Calculus and Vectors. Day Lesson Title Math Learning Goals Expectations 1, 2, 3,


 Cecily Armstrong
 2 years ago
 Views:
Transcription
1 Unit Applying Properties of Derivatives Calculus and Vectors Lesson Outline Day Lesson Title Math Learning Goals Epectations 1,,, The Second Derivative (Sample Lessons Included) 4 Curve Sketching from information 5, 6 Curve Sketching from an Equation Define the second derivative Investigate using technology to connect the key properties of the second derivative to the first derivative and the original polynomial or rational function (increasing and decreasing intervals, local maimum and minimum, concavity and point of inflection) Determine algebraically the equation of the second derivative f () of a polynomial or simple rational function f(), and make connections, through investigation using technology, between the key features of the graph of the function and those of the first and second derivatives Describe key features of a polynomial function and sketch two or more possible graphs of a polynomial function given information from first and second derivatives eplain why multiple graphs are possible Etract information about a polynomial function from its equation, and from the first and second derivative to determine the key features of its graph Organize the information about the key features to sketch the graph and use technology to verify B11, B1, B1 B14 B15 7 Jazz Day 8 Unit Summative (Sample Assessment Included) Note: The assessment on day 8, and an assessment for a jazz day, is available from the member area of the OAME website and from the OMCA website (wwwomcaca) Calculus and Vectors: MCV4U: Unit Applying Properties of Derivatives (Draft August 007) Page 1 of 19
2 Unit : Day 1: Concavity of Functions and Points of Inflection Minds On: 15 Action: 45 Consolidate:15 Total=75 min Learning Goals: Recognize points of inflection as points on a graph of continuous functions where the concavity changes Sketch the graph of a (generic)derivative function, given the graph of a function that is continuous over an interval, and recognize points of inflection of the given function (ie, points at which the concavity changes) Minds On Pairs or Whole Class Discussion If enough computers are available, have students work in pairs with GSP to complete BLM 11 or, use the GSP Sketch PtsOfInflectiongsp as a demonstration and BLM 11 as a guide for discussion Key understanding: When the first derivative of a function changes direction, there is a point of inflection, and the concavity changes: MCV4U Materials Graphing Calculators BLM11 BLM1 BLM1 Computer lab or computer with data projector Chart paper and markers Assessment Opportunities Observe students working with GSP sketch Listen to their use of function terminology Action! Small Groups Investigation In heterogeneous groups of or 4, students complete BLM 1 in order to investigate points of inflection for different polynomials Mathematical Process: Connecting, Representing Consolidate Debrief Small Groups Class Sharing In heterogeneous groups of three, and using chart paper, students write their observations from the investigations Call on each group to share observations with the class Groups post the chart paper with their observations from the investigations on the wall Invite students to record information from the chart paper in their notebooks Home Activity or Further Classroom Consolidation Concept Practice Reflection Complete BLM 1 Journal Entry: Do all graphs have points of inflection? Eplain Calculus and Vectors: MCV4U: Unit Applying Properties of Derivatives (Draft August 007) Page of 19
3 11 Concavity and Point(s) Of Inflection 1 For each of the following graphs of functions: a) determine (approimately) the interval(s) where the function is b) determine (approimately) the interval(s) where the function is c) estimate the coordinates of any point(s) of inflection 1, Calculus and Vectors: MCV4U: Unit Applying Properties of Derivatives (Draft August 007) Page of 19
4 1 Investigate Points of Inflection PART A 1 i) Using technology, graph f ( ) =, the first derivative f ( ) = f! ( ) = 6 on the same viewing screen ii) Copy and label each graph on the grid below!, and the second derivative iii) Identify the point of inflection of ( ) f = using the TABLE feature of the graphing calculator iv) Show algebraically that the point where the first derivative,!( ), of the function, ( ) equal to 0 is (0, 0) v) For the interval # (!", 0) f =, the first derivative!( ) of the function ( ) f = ais and is For the interval # (!", 0) function For the interval " ( 0,!), the function ( ) f =, is f = is above the  f = is a(n), the first derivative!( ) of the function ( ) f = ais and is For the interval " ( 0,!) function, the function ( ) f = is also above the  f = is a(n) vi) Show algebraically that the point where the second derivative, f! ( ) = 6, of the function, ( ) is equal to 0 is (0, 0) vii) For the interval # (!", 0), the second derivative f! ( ) = 6 of the function ( ) ais and is For the interval # (!", 0) For the interval " ( 0,!), the function ( ) f =, f = is below the  f = is, the second derivative f! ( ) = 6 of the function ( ) ais and is For the interval " ( 0,!), the function ( ) f = is above the  f = is viii) Describe the behaviour of the second derivative of the function to the left and to the right of the point where the second derivative of the function f ( ) = is equal to 0 Calculus and Vectors: MCV4U: Unit Applying Properties of Derivatives (Draft August 007) Page 4 of 19
5 1 Investigate Points of Inflection (Continued) PART B 1 i) The graph of ( ) = f + is the graph of ( ) f = translated units Using technology, create the graphs of the function f ( ) = ; and the function f ( ) = + derivative of the function!( ), and the second derivative of the function f ( ) = 6 f = viewing screen ii) Copy and label each graph on the grid below, the first! in the same iii) Identify the point of inflection of ( ) = + f iv) Show algebraically that the point where the first derivative, f!( ) =, of the function, ( ) = + is equal to 0 is (0, 0) v) For the interval # (!", 0), the first derivative!( ) of the function ( ) = + f = ais and is For the interval # (!", 0) function For the interval " ( 0,!), the function ( ) = + f, f is above the  f is a(n), the first derivative f!( ) = of the function ( ) = + the ais and is For the interval " ( 0,!) function vi) Show algebraically that the point where the second derivative, f ( ) = 6 f ( ) = +, is equal to 0 is (0, 0) vii) For the interval # (!", 0) f is also above, the function ( ) = + f is a(n)!, of the function,, the second derivative f! ( ) = 6 of the function ( ) = + the ais and is For the interval # (!", 0) For the interval " ( 0,!) f is below, the function ( ) = + f is, the second derivative f! ( ) = 6 of the function ( ) = + ais and is For the interval " ( 0,!), the function ( ) = + f is above the f is viii) Describe the behaviour of the second derivative of the function to the left and to the right of the point where the second derivative of the function f ( ) = + is equal to 0 What effect does translating a function vertically upwards have on the location of a point of inflection for a given function? Calculus and Vectors: MCV4U: Unit Applying Properties of Derivatives (Draft August 007) Page 5 of 19
6 1 Sketch the Graph Of the Derivative Of A Function 1 a) Determine the first and second derivatives of the function ( ) =! + f b) Sketch the first and second derivatives of the function f ( ) =! + the graph of the function ( ) =! + f on the grid below, and use these graphs to sketch f =! + a) Determine the first and second derivative of each of the function ( ) ( ) =! + b) Sketch the graphs of the first and second derivatives of the function ( ) ( ) graphs to sketch the graph of the function ( ) ( ) f =! + on the grid below f, and use these Eplain how you can determine the point of inflection for a function by studying the behaviour of the second derivative of the function to the left and to the right of the point where the second derivative of the function is equal to Calculus and Vectors: MCV4U: Unit Applying Properties of Derivatives (Draft August 007) Page 6 of 19
7 Unit : Day : Determining Second Derivatives of Functions Minds On: 15 Action: 50 Consolidate:15 Total=75 min Learning Goals: Define the second derivative of a function Determine algebraically the equation of the second derivative f!!( ) of a polynomial or simple rational function f () Minds On Pairs Investigation Students work in pairs to complete BLM 1 Establish the definition of the second derivative The definition should include rate of change and tangent line MCV4U Materials Graphing Calculators BLM1 BLM BLM BLM4 Large sheets of graph paper and markers Assessment Opportunities Action! Consolidate Debrief Small Groups Guided Eploration In heterogeneous groups of four students complete BLM and BLM Mathematical Process: Selecting tools, Communicating Individual Journal Students write a summary of findings from BLM in their journal Use a checklist or checkbric to note whether students can apply the Product Rule Application Home Activity or Further Classroom Consolidation Use BLM 4 to consolidate knowledge of and practise finding first and second derivatives using differentiation Calculus and Vectors: MCV4U: Unit Applying Properties of Derivatives (Draft August 007) Page 7 of 19
8 1 Find the Derivatives of Polynomial and Rational Functions 1 Find the derivative of each function Determine the derivative of the derivative function a) f ( ) = b) f ( ) =! =! c) f ( ) d) f ( ) =! 1 Calculus and Vectors: MCV4U: Unit Applying Properties of Derivatives (Draft August 007) Page 8 of 19
9 The First and Second Derivatives of Polynomial and Rational Functions 1 Complete the following chart: Function, f ( ) First Derivative, f!( ) Second Derivative, f! ( ) a) f ( ) = 6 b) f ( ) =! + c) f ( ) = + 5! 7 d) f ( ) = (! ) ( + 1) e) f ( ) = f) f ( ) =! 6 +! g) f ( ) =! 4 + 6! + Calculus and Vectors: MCV4U: Unit Applying Properties of Derivatives (Draft August 007) Page 9 of 19
10 The First and Second Derivatives of Polynomial and Rational Functions (Continued) Complete the following chart: [LEAVE YOUR ANSWERS IN UNSIMPLIFIED FORM] a) f ( ) Function, f ( ) First Derivative, f!( ) Second Derivative, f! ( ) + 1 =! b) f ( ) =! 4 c) f ( ) =! 9 d) f ( ) =! 1 ( + 1) 5 Calculus and Vectors: MCV4U: Unit Applying Properties of Derivatives (Draft August 007) Page 10 of 19
11 Working Backwards from Derivatives 1 The first derivative f () is given Determine a possible function, f() First derivative, f!( ) Possible function, ( ) f? ' a) f ( ) = + 4 f ( ) = Note: Any constant could be added or subtracted here b) f '( ) = 7 c) f '( ) = ( + 1) d) f '( ) = f ' =!( + 1)! e) ( ) Calculus and Vectors: MCV4U: Unit Applying Properties of Derivatives (Draft August 007) Page 11 of 19
12 4 Home Activity: First and Second Derivatives 1 Complete the following chart Function, f ( ) First Derivative, f!( ) Second Derivative, f! ( ) a) f ( ) = + 7! 5 f = ( + ) b) ( ) 4 c) f ( ) =! 5 + 4! 8 + d) f ( ) + =! 5 e ) f ( ) =!16 Create a polynomial function of degree Assume that your function (f ()) is the derivative of another function (f()) Determine a possible function (f()) Calculus and Vectors: MCV4U: Unit Applying Properties of Derivatives (Draft August 007) Page 1 of 19
13 Unit : Day : The Second Derivative, Concavity and Points of Inflection MCV4U Minds On: 10 Action: 50 Consolidate:15 Learning Goals: Determine algebraically the equation of the second derivative f () of a polynomial or simple rational function f(), and make connections, through investigation using technology, between the key features of the graph of the function and those of the first and second derivatives Materials graphing calculators Computer and data projector BLM 1 BLM BLM BLM 4 Total=75 min Minds On Pairs Pair Share Students coach each other as they complete a problem similar to the work from the previous class (A coaches B, and B writes, then reverse roles) Assessment Opportunities Each pair of students has only one piece of paper and one writing instrument Whole Class Discussion Using the GSP sketch PtsOfInflectiongsp, review points of inflection, and the properties of the first and second derivatives with respect to concavity and points of inflection Action! Pairs Guided Eploration Curriculum Epectation/Observation/Mental note: Circulate, listen and observe for student s understanding of this concept as they complete BLM 1 and Students work in pairs to complete the investigation on BLM1, BLM As students engage in the investigation, circulate to clarify and assist as they: determine the value(s) of the first and second derivatives of functions for particular intervals and values use a graphing calculator to determine the local maimum and/or minimum point(s) and point(s) of inflection of a polynomial function understand the connection between the sign of the second derivative and the concavity of a polynomial function use the second derivative test to determine if a point if a local maimum point or a local minimum point for a polynomial functions Mathematical Process: Reflecting, representing Consolidate Debrief Whole Class Discussion Lead a discussion about the information provided by the second derivative Students should be able to articulate their understanding about the properties of the second derivative Eploration Application Home Activity or Further Classroom Consolidation Complete BLM in order to consolidate your understanding of first derivatives, second derivatives, local ma/minimum points and points of infection for a simple rational function Complete a Frayer Model for the Second Derivative on BLM 4 See pages 5 of THINK LITERACY : Cross  Curricular Approaches, Grades 71 for more information on Frayer Models Calculus and Vectors: MCV4U: Unit Applying Properties of Derivatives (Draft August 007) Page 1 of 19
14 1 The Properties of First and Second Derivatives Investigate: 1 a) Graph each of the following functions on the same viewing screen of a graphing calculator f ( ) =!! ( ) =! f " ( ) = f! b) Classify each of the functions in part a) as a quadratic function, a linear function, or a constant function ( ) =!! f function ( ) =! f " function ( ) = f! function c) How are the first and second derivative functions related to the original function? d) Determine the coordinates of the verte of the function ( ) =!! f e) Determine if the verte of the function ( ) =!! minimum point f is a local maimum or a local f) Does the function ( ) =!! f have a point of inflection? Eplain g) Use a graphing calculator to determine the value of the first derivative of the function f =!! for each value ( ) = 1 "(!1) = 1 f!( 1) = = f!( ) = f = Calculus and Vectors: MCV4U: Unit Applying Properties of Derivatives (Draft August 007) Page 14 of 19
15 1 The Properties of First and Second Derivatives (continued) h) Complete the following chart by circling the correct response for each interval Interval #("!,1) The first derivative ( ) =! f " The function, f ( ) =!! The second derivative f! ( ) = is The function, f ( ) =!! = 1  is  is  is  is increasing  has a local ma  has a local min  is decreasing  is  is  is  is  has a pt of inflection  is  is  is  is  is increasing "( 1,! )  has a local ma  has a local min  is decreasing  is  is  is  is  has a pt of inflection  is  is  is  is  is increasing  has a local ma  has a local min  is decreasing  is  is  is  is  has a pt of inflection  is The first derivative, f "( ) =!, of the function f ( ) =!! is when = 1 and the second derivative, f! ( ) =, of the function f ( ) =!! is when = 1 A local point occurs when = 1! The second derivative, f ( ) =, of the function ( ) =!! f is for all values of The function f ( ) =!! is for all values of and does have a point of inflection Consolidate: If the second derivative of a function is when the first derivative of a function is equal to for a particular value, then a local point will occur for that particular value If the second derivative of a function is when the first derivative of a function is equal to for a particular value, then a local point will occur for that particular value Calculus and Vectors: MCV4U: Unit Applying Properties of Derivatives (Draft August 007) Page 15 of 19
16 Derivatives of a Cubic Function Investigate: 1 a) Graph each function on the same viewing screen of a graphing calculator f ( ) =!! ( ) =! 6! 9 f " ( ) = 6! 6 f " Use the following WINDOW settings: Xmin = 10 Xma = 10 Xscl = 1 Ymin = 0 Yma = 0 Yscl = 1 Xres = 1 b) Identify each of the functions in part a) as a cubic function, a quadratic function, a linear function, or a constant function f ( ) =!! function ( ) =! 6! 9 f " function ( ) = 6! 6 f " function c) How are the first and second derivative functions related to the original function? d) Write the coordinates of the local maimum point of the function f ( ) =!! e) Write the coordinates of the local minimum point of the function f ( ) =!! f) Write the coordinates of the point of inflection for the function f ( ) =!! Calculus and Vectors: MCV4U: Unit Applying Properties of Derivatives (Draft August 007) Page 16 of 19
17 Derivatives of a Cubic Function (Continued) g) Complete the following chart by circling the correct response for each interval Interval " < <! 1! =! 1! 1 < < 0 = 0 0 < < 1 = 1 1 < <! The first derivative ( ) =! 6! 9 f " Positive The function, f ( ) =!! increasing decreasing local ma local min increasing decreasing local ma local min increasing decreasing local ma local min increasing decreasing The second derivative ( ) = 6! 6 f " The function, f =!! 9 ( ) + 15 pt of inflection pt of inflection pt of inflection Summarize the information in the table in your own words Consolidate: If the second derivative of a function is for a particular value on the curve and has the opposite sign for points on either side of that particular value, then a of the function and a of the first derivative of the function will occur for that particular value Calculus and Vectors: MCV4U: Unit Applying Properties of Derivatives (Draft August 007) Page 17 of 19
18 Derivatives of Rational Functions Investigate: 1 a) Graph each of the following functions on the same viewing screen of a graphing calculator Use the standard viewing window f f "( ) = f ""( ) ( ) =! 1!! 1 (! 1) b) Write the coordinates of the point of inflection for the function = f ( ) =! (! 1) c) Complete the following chart by circling the correct response for each interval Interval! " < <! 1 =! 1! 1 < < 0 = 0 0 < < 1 = 1 1 < <! The first derivative f " ( )! =! 1 (! 1) eist eist eist eist eist eist eist The function, f ( ) =! 1 increasing decreasing local ma local min increasing decreasing local ma local min increasing decreasing local ma local min increasing decreasing The second derivative f "" ( ) = + 6 (! 1) eist not continuous eist eist not continuous eist eist not continuous eist eist The function, f ( ) =! 1 pt of inflection pt of inflection pt of inflection not continuous not continuous not continuous d) Eplain the behaviour of the function f ( ) = at the points where =! 1 and = 1! 1 Calculus and Vectors: MCV4U: Unit Applying Properties of Derivatives (Draft August 007) Page 18 of 19
19 4 Home Activity: Frayer Model Name Date Definition Facts/Characteristics Eamples Second Derivative of a Function Noneamples Calculus and Vectors: MCV4U: Unit Applying Properties of Derivatives (Draft August 007) Page 19 of 19
Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c
Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c Lesson Outline BIG PICTURE Students will: manipulate algebraic expressions, as needed to understand quadratic relations; identify characteristics
More informationUnit 3: Day 2: Factoring Polynomial Expressions
Unit 3: Day : Factoring Polynomial Expressions Minds On: 0 Action: 45 Consolidate:10 Total =75 min Learning Goals: Extend knowledge of factoring to factor cubic and quartic expressions that can be factored
More informationNotes on Curve Sketching. B. Intercepts: Find the yintercept (f(0)) and any xintercepts. Skip finding xintercepts if f(x) is very complicated.
Notes on Curve Sketching The following checklist is a guide to sketching the curve y = f(). A. Domain: Find the domain of f. B. Intercepts: Find the yintercept (f(0)) and any intercepts. Skip finding
More informationSymmetry. A graph is symmetric with respect to the yaxis if, for every point (x, y) on the graph, the point (x, y) is also on the graph.
Symmetry When we graphed y =, y = 2, y =, y = 3 3, y =, and y =, we mentioned some of the features of these members of the Library of Functions, the building blocks for much of the study of algebraic functions.
More informationCurve Sketching. MATH 1310 Lecture 26 1 of 14 Ronald Brent 2016 All rights reserved.
Curve Sketching 1. Domain. Intercepts. Symmetry. Asymptotes 5. Intervals of Increase or Decrease 6. Local Maimum and Minimum Values 7. Concavity and Points of Inflection 8. Sketch the curve MATH 110 Lecture
More informationUnit 2 Grade 8 Representing Patterns in Multiple Ways
Unit 2 Grade 8 Representing Patterns in Multiple Ways Lesson Outline BIG PICTURE Students will: represent linear growing patterns (where the terms are whole numbers) using graphs, algebraic expressions,
More informationCalculus 1st Semester Final Review
Calculus st Semester Final Review Use the graph to find lim f ( ) (if it eists) 0 9 Determine the value of c so that f() is continuous on the entire real line if f ( ) R S T, c /, > 0 Find the limit: lim
More information10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED
CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations
More informationLesson 9.1 Solving Quadratic Equations
Lesson 9.1 Solving Quadratic Equations 1. Sketch the graph of a quadratic equation with a. One intercept and all nonnegative yvalues. b. The verte in the third quadrant and no intercepts. c. The verte
More informationContents. 6 Graph Sketching 87. 6.1 Increasing Functions and Decreasing Functions... 87. 6.2 Intervals Monotonically Increasing or Decreasing...
Contents 6 Graph Sketching 87 6.1 Increasing Functions and Decreasing Functions.......................... 87 6.2 Intervals Monotonically Increasing or Decreasing....................... 88 6.3 Etrema Maima
More informationObjectives. By the time the student is finished with this section of the workbook, he/she should be able
QUADRATIC FUNCTIONS Completing the Square..95 The Quadratic Formula....99 The Discriminant... 0 Equations in Quadratic Form.. 04 The Standard Form of a Parabola...06 Working with the Standard Form of a
More informationAnalyzing Functions Intervals of Increase & Decrease Lesson 76
(A) Lesson Objectives a. Understand what is meant by the terms increasing/decreasing as it relates to functions b. Use graphic and algebraic methods to determine intervals of increase/decrease c. Apply
More informationCGE 3b 2 What s My Ratio? The Investigate the three primary trigonometric ratios for rightangled MT2.01 triangles. Summarize investigations.
Unit 2 Trigonometry Lesson Outline Grade 10 Applied BIG PICTURE Students will: investigate the relationships involved in rightangled triangles to the primary trigonometric ratios, connecting the ratios
More information3.5 Summary of Curve Sketching
3.5 Summary of Curve Sketching Follow these steps to sketch the curve. 1. Domain of f() 2. and y intercepts (a) intercepts occur when f() = 0 (b) yintercept occurs when = 0 3. Symmetry: Is it even or
More informationMidterm 1. Solutions
Stony Brook University Introduction to Calculus Mathematics Department MAT 13, Fall 01 J. Viro October 17th, 01 Midterm 1. Solutions 1 (6pt). Under each picture state whether it is the graph of a function
More informationUnit #3: Investigating Quadratics (9 days + 1 jazz day + 1 summative evaluation day) BIG Ideas:
Unit #3: Investigating Quadratics (9 days + 1 jazz day + 1 summative evaluation day) BIG Ideas: Developing strategies for determining the zeroes of quadratic functions Making connections between the meaning
More informationGraphing and transforming functions
Chapter 5 Graphing and transforming functions Contents: A B C D Families of functions Transformations of graphs Simple rational functions Further graphical transformations Review set 5A Review set 5B 6
More information2008 AP Calculus AB Multiple Choice Exam
008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus
More informationCalculus Card Matching
Card Matching Card Matching A Game of Matching Functions Description Give each group of students a packet of cards. Students work as a group to match the cards, by thinking about their card and what information
More informationPOLYNOMIAL FUNCTIONS
POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a
More informationShake, Rattle and Roll
00 College Board. All rights reserved. 00 College Board. All rights reserved. SUGGESTED LEARNING STRATEGIES: Shared Reading, Marking the Tet, Visualization, Interactive Word Wall Roller coasters are scar
More informationMethods to Solve Quadratic Equations
Methods to Solve Quadratic Equations We have been learning how to factor epressions. Now we will apply factoring to another skill you must learn solving quadratic equations. a b c 0 is a seconddegree
More informationPolynomial and Synthetic Division. Long Division of Polynomials. Example 1. 6x 2 7x 2 x 2) 19x 2 16x 4 6x3 12x 2 7x 2 16x 7x 2 14x. 2x 4.
_.qd /7/5 9: AM Page 5 Section.. Polynomial and Synthetic Division 5 Polynomial and Synthetic Division What you should learn Use long division to divide polynomials by other polynomials. Use synthetic
More informationCourse: Grade 10 Applied Mathematics (MFM2P) Quadratic Relations of the Form y=ax 2 + bx + c
Course: Grade 10 Applied Mathematics (MFMP) Unit 6: Quadratic Relations of the Form y=ax + bx + c Unit 6 Quadratic Relations of the Form y=ax + bx + c Section Activity Page 6.1. Graphing Quadratic Relations
More informationUnit #4: Quadratic  Highs and Lows (13 days + 2 jazz + 3 midterm summative evaluation days)
Unit #4: Quadratic  Highs and Lows (13 days + 2 jazz + 3 midterm summative evaluation days) BIG Ideas: Investigate the three forms of the quadratic function and the information that each form provides.
More informationMEMORANDUM. All students taking the CLC Math Placement Exam PLACEMENT INTO CALCULUS AND ANALYTIC GEOMETRY I, MTH 145:
MEMORANDUM To: All students taking the CLC Math Placement Eam From: CLC Mathematics Department Subject: What to epect on the Placement Eam Date: April 0 Placement into MTH 45 Solutions This memo is an
More informationAP Calculus AB Home Enjoyment Ch. 3A 89 Curve Sketching
AP Calculus AB Home Enjoyment Ch. 3A 89 Curve Sketching Date Day Objective Calculus Assignments 10/1/2015 Thursday Absolute Extrema, Extreme Value Theorem Ch. 3A HW #1 10/2/2015 Friday Fair Day Fair Day
More informationMATH 10550, EXAM 2 SOLUTIONS. x 2 + 2xy y 2 + x = 2
MATH 10550, EXAM SOLUTIONS (1) Find an equation for the tangent line to at the point (1, ). + y y + = Solution: The equation of a line requires a point and a slope. The problem gives us the point so we
More informationAnalyzing the Graph of a Function
SECTION A Summar of Curve Sketching 09 0 00 Section 0 0 00 0 Different viewing windows for the graph of f 5 7 0 Figure 5 A Summar of Curve Sketching Analze and sketch the graph of a function Analzing the
More informationFinding Complex Solutions of Quadratic Equations
COMMON CORE y  0 y   0  Locker LESSON 3.3 Finding Comple Solutions of Quadratic Equations Name Class Date 3.3 Finding Comple Solutions of Quadratic Equations Essential Question: How can you find the
More informationExponential Functions
Eponential Functions In this chapter we will study the eponential function and its inverse the logarithmic function. These important functions are indispensable in working with problems that involve population
More informationPolynomials Classwork
Polynomials Classwork What Is a Polynomial Function? Numerical, Analytical and Graphical Approaches Anatomy of an n th degree polynomial function Def.: A polynomial function of degree n in the vaiable
More informationTranslating Points. Subtract 2 from the ycoordinates
CONDENSED L E S S O N 9. Translating Points In this lesson ou will translate figures on the coordinate plane define a translation b describing how it affects a general point (, ) A mathematical rule that
More informationMTH 3005  Calculus I Week 8: Limits at Infinity and Curve Sketching
MTH 35  Calculus I Week 8: Limits at Infinity and Curve Sketching Adam Gilbert Northeastern University January 2, 24 Objectives. After reviewing these notes the successful student will be prepared to
More informationAPPLICATIONS OF DIFFERENTIATION
4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION So far, we have been concerned with some particular aspects of curve sketching: Domain, range, and symmetry (Chapter 1) Limits, continuity,
More information1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model
. Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described b piecewise functions. LEARN ABOUT the Math A cit parking lot uses
More informationTransformational Graphing in the Real World
Transformational Graphing in the Real World I. UNIT OVERVIEW & PURPOSE: This unit specifically addresses the concept of transformational graphing. Absolute value, polynomial, and square root functions
More informationDownloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x
Functions and equations Assessment statements. Concept of function f : f (); domain, range, image (value). Composite functions (f g); identit function. Inverse function f.. The graph of a function; its
More information6706_PM10SB_C4_CO_pp192193.qxd 5/8/09 9:53 AM Page 192 192 NEL
92 NEL Chapter 4 Factoring Algebraic Epressions GOALS You will be able to Determine the greatest common factor in an algebraic epression and use it to write the epression as a product Recognize different
More informationCurve Sketching (IV) (x 1) 2
. Consider the following polynomial function:f() = 9 ( ) 5 ( + ) 3 Sketch the grapf of the function f().. Consider the following polynomial function:f() = ( 3) 6 + Sketch the grapf of the function f().
More informationMATH 60 NOTEBOOK CERTIFICATIONS
MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5
More informationPolynomial Degree and Finite Differences
CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial
More information5.3 Graphing Cubic Functions
Name Class Date 5.3 Graphing Cubic Functions Essential Question: How are the graphs of f () = a (  h) 3 + k and f () = ( 1_ related to the graph of f () = 3? b (  h) 3 ) + k Resource Locker Eplore 1
More information1. Which of the 12 parent functions we know from chapter 1 are power functions? List their equations and names.
Pre Calculus Worksheet. 1. Which of the 1 parent functions we know from chapter 1 are power functions? List their equations and names.. Analyze each power function using the terminology from lesson 1.
More information4.4 Concavity and Curve Sketching
Concavity and Curve Sketching Section Notes Page We can use the second derivative to tell us if a graph is concave up or concave down To see if something is concave down or concave up we need to look at
More information17.1 Connecting Intercepts and Zeros
Locker LESSON 7. Connecting Intercepts and Zeros Teas Math Standards The student is epected to: A.7.A Graph quadratic functions on the coordinate plane and use the graph to identif ke attributes, if possible,
More information2.4. Factoring Quadratic Expressions. Goal. Explore 2.4. Launch 2.4
2.4 Factoring Quadratic Epressions Goal Use the area model and Distributive Property to rewrite an epression that is in epanded form into an equivalent epression in factored form The area of a rectangle
More informationGraphing Patterns: Student Activity Lesson Plan
: Student Activity Lesson Plan Subject/Strand/Topic: Math Geometry & Spatial Sense Grade(s) / Course(s): 7 Ontario Epectations: 7m54 Key Concepts: graphing coordinates (, y) on a Cartesian plane Link:
More informationPreCalculus Math 12 First Assignment
Name: PreCalculus Math 12 First Assignment This assignment consists of two parts, a review of function notation and an introduction to translating graphs of functions. It is the first work for the PreCalculus
More informationHorizontal and Vertical Asymptotes of Graphs of Rational Functions
PRECALCULUS AND ADVANCED OPICS Horizontal and Vertical Asymptotes of Graphs of Rational Functions Student Outcomes Students identify vertical and horizontal asymptotes of rational functions. Lesson Notes
More informationMathematics 31 Precalculus and Limits
Mathematics 31 Precalculus and Limits Overview After completing this section, students will be epected to have acquired reliability and fluency in the algebraic skills of factoring, operations with radicals
More informationLesson 6 Applications of Differential Calculus
Lesson 6 Applications of Differential Calculus The line tangent to the graph of a function f at ( 0, f ( 0 is the line passing through the point whose slope is f ( 0. y = f ( The slopepoint equation of
More informationFunctions Defined by Integrals Curriculum Module
AP Calculus: Functions Defined by Integrals 8 Curriculum Module AP Calculus Functions Defined by Integrals Scott Pass John H. Reagan High School Austin, TX Reasoning from the graph of the derivative function
More informationMath 1314 Lesson 13 Analyzing Other Types of Functions
Math 1314 Lesson 13 Analyzing Other Types of Functions Asymptotes We will need to identify any vertical or horizontal asymptotes of the graph of a function. A vertical asymptote is a vertical line x a
More informationUnit 6 Grade 7 Geometry
Unit 6 Grade 7 Geometry Lesson Outline BIG PICTURE Students will: investigate geometric properties of triangles, quadrilaterals, and prisms; develop an understanding of similarity and congruence. Day Lesson
More informationSection 5.0A Factoring Part 1
Section 5.0A Factoring Part 1 I. Work Together A. Multiply the following binomials into trinomials. (Write the final result in descending order, i.e., a + b + c ). ( 7)( + 5) ( + 7)( + ) ( + 7)( + 5) (
More informationSection P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities
Section P.9 Notes Page P.9 Linear Inequalities and Absolute Value Inequalities Sometimes the answer to certain math problems is not just a single answer. Sometimes a range of answers might be the answer.
More informationInvestigation. So far you have worked with quadratic equations in vertex form and general. Getting to the Root of the Matter. LESSON 9.
DA2SE_73_09.qd 0/8/0 :3 Page Factored Form LESSON 9.4 So far you have worked with quadratic equations in verte form and general form. This lesson will introduce you to another form of quadratic equation,
More informationThe Rational Functions Unit
The Rational Functions Unit (Level IV PreCalculus) NSSAL (Draft) C. David Pilmer 04 (Last Updated: March 04) This resource is the intellectual property of the Adult Education Division of the Nova Scotia
More informationA Summary of Curve Sketching. Analyzing the Graph of a Function
0_00.qd //0 :5 PM Page 09 SECTION. A Summar of Curve Sketching 09 0 00 Section. 0 0 00 0 Different viewing windows for the graph of f 5 7 0 Figure. 5 A Summar of Curve Sketching Analze and sketch the graph
More informationLearning Objectives for Section 1.2 Graphs and Lines. Linear Equations in Two Variables. Linear Equations
Learning Objectives for Section 1.2 Graphs and Lines After this lecture and the assigned homework, ou should be able to calculate the slope of a line. identif and work with the Cartesian coordinate sstem.
More informationDefinition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.
8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent
More information3 e) x f) 2. Precalculus Worksheet P.1. 1. Complete the following questions from your textbook: p11: #5 10. 2. Why would you never write 5 < x > 7?
Precalculus Worksheet P.1 1. Complete the following questions from your tetbook: p11: #5 10. Why would you never write 5 < > 7? 3. Why would you never write 3 > > 8? 4. Describe the graphs below using
More informationUnit #5 : Exponential Functions (10 days + 1 jazz day + 1 summative evaluation day) BIG Ideas:
Unit #5 : Eponential Functions (0 days + jazz day + summative evaluation day) BIG Ideas: Students will: Collect primary data and investigate secondary data that can be modelled as eponential growth/decay
More informationUnit 5 Grade 7 Solving Equations
Unit 5 Grade 7 Solving Equations Lesson Outline BIG PICTURE Students will:! model linear relationships verbally, numerically, algebraically and graphically;! understand the concept of a variable;! solve
More informationMathematics More Visual Using Algebra Tiles
www.cpm.org Chris Mikles CPM Educational Program A California Nonprofit Corporation 33 Noonan Drive Sacramento, CA 958 (888) 80876 fa: (08) 7778605 email: mikles@cpm.org An Eemplary Mathematics Program
More informationSolving x < a. Section 4.4 Absolute Value Inequalities 391
Section 4.4 Absolute Value Inequalities 391 4.4 Absolute Value Inequalities In the last section, we solved absolute value equations. In this section, we turn our attention to inequalities involving absolute
More informationSection 37. Marginal Analysis in Business and Economics. Marginal Cost, Revenue, and Profit. 202 Chapter 3 The Derivative
202 Chapter 3 The Derivative Section 37 Marginal Analysis in Business and Economics Marginal Cost, Revenue, and Profit Application Marginal Average Cost, Revenue, and Profit Marginal Cost, Revenue, and
More informationWarmUp A 1 4! 33 B! !1! A (x + 2) 2 = 8. B (x + 2) 2 =10. C (x + 4) 2 =10. D (x + 4) 2 = 22
WarmUp CST/CAHSEE The graph of the equation y = x 2! 3x! is shown below. Review Which is one of the solutions to the equation 2x 2! x! = 0?  0 A 1! 33  B! 1 + 33 For what values of x is y = 0? A x =!1
More informationFunctions and Graphs
PSf Functions and Graphs Paper 1 Section B 1. The points A and B have coordinates (a, a 2 ) and (2b, 4b 2 ) respectivel. Determine the gradient of AB in its simplest form. 2 2. hsn.uk.net Page 1 Questions
More informationConcavity and Overview of Curve Sketching. Calculus. Applications of Differentiations (III)
Calculus Applications of Differentiations (III) Outline 1 Concavity and Overview of Curve Sketching Concavity Curve Sketching 2 Outline 1 Concavity and Overview of Curve Sketching Concavity Curve Sketching
More informationHomework #8 Solutions
Homework #8 Solutions Problems Bolded problems are worth 2 points. Section 4.1: 2, 8, 12, 16, 18, 22 Section 4.2: 4, 10, 14, 16, 22, 30. On 14 and 16, use the first or second derivative tests to characterize
More informationReview Exercises. Review Exercises 83
Review Eercises 83 Review Eercises 1.1 In Eercises 1 and, sketch the lines with the indicated slopes through the point on the same set of the coordinate aes. Slope 1. 1, 1 (a) (b) 0 (c) 1 (d) Undefined.,
More informationSECTION 25 Combining Functions
2 Combining Functions 16 91. Phsics. A stunt driver is planning to jump a motorccle from one ramp to another as illustrated in the figure. The ramps are 10 feet high, and the distance between the ramps
More informationTI84/83 graphing calculator
TI8/83 graphing calculator Let us use the table feature to approimate limits and then solve the problems the old fashion way. Find the following limits: Eample 1.1 lim f () Turn on your TI8 graphing
More informationSolving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form
SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving
More information4.1 Radian and Degree Measure
Date: 4.1 Radian and Degree Measure Syllabus Objective: 3.1 The student will solve problems using the unit circle. Trigonometry means the measure of triangles. Terminal side Initial side Standard Position
More informationQuadratic Functions Unit
Quadratic Functions Unit (Level IV Academic Math) NSSAL (Draft) C. David Pilmer 009 (Last Updated: Dec, 011) Use our online math videos. YouTube: nsccalpmath This resource is the intellectual property
More informationWhere Do We Meet? Students will represent and analyze algebraically a wide variety of problem solving situations.
Beth Yancey MAED 591 Where Do We Meet? Introduction: This lesson covers objectives in the algebra and geometry strands of the New York State standards for Algebra I. The students will use the graphs of
More informationThe Quadratic Function
0 The Quadratic Function TERMINOLOGY Ais of smmetr: A line about which two parts of a graph are smmetrical. One half of the graph is a reflection of the other Coefficient: A constant multiplied b a pronumeral
More informationAn inequality is a mathematical statement containing one of the symbols <, >, or.
Further Concepts for Advanced Mathematics  FP1 Unit 3 Graphs & Inequalities Section3c Inequalities Types of Inequality An inequality is a mathematical statement containing one of the symbols , or.
More informationINTRODUCTION CONTENTS
INTRODUCTION Algebra for All and No Child Left Behind are phrases in the education community that suggest, and in many cases require, action. They give impetus for mathematics teachers at all levels to
More informationCPM Educational Program
CPM Educational Program A California, NonProfit Corporation Chris Mikles, National Director (888) 8084276 email: mikles @cpm.org CPM Courses and Their Core Threads Each course is built around a few
More informationFactoring Quadratic Trinomials
Factoring Quadratic Trinomials Student Probe Factor x x 3 10. Answer: x 5 x Lesson Description This lesson uses the area model of multiplication to factor quadratic trinomials. Part 1 of the lesson consists
More informationAP Calculus AB 2001 Scoring Guidelines
P Calculus Scing Guidelines The materials included in these files are intended f noncommercial use by P teachers f course and eam preparation; permission f any other use must be sought from the dvanced
More informationDraft Material. Determine the derivatives of polynomial functions by simplifying the algebraic expression lim h and then
CHAPTER : DERIVATIVES Specific Expectations Addressed in the Chapter Generate, through investigation using technology, a table of values showing the instantaneous rate of change of a polynomial function,
More information13 Absolute Value in Equations and Inequalities
SECTION 1 3 Absolute Value in Equations and Inequalities 103 13 Absolute Value in Equations and Inequalities Z Relating Absolute Value and Distance Z Solving Absolute Value Equations and Inequalities
More informationChapter 3. Curve Sketching. By the end of this chapter, you will
Chapter 3 Curve Sketching How much metal would be required to make a ml soup can? What is the least amount of cardboard needed to build a bo that holds 3 cm 3 of cereal? The answers to questions like
More informationThe NotFormula Book for C1
Not The NotFormula Book for C1 Everything you need to know for Core 1 that won t be in the formula book Examination Board: AQA Brief This document is intended as an aid for revision. Although it includes
More information13 Graphs, Equations and Inequalities
13 Graphs, Equations and Inequalities 13.1 Linear Inequalities In this section we look at how to solve linear inequalities and illustrate their solutions using a number line. When using a number line,
More informationSection 23 Quadratic Functions
118 2 LINEAR AND QUADRATIC FUNCTIONS 71. Celsius/Fahrenheit. A formula for converting Celsius degrees to Fahrenheit degrees is given by the linear function 9 F 32 C Determine to the nearest degree the
More informationQuadratic Functions: Complex Numbers
Algebra II, Quarter 1, Unit 1.3 Quadratic Functions: Complex Numbers Overview Number of instruction days: 1214 (1 day = 53 minutes) Content to Be Learned Mathematical Practices to Be Integrated Develop
More informationMATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60
MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 A Summar of Concepts Needed to be Successful in Mathematics The following sheets list the ke concepts which are taught in the specified math course. The sheets
More informationSystems of Equations Involving Circles and Lines
Name: Systems of Equations Involving Circles and Lines Date: In this lesson, we will be solving two new types of Systems of Equations. Systems of Equations Involving a Circle and a Line Solving a system
More informationFactoring Quadratic Trinomials
Factoring Quadratic Trinomials Student Probe Factor Answer: Lesson Description This lesson uses the area model of multiplication to factor quadratic trinomials Part 1 of the lesson consists of circle puzzles
More informationCHAPTER 13. Definite Integrals. Since integration can be used in a practical sense in many applications it is often
7 CHAPTER Definite Integrals Since integration can be used in a practical sense in many applications it is often useful to have integrals evaluated for different values of the variable of integration.
More informationWhen I was 3.1 POLYNOMIAL FUNCTIONS
146 Chapter 3 Polnomial and Rational Functions Section 3.1 begins with basic definitions and graphical concepts and gives an overview of ke properties of polnomial functions. In Sections 3.2 and 3.3 we
More informationPolynomial and Rational Functions
Chapter Section.1 Quadratic Functions Polnomial and Rational Functions Objective: In this lesson ou learned how to sketch and analze graphs of quadratic functions. Course Number Instructor Date Important
More informationTransformations of Function Graphs
   0        Locker LESSON.3 Transformations of Function Graphs Teas Math Standards The student is epected to: A..C Analze the effect on the graphs of f () = when f () is replaced b af (), f (b),
More information