conductivity testing Worksheet Material tested Conductor or insulator? 4. Build your own circuit What type of circuit did you build? How do you think this circuit is used in everyday life? Draw a diagram of your circuit in the box below and show the flow of current through your circuit. Challenge questions Name something that uses a series circuit in your home: Name something that uses a parallel circuit in your home: What is an advantage of having batteries arranged in series? What is an advantage of having the batteries arranged in parallel? 21

22 References and Resources References Background information taken from EIA (Energy Information Administration) Energy Kids website Further reading

ELECTRICITY - A Secondary Energy Source

ELECTRICITY - A Secondary Energy Source A Secondary Source The Science of Electricity How Electricity is Generated/Made The Transformer - Moving Electricity Measuring Electricity energy calculator links

Electricity. Electricity: The Mysterious Force. 32 Intermediate Energy Infobook CARBON ATOM SEVERAL COMMON ELEMENTS

Electricity: The Mysterious Force What exactly is the mysterious force we call electricity? It is simply moving electrons. And what exactly are electrons? They are tiny particles found in atoms. Everything

Electricity. Atoms. Protons, Neutrons, and Electrons. Electricity is Moving Electrons. Atom

Electricity is a mysterious force. We can t see it like we see the sun. We can t hold it like we hold coal. We know when it is working, but it is hard to know exactly what it is. Before we can understand

STUDY GUIDE: ELECTRICITY AND MAGNETISM

319 S. Naperville Road Wheaton, IL 60187 www.questionsgalore.net Phone: (630) 580-5735 E-Mail: info@questionsgalore.net Fax: (630) 580-5765 STUDY GUIDE: ELECTRICITY AND MAGNETISM An atom is made of three

Two kinds of electrical charges

ELECTRICITY NOTES Two kinds of electrical charges Positive charge Negative charge Electrons are negatively charged Protons are positively charged The forces from positive charges are canceled by forces

Chapter 3: Electricity

Chapter 3: Electricity Goals of Period 3 Section 3.1: To define electric charge, voltage, and energy Section 3.2: To define electricity as the flow of charge Section 3.3: To explain the generation electricity

Reading Comprehension Skills Preview the Book Compare and Contrast How to Read Charts Main Idea and Details

TM Red Edition Grade 3 4 reading level Purple Edition Grade 4 5 reading level Objectives Understand that electric charge is a property of matter. Compare static electricity and current electricity. Describe

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

ELECTRICAL FUNDAMENTALS

General Electricity is a form of energy called electrical energy. It is sometimes called an "unseen" force because the energy itself cannot be seen, heard, touched, or smelled. However, the effects of

Chapter 17 Study Questions Name: Class:

Chapter 17 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. If two charges repel each other, the two charges

Students will investigate the characteristics of electromagnetism and then use what they learn to plan and conduct an experiment on electromagnets.

Electromagnetic Power! Lesson Overview Students will investigate the characteristics of electromagnetism and then use what they learn to plan and conduct an experiment on electromagnets. Suggested Grade

Lesson Plan for Introduction to Electricity

Lesson Plan for Introduction to Electricity Last Updated: 01/16/2009 Updated by: Science For Kids Electricity Lesson 1 Table of Contents Lesson Summary... 3 Lesson Information... 4 Activity Descriptions

Electricity and Magnetism

Electricity and Magnetism A Science AZ Physical Series Word Count: 1,668 Electricity and Magnetism Written by David Dreier Visit www.sciencea-z.com www.sciencea-z.com Electricity and Magnetism Key elements

10.2 Electromagnets. What is an electromagnet? Chapter 10

In the last section you learned about permanent magnets and magnetism. There is another type of magnet, one that is created by electric current. This type of magnet is called an. What is an? Why do magnets

Energy, electricity and magnetism page The diagram below shows an object made from a battery, a nail, and some wire.

Energy, electricity and magnetism page 3 Name: ate: 1. The diagram below shows an object made from a battery, a nail, and some wire. What will happen if you touch a metal paperclip to the nail? A. The

Vocabulary Electrical Energy Negative charge Electric Field Conductor Insulator Voltage Current Circuit breaker Fuse. Chapter 17.

Introduction to Electricity Table of Contents Bellringer Write a definition for electric charge in your own words in your science journal. When do you experience electric charges most, in winter or in

Building an Electric Motor

Activity 5 Building an Electric Motor Activity 5 Building an Electric Motor GOALS In this activity you will: Construct, operate, and explain a DC motor. Appreciate accidental discovery in physics. Measure

A. Directions: Pick the definition in column B that best matches the word in column A. Write the letter of the definition on the blank line.

1 LY from the series lectricity and Magnetism ame P -. Directions: Pick the definition in column B that best matches the word in column. Write the letter of the definition on the blank line. 1. repel 2.

4 th Grade Science Unit A: Physical Sciences Chapter 1: Electricity Lesson 1: How do charged objects behave?

4 th Grade Science Unit A: Physical Sciences Chapter 1: Electricity Lesson 1: How do charged objects behave? electric charge An electric charge is a property of some part of matter, described as positive

Let s Explore Electricity Basics!

Let s Explore Electricity Basics! Instructor Guide Subject Area Unit Grade Time Science Physical Science 5th grade 45 minutes Overview This lesson provides instruction on static electricity and the two

In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook.

In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook. When summarising notes, use different colours and draw diagrams/pictures. If you

Zap! (Electric Discharge)

Zap! (Electric Discharge) You are shuffling along a carpet and reach out to touch the doorknob and zap! a sudden electric discharge gives you a mild shock. The friction between your feet and the carpet

Grade 9 - Characteristics of Electricity

Purpose: This document is for grade 9 teachers to use as a pre-assessment for the Characteristics of Electricity unit. It assesses students understanding of the of the end of unit knowledge outcomes from

S E C T I O N O N E : I N T R O D U C T I O N

S E C T I O N O N E : I N T R O D U C T I O N What you will learn: What electricity is What an electrical current is How electricity is created How electricity is used to perform useful tasks The physical

Why Does Electricity Flow?

Why Does Electricity Flow? Topic 1: What is current electricity and how is it made? Key language electron flow circuit battery generator turbine nuclear fission shaft copper coil power line First ideas

A Science A Z Physical Series Word Count: 1,878. Written by David Dreier. Visit

A Science AZ Physical Series Word Count: 1,878 Written by David Dreier Visit www.sciencea-z.com www.sciencea-z.com KEY ELEMENTS USED IN THIS BOOK The Big Idea: Since the late 1800s, electricity has brightened

Draft Unit 6: Electricity and Magnetism Key Ideas:

Unit 6: Electricity and Magnetism Key Ideas: 6.1 Observe, describe, and investigate the evidence of energy transfer in electrical circuits. 6.2 Construct and diagram an electrical circuit 6.3 Identify

Teacher Content Brief

Teacher Content Brief Electric Motors Introduction Motors convert electric energy into mechanical energy. This mechanical energy turns the propellers on your Sea Perch. But what makes a motor spin? To

Introduction to Electricity

ENERGY USE AND DELIVERY LESSON PLAN 3.1 Introduction to Electricity This lesson is designed for 3rd 5th grade students in a variety of school settings (public, private, STEM schools, and home schools)

GENERATORS AND MOTORS

GENERATORS AND MOTORS A device that converts mechanical energy (energy of motion windmills, turbines, nuclear power, falling water, or tides) into electrical energy is called an electric generator. The

Level 2 Physics: Demonstrate understanding of electricity and electromagnetism

Level 2 Physics: Demonstrate understanding of electricity and electromagnetism Static Electricity: Uniform electric field, electric field strength, force on a charge in an electric field, electric potential

How do you measure voltage and current in electric circuits? Materials

20A Electricity How do you measure voltage and current in electric circuits? Electricity Investigation 20A We use electricity every day, nearly every minute! In this Investigation you will build circuits

Chapter 2: Forms of Energy

Chapter 2: Forms of Energy Goals of Period 2 Section 2.1: To describe the forms of energy Section 2.2: To illustrate conversions from one form of energy to another Section 2.3 To describe energy storage

Coulomb's Law. Two like charges of 1 Coulomb placed 1 meter apart repel each other with a force of 9 x 10 9 Newtons

Electricity Electricity is a force much like gravity but many times more powerful. Unlike gravity, electrical forces can be attractive or repulsive. Gravity has only one type of mass. Electricity has two

Bill-Bill-Bill-Bill-Bill

Bill-Bill-Bill-Bill-Bill Time to pay props to the craziest science man alive. Give it up for Bill Nye. Pay attention to watt (that's an electricity joke) he's got to say 'cause here are some questions

Electric Motors and Generators

Electric Motors and Generators Motors run a tremendous number of devices, from toy trains to refrigerators, from air conditions to cars. What is inside a motor and how do they work? How are motors related

Circuits and the Flow of Electricity

Lesson Overview This lesson helps Girl Scouts learn about how electricity works within a simple circuit. Many vocabulary words must be introduced (located under things for the leader to know). This lesson

Chapter 5. Electrical Energy

Chapter 5 Electrical Energy Our modern technological society is largely defined by our widespread use of electrical energy. Electricity provides us with light, heat, refrigeration, communication, elevators,

Lesson Plan for Electric Circuits

Lesson Plan for Electric Circuits Last Updated: 11/6/2009 Updated by: Sci4Kids Electric Circuits Lesson 1 Lesson Summary Lesson name Audience Focus Standards (4 th grade) Fourth Grade AZ standard(s) applied

STEM 2 3: The Basics of Energy, Electricity, and Water Jigsaw

STEM 2 3: The Basics of Energy, Electricity, and Water Jigsaw Objective To increase understanding of forms of energy, sources of energy, atomic structure, electricity, magnetism, electricity generation,

Grade 5 Standard 4 Unit Test Static Electricity

Grade 5 Standard 4 Unit Test Static Electricity Multiple Choice 1. Two objects have collected static electricity with the same charge. What would the objects do when placed near each other? A. repel B.

Coulomb s Law. F = k q 1q 2. k = x 10 9 N m 2 /C 2

Electricity Electricityisaforcemuchlikegravitybutmillionsoftimemorepowerful. Unlike gravity, electricity can be attractive and repulsive. There are two types of electric charge which are labeled positive

Introduction to Electricity & Magnetism. Dr Lisa Jardine-Wright Cavendish Laboratory

Introduction to Electricity & Magnetism Dr Lisa Jardine-Wright Cavendish Laboratory Examples of uses of electricity Christmas lights Cars Electronic devices Human body Electricity? Electricity is the presence

8.2. Electric Current. Did You Know? 8-2A. Lighting It Up. Words to Know. Find Out ACTIVITY. Safety. Materials. What Did You Find Out?

8.2 Electric Current Current electricity is the flow of charged particles in a complete circuit. The unit for measuring electric current is the ampere (A), which is defined as one coulomb of charge passing

Mechanical Energy. Mechanical Energy is energy due to position or motion.

Mechanical Energy Mechanical Energy is energy due to position or motion. Position: This means that matter can have energy even though it is not moving. If you knock something off of your kitchen counter,

TEACHING LEARNING COLLABORATIVE (TLC) PHYSICAL SCIENCE Making an Electromagnet Grade 4 Created by: Maria Schetter (Terrace Heights Elementary School), Stella Winckler (Lucerne Elementary School), Karen

Unit 3 Lesson 4 Magnets and Magnetism. Copyright Houghton Mifflin Harcourt Publishing Company

Stuck on You What are some properties of magnets? The term magnet describes any material that attracts iron or objects made of iron. Many magnets are made of iron, nickel, cobalt, or mixtures of these

1) ASSOCIATE ELEMENTARY PARTICLES WITH THEIR ELECTRICAL CHARGE

Name Date STUDY GUIDE CHAPTER 5 ELECTRICITY AND MAGNETISM 1) ASSOCIATE ELEMENTARY PARTICLES WITH THEIR ELECTRICAL CHARGE Scientists now know that an atom is composed of even smaller particles of matter:

Colorado Reader AG in the Classroom Helping the Next Generation Understand Their Connection to Agriculture Colorado Foundation for Agriculture ~ www.growingyourfuture.com Food, Fiber and Natural Resource

Chapter 22: Electric motors and electromagnetic induction

Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on

CHAPTER 17 NOTES FOR EIGHTH GRADE PHYSICAL SCIENCE ALL MATTER IS COMPOSED OF VERY SMALL PARTICLES CALLED ATOMS.

CHAPTER 17 NOTES FOR EIGHTH GRADE PHYSICAL SCIENCE ALL MATTER IS COMPOSED OF VERY SMALL PARTICLES CALLED ATOMS. THE LAW OF ELECTRIC CHARGES STAES THAT LIKE CHARGES REPEL AND OPPOSITE CHARGES ATTRACT. BECAUSE

PHYSICAL WORLD. Heat & Energy GOD S DESIGN. 4th Edition Debbie & Richard Lawrence

PHYSICAL WORLD Heat & Energy GOD S DESIGN 4th Edition Debbie & Richard Lawrence God s Design for the Physical World is a complete physical science curriculum for grades 3 8. The books in this series are

Electric current II. Except in a superconductor

Electric current Charges in motion: Count positive charges going from left to right Add negative charges going from right to left Subtract all charges moving in the opposite direction Divide by time =>

Chapter 2: Forms of Energy

Chapter 2: Forms of Energy Goals of Period 2 Section 2.1: To describe the forms of energy Section 2.2: To illustrate conversions from one form of energy to another Section 2.3: To define the efficiency

R Ch 36 Magnetism pg 1. Text Qs pg 575 RQ 1, 2, 4, 5, 7-9,12,13,19

R Ch 36 Magnetism pg 1 Text Qs pg 575 RQ 1, 2, 4, 5, 7-9,12,13,19 R Ch 36 Magnetism pg 2 Magnets are essential for modern life, they are used in generators, motors, lights etc. Originally called loadstones

Electro - Principles I

Electro - Principles I Atomic Theory Atomic Theory Page It is our intention here to handle atomic theory in a very light manner. Some knowledge is required in order to understand the characteristics of

ELECTRICITYt. Electromagnetism

ELECTRICITYt Electromagnetism Subject area : Physics Topic focus : magnetic properties, magnetic field, the Earth s magnetic field, magnetic field of an electric wire. Learning Aims : Polarity of bar magnets

To learn how to build a simple electric motor and to determine which motor design produces the fastest rate of spin.

Objective To learn how to build a simple electric motor and to determine which motor design produces the fastest rate of spin. Introduction So, what do windshield wipers, CD players, VCR's, blenders, ice

MAGNETISM AND ELECTRICITY

MAGNETISM AND ELECTRICITY Survey/Posttest Date 1. Wait for your teacher before you begin. Your teacher will tell you how to complete this item. Object a. Sticks to magnets? b. Conducts electricity? Iron

Electrical Charge: a type of energy that comes from the flow of charged particles; it allows electrical devices to function.

Unit E: Electrical Applications Chapter 11: Electrical Energy 11.1: Generating Electricity pg. 420 Key Concepts: 1. Electrical energy is generated using a variety of technologies. 2. Electrical energy

Science AS90191 Describe Aspects of Physics.

Circuits and components Science AS90191 Describe Aspects of Physics. An electric current is the movement of electrons (negatively charged particles). A circuit is made up of components connected together

Georgia Performance Standards Framework for Physical Science 8 th Grade. Powering Satellites

The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

Preview of Period 16: Motors and Generators

Preview of Period 16: Motors and Generators 16.1 DC Electric Motors What causes the rotor of a motor to spin? 16.2 Simple DC Motors What causes a changing magnetic field in the simple coil motor? 16.3

Lesson Plan: Forms, States, and Conversions

Lesson Plan: Forms, States, and Conversions Concepts 1. can be neither created nor destroyed, but converted from one form to another. This can be represented as the first law of thermodynamics. 2. can

Electricity, Conductors and insulators

reflect Imagine you want to make pasta for dinner. How do we do it? We put water in a pan and put the pan on a stove. Soon the heat from the stove burner makes the water hot enough to boil. The handle

Section B: Electricity

Section B: Electricity We use mains electricity, supplied by power stations, for all kinds of appliances in our homes, so it is very important to know how to use it safely. In this chapter you will learn

1. E&M induction requires change, of the intensity of a magnetic field or of motion in a magnetic field.

Chapter 25 EXERCISE key 1. E&M induction requires change, of the intensity of a magnetic field or of motion in a magnetic field. 2. Magnetic induction will not occur in nylon, since it has no magnetic

Experiment 5-Electric Charges Lab

Experiment 5-Electric Charges Lab So what are atoms made of? In the middle of each atom is a "nucleus." The nucleus contains two kinds of tiny particles, called protons and neutrons. Orbiting around the

The Magic School Bus and the Electric Field Trip Written by Joanna Cole Illustrated by Bruce Degen 1997, Scholastic Inc.

Teacher s Guide to Third and Fourth Grade Reading and Writing Exercises for The Magic School Bus and the Electric Field Trip Written by Joanna Cole Illustrated by Bruce Degen 1997, Scholastic Inc. ISBN

Chapter 14 Magnets and

Chapter 14 Magnets and Electromagnetism How do magnets work? What is the Earth s magnetic field? Is the magnetic force similar to the electrostatic force? Magnets and the Magnetic Force! We are generally

ELECTRICITY UNIT SCIENCE AND TECHNOLGY- CYCLE 3 NAME GROUP. Teacher: Mr. D. Strina E-mail: dstrina@swlauriersb.qc.ca MC CAIG ELEMENTARY SCHOOL

ELECTRICITY UNIT SCIENCE AND TECHNOLGY- CYCLE 3 NAME GROUP Teacher: Mr. D. Strina E-mail: dstrina@swlauriersb.qc.ca MC CAIG ELEMENTARY SCHOOL CLASS NOTES--- Atom An atom is the smallest particle characterizing

GETTING CURRENT: Generating Electricity Using a Magnet

GETTING CURRENT: Generating Electricity Using a Magnet PLANNING OVERVIEW SUBJECT AREAS: Physical Science, Math, Language Arts TIMING: Preparation: 30 minutes Activity: 1-2 45-minute class periods Summary

History of Electricity SCIENCE TOPICS PROCESS SKILLS GRADE LEVEL

History of Electricity Objectives In this presentation, students will learn about the historical sequence of discoveries that allowed electricity to become the most versatile and useful form of energy

Pure water is non-conducting. Gas discharges. Current flow of electric charge. L 26 Electricity and Magnetism [3] A salt water solution is a conductor

L 26 Electricity and Magnetism [3] Electric circuits what conducts electricity what doesn t conduct electricity Current voltage and resistance Ohm s Law Heat in a resistor power loss Making simple circuit

Student Reader. Energy Systems UNIT 7. E5 Student Reader v. 8.0 Unit 7 Page 1 2012 KnowAtom TM

Student Reader UNIT 7 Energy Systems E5 Student Reader v. 8.0 Unit 7 Page 1 2012 KnowAtom TM Front Cover: The cover shows a photograph of a sled that is not in motion. The movement of a sled from one place

Forms of Energy: Multiple Transformations : Teacher Notes

Forms of Energy: Multiple Transformations : Teacher Notes Introduction The focus of the investigation is to further define energy and realize that chains of energy transformations can occur. The VoltageCurrent,

Test Bank - Chapter 4 Multiple Choice

Test Bank - Chapter 4 The questions in the test bank cover the concepts from the lessons in Chapter 4. Select questions from any of the categories that match the content you covered with students. The

Copper and Electricity: Generation

PHYSICS Copper and Electricity: Generation (Electromagnetic Induction) 16-18 YEARS Below are different sections of this e-source, for quick navigation. Electricity from Movement What is Induction? Flux

DIRECT CURRENT GENERATORS

DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle

HYDROPOWER Basics Glossary of Terms

Alternating current (AC) Electric current that reverses direction many times per second. Ampere A measure of electric current (similar to describing water volume in cubic feet per second). Ancillary services

Science Tutorial TEK 6.9C: Energy Forms & Conversions

Name: Teacher: Pd. Date: Science Tutorial TEK 6.9C: Energy Forms & Conversions TEK 6.9C: Demonstrate energy transformations such as energy in a flashlight battery changes from chemical energy to electrical

BUILDING A BASIC CIRCUIT

Teacher Information BUILDING A BASIC CIRCUIT NSES9-12.2 Physical Science: Interactions of Energy and Matter Adaptations Some adaptations and modifications that may assist a student with visual and/or other

Uses of Energy. reflect. look out!

reflect Take a moment to think about three common objects: a flashlight, a computer, and a toaster. A flashlight provides light. A computer stores information and displays it on a screen. A toaster cooks

ElectroMagnetic Induction. AP Physics B

ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday

Name: Date: Regents Physics Mr. Morgante UNIT 4B Magnetism

Name: Regents Physics Date: Mr. Morgante UNIT 4B Magnetism Magnetism -Magnetic Force exists b/w charges in motion. -Similar to electric fields, an X stands for a magnetic field line going into the page,

Saltwater Circuit. Your Activity Build an electric circuit that uses saltwater as part of the circuit. Material. Science Topics. What s going on?

Saltwater Circuit Your Activity Build an electric circuit that uses saltwater as part of the circuit Material 2 large popsicle sticks 4 pieces insulated copper wire, 4-6 inches long 3 plastic cups (16

Shining a Light. Design & Technology. Year 9. Structure of an electric torch. Shining a Light

Looking at electronic circuits and what is meant by current, voltage, and resistance. Shining a Light Have you ever taken an electric torch to pieces to find out how it works? Look at the diagram below

Electricity Review-Sheet

Name: ate: 1. The unit of electrical charge in the MKS system is the. volt. ampere. coulomb. mho 2. Which sketch best represents the charge distribution around a neutral electroscope when a positively

Pre-Visit Activities

Pre-Visit Activities (These pages may be freely copied) Table of Contents > Handy Electricity...1 > Learning the Ropes with Electricity...3 > Power Through a Pencil...5 > Electrophorus and Leyden Jar...7

Energy and Energy Transformations Test Review

Energy and Energy Transformations Test Review Completion: 1. Mass 13. Kinetic 2. Four 14. thermal 3. Kinetic 15. Thermal energy (heat) 4. Electromagnetic/Radiant 16. Thermal energy (heat) 5. Thermal 17.

7.3 Resistance. Conductors and insulators. Chapter 7. Why are some materials conductors and some insulators?

Parts of electrical devices are made up of metals but often have plastic coverings. Why are these materials chosen? How well does current move through these materials? In this section, you will learn about

Experimenting With Forces

Have you heard the story about Isaac Newton and the apple? Newton was a scientist who lived about 300 years ago. He made many important discoveries about how and why things move. The apple story goes like

As you learned in the previous activity, energy is either potential energy or kinetic energy. Each can take many forms.

Topic 6: Forms of Potential Energy As you learned in the previous activity, energy is either potential energy or kinetic energy. Each can take many forms. Forms of potential energy include Stored Mechanical

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions

Concept Check (top) Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 1 Solutions Student Book page 583 Concept Check (bottom) The north-seeking needle of a compass is attracted to what is called

Topic 1 Electrical Charges

Topic 1 Electrical Charges 1. When are materials said to be electrically charged? Materials are positively charged if They have an uneven number of protons and electrons 2. How could you produce an electric

This topic explores the key concepts of magnetism as they relate to: the phenomenon of magnetism magnetic forces and fields a theory of magnetism.

Magnetism Introduction This topic explores the key concepts of magnetism as they relate to: the phenomenon of magnetism magnetic forces and fields a theory of magnetism. Key concepts of magnetism The activities

Electricity & Electronics Merit Badge Class 1 Name Electricity Merit Badge Class 1-2010 National Scout Jamboree 1 CLASS 1 What is Covered 1. Careers. 2. Basic electronics/electricity tools. 3. Safety and

Chapter 2 Faraday s Miracle In this chapter we discuss how electricity generators work. Michael Faraday was the father of electricity generation. Almost 200 years ago, he discovered electromagnetic induction.